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Abstract

Let Fqn denote the finite field with qn elements, for q being a prime
power. Fqn may be regarded as an n-dimensional vector space over Fq.
α ∈ Fqn generates a normal basis for this vector space (Fqn : Fq), if

{α,αq , αq2
, . . . , αq

n−1} are linearly independent over Fq. Let N(q, n) de-
note the number of elements in Fqn that generate a normal basis for

Fqn : Fq, and let ν(q, n) = N(q,n)
qn denote the frequency of such elements.

We show that there exists a constant c > 0 such that

ν(q, n) ≥ c
1√
dlogq ne

, for all n, q ≥ 2

and this is optimal up to a constant factor in that we show

0.28477 ≤ lim
n→∞

inf ν(q, n)
√

logq n ≤ 0.62521, for all q ≥ 2

We also obtain an explicit lower bound:

ν(q, n) ≥ 1

edlogq ne
, for all n, q ≥ 2

∗Supported by the ESPRIT Long Term Research Programme of the EU, under project
number 20244 (ALCOM-IT)
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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1 Introduction

When implementing arithmetic in a finite field Fqn , one may represent elements
in Fqn as n-vectors over Fq. In this way addition becomes coefficient-wise addition
on the n-vectors. Multiplication may be more or less difficult depending on the
basis chosen. Any basis on the form {α, αq, αq2

, . . . , αq
n−1} where α ∈ Fqn is

called a normal basis. When using a normal basis, raising to the q’th power is
simply a cyclic shift of the coordinates in the vector representation. This has
motivated an interest in normal bases.

According to the historical remarks in Bach and Shallit [1], Eisenstein [4]
stated as early as 1850 that any finite field has a normal basis, and Hensel [7]
published an explicit characterisation of the number of distinct normal bases in
1888. We describe the characterisation here, since our later analysis will build
upon it. Our terminology is partly borrowed from Lidl and Niederreiter [9].

We need a function Φq that is an analogue of Euler’s φ-function, but defined
for polynomials over Fq.

Definition 1 For f ∈ Fq[x], define Φq(f) to be the number of polynomials g ∈
Fq[x] such that (i) deg(g) < deg(f) and (ii) gcd(f, g) = 1.

Let N(q, n) denote the number of elements in Fqn that generate a normal
basis for Fqn : Fq. The characterisation is N(q, n) = Φq(x

n − 1).

The bounds c n
ln lnn

≤ φ(n) ≤ n on Eulers φ-function are wellknown. There are
similar bounds on Φq(f). The upper bound Φq(f) ≤ qn is trivial and in Section
2, we prove the lower bound:

Theorem 2 For any finite field Fq and for any polynomial f ∈ Fq[x] of degree
n ≥ 2 and such that f(0) 6= 0, we have

Φq(f) ≥ qn

edlogq ne
.

In particular, the theorem translates to a bound on the frequency ν(q, n) of

normal basis elements for Fqn : Fq, since ν(q, n) = N(q,n)
qn

= Φq(x
n − 1) · q−n ≥

1
edlogq ne

.

This result improves the lower bound on ν(q, n) given by von zur Gathen and
Giesbrecht [11] by a constant factor.

However, there is an asymptotically stronger bound for Φq(x
n−1). In Section

3, we prove the following result:
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Theorem 3 There is a constant c1 such that

ν(q, n) ≥ .28477
1√

logq n
, for all q ≥ 2 and n ≥ qc1.

Combining this asymptotic bound with the simple bound ν(q, n) ≥ 1
edlogq ne

for all q, n leads to an absolute bound:

Corollary 4 There is a constant c such that

ν(q, n) ≥ c
1√
dlogq ne

, for all q, n ≥ 2.

In Section 4, we show the preceding result to be optimal in that

Theorem 5 For every primepower q,

ν(q, n) < .62521
1√

logq n
, for infinitely many n.

