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Abstract

In this paper the numerical strength of fragments of arithmetical
comprehension, choice and general uniform boundedness is studied
systematically. These principles are investigated relative to base sys-
tems T ωn in all finite types which are suited to formalize substantial

parts of analysis but nevertheless have provably recursive function(al)s
of low growth. We reduce the use of instances of these principles in
T ωn -proofs of a large class of formulas to the use of instances of certain
arithmetical principles thereby determining faithfully the arithmetical
content of the former. This is achieved using the method of elimina-
tion of Skolem functions for monotone formulas which was introduced
by the author in a previous paper.

As corollaries we obtain new conservation results for fragments of
analysis over fragments of arithmetic which strengthen known purely
first-order conservation results.

∗Basic Research in Computer Science, Centre of the Danish National Research
Foundation.
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1 Introduction

This paper studies the numerical strength of fragments Γ of arithmetical com-
prehension, choice and uniform boundedness relative to weak base systems,
formulated in the language of all finite types, which are suited to formalize
substantial parts of analysis.
In a previous paper ([12]) we have introduced a hierarchy GnAω of systems
where the definable functions correspond to the well-known Grzegorczyk hi-
erarchy. These systems extended by the schema of full quantifier-free choice

ACρ,τ -qf : ∀xρ∃yτA0(x, y)→ ∃Y τ(ρ)∀xρA0(x, Y x),

AC-qf :=
⋃

ρ,τ∈T
{ACρ,τ -qf },

where A0 is a quantifier-free formula,1 and various non-constructive analytical
axioms ∆, having the form

∀xρ∃y ≤τ sx∀zδA0(x, y, z),

including a generalized version of the binary König’s lemma, allow to carry
out a great deal of classical analysis even for n = 2, 3. The axioms ∆ and
AC-qf do not contribute to the growth of extractable uniform bounds which
in the particular case of G2Aω are polynomials (see [12],[14] and in particular

[10] for more information).

In contrast to this, fragments of arithmetical comprehension and choice as

well as generalizations of our principle of uniform Σ0
1-boundedness (from

[12]) to more complex formulas do contribute significantly to the arith-

metic strength of the base systems. In [13] we developed a general method

to calibrate faithfully this contribution and applied it to instances of Π0
1-

comprehension and Π0
1-choice. These results were then used in [15] to deter-

mine the arithmetical strength of single sequences of instances of the Bolzano-

Weierstraß theorem for bounded sequences in IRd, the Ascoli-lemma and oth-
ers.

In this paper we give a systematic treatment of the whole arithmetical hi-
erarchy for comprehension, choice and uniform boundedness and determine
precisely their arithmetical strength. We also consider much more complex
formulas to be proved in these systems than we did in our previous papers.

1Throughout this paper A0, B0, C0, . . . denote quantifier-free formulas. We allow
bounded number quantifiers ∀x ≤0 t, ∃x ≤0 t to occur in A0, B0, C0, . . . since they can be
expressed in a quantifier-free way using the bounded search-functional µb from GnAω. T
denotes the set of all finite types.
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In the following let us discuss now some of the difficulties one has to deal with
in order to achieve this goal and which indicate already the type of results
one can expect. For simplicity we restrict ourselves for the moment to the

second-order system EA2+ AC0,0-qf instead of GnAω+ AC-qf +∆ (which we

actually are going to consider below).

EA2 is an extension of Kalmar-elementary arithmetic (with number quanti-

fiers) EA obtained by adding n-ary function quantifiers (for every n ≥ 1)2

and the schema of explicit definition of functions

ED : ∃f∀x(f(x) = t[x]),

where t is a number term of EA2 and x is a tuple of number variables.

Furthermore EA2 contains the schema of quantifier-free induction for all

quantifier-free formulas of EA2 which may contain function parameters. Fi-

nally EA2 contains constants and their defining equations for all elementary
recursive functionals of type-level 2.

In EA2 the schema of quantifier-free induction can be expressed equivalently
as a single axiom

QF-IA : ∀f(f(0) = 0 ∧ ∀x(f(x) = 0→ f(x′) = 0)→ ∀x(f(x) = 0)).

Let us consider furthermore the restriction of arithmetical choice to Π0
1- (or

equivalently to Σ0
2-) formulas of L(EA2) which like QF-IA can be expressed

as a single second-order axiom ∀f Π0
1-AC(f), where3

Π0
1-AC(f):≡ ∀a0(∀x0∃y0∀z0(f(a, x, y, z) = 0)→ ∃g∀x, z(f(a, x, gx, z) = 0)).

Now by iteration one easily verifies that EA2 + ∀f Π0
1-AC(f) proves already

full arithmetical choice. So in order to prevent the arithmetical hierarchy of
choice principles from collapsing we restrict ourselves to single instances of

∀fΠ0
1-AC(f) which later on are allowed however to depend on the parameters

of the theorem to be proved. For the moment we forbid completely the

occurrence of function parameters in Π0
1-AC, i.e. we consider the schema

Π0
1-AC− : ∀x0∃y0A(x, y)→ ∃g∀xA(x, gx),

where A(x, y) is a Π0
1-formula without function parameters.

2Since coding of finite tuples of numbers is available in EA one can in fact restrict
oneself to unary function variables.

3The universal closure with respect to number parameters a0 is superfluous for ∀f Π0
1-

AC(f) since it can be captured by the universal closure ∀f . However below we consider
single instances Π0

1-AC(ξ) of ∀f Π0
1-AC(f) where it does make a difference.
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As a starting point for the introduction into our general program let us