2 A general lower bound for Φq(f)

We will use a multiplicative characterisation of Φq(f). Let f ∈ Fq[x] with f(0) 6= 0
have the complete factorisation f =

∏t
i=1 f

ei
i over Fq (i.e. the irreducible factors

fi, fj are distinct, when i 6= j). Then

Φq(f) = qn ·
t∏
i=1

(1− 1

qni
), (1)

where ni is the degree of fi, and n ≥ 1 is the degree of f (see [9] for a proof).
From (1), we see that Φq(f) only depends on the number of distinct irreducible

factors f has of each degree. We introduce some useful notation:

Definition 6 Let Irr(q, d) denote the number of monic irreducible polynomials
g ∈ Fq[x], such that (i) g has degree d and (ii) g(0) 6= 0.

Let Irr(q, d; f) denote the number of monic irreducible polynomials g ∈ Fq[x],
such that (i) g has degree d, (ii) g(0) 6= 0 and (iii) g divides f .

In this notation, (1) translates into

Φq(f) = qn ·
n∏
d=1

(1− 1

qd
)Irr(q,d;f). (2)

Clearly,

deg(f) ≥
n∑
d=1

d · Irr(q, d; f), (3)
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and equality holds precisely, when f is square free. At this point, we observe that
for a fixed n = deg(f), the minimal value of Φq(f) occurs, when f has as many
distinct small degree factors as allowed by (3); i.e. if k is any integer such that
deg(f) ≤ 1 +

∑k
d=1 d · Irr(q, d), then

Φq(f) ≥ qn ·
k∏
d=1

(1− 1

qd
)Irr(q,d). (4)

To bound the right hand side of (4), we need upper bounds on both Irr(q, d) and
possible values for k. It is known (see Lidl and Niederreiter [9]) that

qk − 1 =
∑
d|k
d · Irr(q, d). (5)

From (5), we see that n ≤ 1 +
∑k
d=1 d · Irr(q, d) for k = dlogq ne. It is also implied

that

Irr(q, d) ≤ qd − 1

d
. (6)

Combining with (4), we find

Φq(f) ≥ qn ·
dlogq ne∏
d=1

(1− 1

qd
)
qd−1
d . (7)

Using that (1− 1
c
)c−1 ≥ 1

e
, for c > 1, this can be rephrased to

Φq(f) ≥ qn · e−
∑dlogq ne

d=1
1
d , (8)

and using that 1
2

+ 1
3

+ · · ·+ 1
k
≤ ln k, we finally get

Φq(f) ≥ qn · 1

edlogq ne
. (9)

Remark. The above bound is only valid for polynomials f for which f(0) 6= 0.
When changing the argument to general f , one needs to consider the irreducible
polynomial x of degree 1, implying that the value of Irr(q, 1) increases by 1. The
above analysis can be adjusted to this case resulting in the slightly worse bound
Φq(f) ≥ qn · 1

4dlogq ne
.

3 A stronger lower bound for Φq(x
n − 1)

In our proof of the lower bound for Φq(f), f being arbitrary, we considered a
worst case, where all irreducible polynomials of small degree were factors of f .
Intuitively, one might hope that xn − 1 would never factorise in that way, i.e.
for every n there would be a lot of small degree polynomials that did not divide
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xn− 1. This intuition turns out to be true, and when stated in a suitably formal
manner it suffices to prove the stronger bound of Theorem 3.

From (6), we know that Irr(q, d; xn − 1) ≤ qd−1
d

. We will divide the possible
degrees d in two sets according to whether Irr(q, d; xn − 1) has a value close to
this upper bound or not.

Definition 7 Let An,q be the set of those degrees d ∈ {1, . . . , n} for which

Irr(q, d; xn − 1) >
qd − 1

d3
.

Let Bn,q be the set of those degree d ∈ {1, . . . , n} for which

Irr(q, d; xn − 1) ≤ qd − 1

d3
.

We can basically ignore the contribution from degrees in Bn,q:

Lemma 8

ν(n, q) ≥
 e−ζ(3) ≈ .30058, for An,q = ∅,
e−γ · e−

1
|An,q | 1

|An,q| , for An,q 6= ∅,

where γ denotes Euler’s constant, and ζ is Riemann’s function.

Proof. With arguments analogous to those used in section 2, we obtain a bound:

ν(n, q) = Φq(x
n − 1) · q−n

≥
∏

d∈An,q
(1− 1

qd
)
qd−1
d ·

∏
d∈Bn,q

(1− 1

qd
)
qd−1

d3

≥ e
−
∑

d∈An,q
1
d · e−

∑
d∈Bn,q

1
d3

≥ e−
∑|An,q|

d=1
1
d · e−

∑n

d=|An,q|+1
1
d3

In the case of An,q = ∅, we use the fact that
∑∞
d=1

1
d3 = ζ(3), to get the bound

ν(n, q) ≥ e−ζ(3) ≈ .30058

In the case of An,q 6= ∅, we use the two inequalities
∑s
d=1

1
d
≤ ln s + γ + 1

2s
and∑∞

d=s+1
1
d3 ≤ 1

2s2
, to get the bound

ν(n, q) ≥ e−γ · e−
1

|An,q |
1

|An,q|
.

Our next task is to find an upper bound on |An,q|. We will do that implicitly
by expressing a lower bound for n in terms of |An,q|. We start by improving the

simple bound Irr(q, d; xn − 1) ≤ qd−1
d

:
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Lemma 9

Irr(q, d; xn − 1) ≤ gcd(qd − 1, n)

d
.

Proof. Let the monic irreducible polynomial g ∈ Fq[x] of degree d be a factor of
xn − 1, and let α be a root of g.

Since g divides xn − 1 it follows that αn = 1. Since g is irreducible, of degree
d, it follows that α ∈ Fqd and therefore αq

d−1 = 1. Combining, we get that

αgcd(qd−1,n) = 1. Since there are at most k distinct k’th roots of unity in a field,
we see that there are at most gcd(qd − 1, n) distinct possible α’s. Because g has
precisely d distinct roots, and distinct g’s have no common roots, there are at
most gcd(qd − 1, n)/d possible g’s.

Combining this result with the lower bound Irr(q, d; xn − 1) > qd−1
d3 implied

by d ∈ Aq,n, we can get our first lower bound on n.

Lemma 10

n ≥ lcmd∈Aq,n(qd − 1)∏
d∈Aq,n(d2)

Proof. Assume d ∈ Aq,n. Combining the definition of Aq,n with Lemma 9, we see

that qd−1
d3 ≤ gcd(qd−1,n)

d
, or equivalently, gcd(qd − 1, n) ≥ qd−1

d2 . One may interpret
this bound to say that n contains qd−1 as a factor except possibly for something
very small (bounded by d2). Since this is true for any d ∈ Aq,n, we see that n
contains the least common multiple of the (qd − 1)’s as a factor except possible
for something small (bounded by the product of the d’s squared).

The next step will be to phrase the preceding bound in terms of |Aq,n|.

Lemma 11 Let A be a finite set of natural numbers, let k = |A|, and let q be a
prime power, then

lcmd∈A(qd − 1)∏
d∈A(d2)

≥ qck
2−o(k2)

where c = ζ(6)
2ζ(2)ζ(3)

≈ .25726.

Proof. The proof will consist in combining three lemmas that we state and prove
separately in Section 5.

Let Cn ∈ Q[z] denote the nth cyclotomic polynomial. From Lemma 16 we
have

lcmd∈A(qd − 1) =
∏

{e |∃d∈A such that e divides d }
Ce(q) ≥

∏
d∈A

Cd(q).

For φ denoting Euler’s φ-function, we get in addition by Lemma 17
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lcmd∈A(qd − 1) ≥
∏
d∈A

qφ(d)−2.

Combining this calculation with Lemma 19, we find

lcmd∈A(qd − 1)∏
d∈A(d2)

≥ q
∑

d∈A(φ(d)−2 log2 d−2)

≥ qck
2−o(k2).

Proof of Theorem 3. In the case of Aq,n = ∅, it suffices by lemma 8 to note that
e−ζ(3) ≈ .30058 > .28477.

In the case of Aq,n 6= ∅, we combine Lemmas 10 and 11, and find

logq n ≥ c|Aq,n|2 − o(|Aq,n|2) (10)

for c = ζ(6)
2ζ(2)ζ(3)

. This may be reformulated as follows: For all c′ < c there exists

c′′ > 0, such that for all n ≥ qc
′′
:

|Aq,n| ≤
1√
c′

√
logq n

Combining this with Lemma 8 and the fact that e−
1
x → 1 for x → ∞, we see

that for any c′ < c we can find c′′, such that for all n ≥ qc
′′
, we have

ν(q, n) ≥ e−γ
√
c′

1√
logq n

(11)

The statement of the theorem follows from noting that e−γ
√
c > .28477.

4 Optimality of the lower bound on Φq(x
n − 1)

It will be argued that the lower bound of Theorem 3 is optimal up to a constant
factor. The proof will consist in constructing an infinite sequence {nk}∞k=1 such
that Fqn : Fq has exceptionally few normal bases for n ∈ {nk}. The sequence {nk}
will depend on q. Each number nk will have the property that all irreducible
polynomials of degrees at most k divides xnk − 1 (except for the irreducible
polynomial x that can never divide any polynomial of the form xn − 1).

Definition 12 For a given prime power q, define the infinite sequence {nk}∞k=1

by
nk = lcmk

d=1(qd − 1)

7



This definition serves our purpose in that

Lemma 13 For nk as defined above, Irr(q, d; xnk − 1) = Irr(q, d) for all d ≤ k.

Proof. Every irreducible polynomial of degree d divides xq
d−1 − 1 (as usual we

make an exception for the irreducible polynomial x) (see Lidl and Niederreiter
[9]), and since xa − 1 divides xab − 1 for any positive integers a, b, we also have
that xq

d−1 − 1 divides xnk − 1.

The size of nk is also kept fairly small:

Lemma 14 For all prime powers q, for all integers k > 0, and with nk as defined
above, it is the case that

logq nk = ck2 +O(k log k),

where c = 1
2ζ(2)

= 3
π2 ≈ .30396

Proof. By lemma 16, we may express nk in terms of cyclotomic polynomials

nk =
k∏
d=1

Cd(q).

When using Lemma 17 to bound Cd(q) in terms of Euler’s φ-function and taking
logarithms on both sides, we find

logq nk =
k∑
d=1

φ(d) +O(k).

The value of the accumulated sum of the φ-function is known (see Lemma 20),
and we have

logq nk = ck2 +O(k log k).

We will first find a bound on ν(nk, q) in terms of k and then combine this
with the previous bound on k in terms of nk.

Lemma 15

ν(nk, q) ≤ 1.1340 · 1

k
.

Proof. Using the multiplicative characterisation of Φ from section 2, we find that

ν(nk, q) =
nk∏
d=1

(1− 1

qd
)Irr(q,d,xnk−1).

8



By Lemma 13, the dependence of nk can be restricted to the occurrence of k in
the multiplication bound:

ν(nk, q) ≤
k∏
d=1

(1− 1

qd
)Irr(q,d).

To get the bound of the lemma, we show that

l∏
d=1

(1− 1

qd
)Irr(q,d) ≤ 1.08

1

l
for l ≤ 12 (12)

and

k∏
d=l+1

(1− 1

qd
)Irr(q,d) ≤ 1.05 · l

k
for l ≥ 12. (13)

Clearly, inequalities (12) and (13) combined imply the lemma. (12) may be
verified by an explicit calculation using that q ≥ 2, Irr(q, 1) = q − 1, Irr(q, 2) =
(q2 − q)/2, Irr(q, 3) = (q3 − q)/3, Irr(q, 4) = (q4 − q2)/4 etc. (details are omitted
for technical simplicity). To prove (13), we use that (1− 1

c
)c ≤ 1

e
for c > 1, and

find that

k∏
d=l+1

(1− 1

qd
)Irr(q,d) ≤ e−

∑k

d=l+1
Irr(q,d)/qd .

It is well known (see Lidl and Niederreiter [9]) that (for d ≥ 2 only, since we
exclude the degree 1 polynomium x)

Irr(q, d) =
1

d

∑
e|d
µ(e)qd/e.

This implies in particular that (for d, q ≥ 2)

Irr(q, d)/qd ≥ 1

d
− 2

d
(
√

2)−d.

Using the elementary inequalities
∑k
d=l+1

1
d
≥ ln k

l
− 1

2l
and

∑k
d=l+1

2
d
(
√

2)−d ≤
2
l+1

1√
2−1

(
√

2)−l combined with the inequality

e
1
2l

+ 2
l+1

1√
2−1

(
√

2)−l ≤ 1.05 for l ≥ 12,

we obtain (13).

Proof of Theorem 5. From Lemma 14, we have that c · 1√
logq nk

≥ 1
k

for infinitely

many k for any c > 1/
√

2ζ(2) < .55133. Combining with Lemma 15, we see that

ν(q, n) ≤ .55133 · 1.1340 · 1√
logq n

for infinitely many n.
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5 Auxiliary results

Lemma 16 Let A be a finite set of natural numbers, let q be a prime power, and

let Cn(z) denote the nth cyclotomic polynomial. Then

lcmd∈A(qd − 1) =
∏

{e |∃d∈A such that e divides d }
Ce(q).

Proof. Let Cn(z) denote the nth cyclotomic polynomial. It is known that Cn(z)
is irreducible over the field Q and that zd − 1 =

∏
e|dCe(z) (see Hungerford [8,

Prop. 8.2 and Prop 8.3]). In particular this implies

gcd
d∈A

(zd − 1) =
∏

e| gcdd∈A(d)

Ce(z) = zgcdd∈A(d) − 1 (14)

and
lcmd∈A(zd − 1) =

∏
{e |∃d∈A such that e divides d }

Ce(z). (15)

It might be tempting to substitute q for z in (15) and call it a proof of the lemma.
However, the validity of such substitution needs a careful argument. To see this,
observe that it fails in a rather similar looking situation: Using that C2(z) = z+1
and C6(z) = z2 − z + 1, we see that lcm(C2(z), C6(z)) = C2(z) ·C6(z). However,
lcm(C2(2), C6(2)) = lcm(3, 3) = 3 6= 9 = C2(2) ·C6(2). The reason for this failure
is of course that the “lcm” in (15) is taken in the polynomial ring Q[z], whereas
the “lcm” of the lemma must be taken in the integer ring Z. We therefore need
a more elaborate argument.

For both Q[z] and Z, the following generalisation of the classical formula
lcm(x, y) = xy/ gcd(x, y) is valid (Marsh [10]). Let M be a finite subset of either
Q[z] or Z:

lcmm∈M(m) =

∏
I⊆M,|I| odd gcdm∈I(m)∏
I⊆M,|I| even gcdm∈I(m)

. (16)

This formula tells us that the least common multiple of a set of numbers M (or
set of polynomials) is determined uniquely from the gcd’s of all possible subsets
of M . This means that if substitution of q for z is always valid in (14), then it is
also always valid to substitute q for z in (15). Hence, we need only prove

gcd
d∈A

(qd − 1) = qgcdd∈A(d) − 1, (17)

which follows from observing that a prime power pk divides qd−1 precisely when
the order of q (modulo pk) divides d.

10



Lemma 17 Let n be a natural number, let q be a prime power, and let Cn(z)

denote the nth cyclotomic polynomial. Then

1

4
qφ(n) ≤ Cn(q) ≤ 4qφ(n)

where φ denotes Euler’s φ-function.

Proof. The nth cyclotomic polynomial Cn(z) is monic of degree φ(n). One might
therefore expect Cn(q) to have a value not far from qφ(n). To prove the bound of
the lemma, we will use the multiplicative characterisation

Cn(z) =
∏
d|n

(zn/d − 1)µ(d), (18)

where µ denotes the Möbius function. We will also need a corresponding charac-
terisation of φ (see Hardy and Wright [6]):

φ(n) =
∑
d|n
µ(d)

n

d
. (19)

Exponentiating with base q on both sides of (19) and combining with (18), where
q is substituted for z, we find

Cn(q) = qφ(n)
∏
d|n

(1− 1

qn/d
)µ(d). (20)

To bound the size of the right factor in (20), we use that µ(d) ∈ {−1, 0, 1} and
therefore ∏

d|n
(1− 1

qn/d
)µ(d) ≥

∏
d|n

(1− 1

qn/d
) ≥

∞∏
i=1

(1− 1

qi
). (21)

If we take the natural logarithm and use that ln(1− s) ≥ s ln 1
4

for 0 ≤ s ≤ 1
2
, we

find (for q ≥ 2)

ln

( ∞∏
i=1

(1− 1

qi
)

)
≥ (ln

1

4
)
∞∑
i=1

1

qi
≥ ln

1

4
,

from which it follows that Cq(n) ≥ 1
4
qφ(n). The upper bound on Cq(n) is proved

similarly.

Lemma 18 Let A be a finite set of natural numbers, let k = |A|, and let φ denote
Euler’s φ-function, then ∑

d∈A
φ(d) ≥ ck2 − o(k2)

where c = ζ(6)
2ζ(2)ζ(3)

≈ .25726.
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Proof. The lower bound on
∑
d∈A φ(d) relies on using Dressler’s result that only

few integers are mapped to small values by φ. To state it formally, we define
Mn = {x ∈ N|φ(x) ≤ n}. Dressler [3] proved (see also Erdös [5] and Bateman
[2]):

|Mn| = c′n+ o(n) for c′ =
ζ(2)ζ(3)

ζ(6)
≈ 1.9436. (22)

It is clear that if A has the form Mn for some n, then
∑
d∈A φ(d) is minimised

(with respect to a fixed |A|). Therefore choose l maximal such that |Ml| ≤ |A|,
and we have ∑

d∈A
φ(d) ≥

∑
d∈Ml

φ(d) (23)

In order to lower bound the latter sum, we observe that φ(d) = n for d ∈
Mn −Mn−1, implying that

∑
d∈Mn

φ(d) =
n∑
i=1

i(|Mi| − |Mi−1|)

= n · |Mn| −
n−1∑
i=1

|Mi|.

Combining with (22), we get

∑
d∈Mn

φ(d) = n · c′n−
n−1∑
i=1

c′i+ o(n2) (24)

=
c′

2
n2 + o(n2). (25)

Finally, combining the definition of l with (22), we see that l = 1
c′ |A|+ o(|A|),

which combined with (23) and (25) leads to

∑
d∈A

φ(d) ≥ 1

2c′
|A|2 − o(|A|2).

Lemma 19 Let A be a finite set of natural numbers, let k = |A|, and let φ denote
Euler’s φ-function, then∑

d∈A
(φ(d)− 2 log2 d) ≥ ck2 − o(k2)

where c = ζ(6)
2ζ(2)ζ(3)

≈ .25726.
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Proof. This lemma is a technical variation of Lemma 18. The proof of the
latter lemma also applies here, except that we need in addition to argue that∑
d∈A log2 d is bounded by o(k2). In the following, use the terminology from the

proof of Lemma 18.
It is known that φ(n) = Ω( n

ln lnn
) (see Hardy and Wright [6]), which implies

that log2 d ≤ 2 log2 φ(d) for d sufficiently large. We therefore get the following
modified version of (23)∑

d∈A
(φ(d)− 2 log2 d) ≥

∑
d∈Ml

φ(d)− 4
∑
d∈Ml

log2 φ(d)−O(1). (26)

Using that φ(d) ≤ d, it follows from the definition of l that
∑
d∈Ml

log φ(d) =
O(|A| log |A|), which combined with (26) and the proof of Lemma 18 implies

∑
d∈A

(φ(d)− 2 log2 d) ≥ 1

2c′
|A|2 − o(|A|2).

Lemma 20 Let φ denote Euler’s φ-function, then

k∑
d=1

φ(d) = ck2 +O(k log k)

where c = 1
2ζ(2)
≈ .30396.

Proof. This is well known, see Hardy and Wright [6].
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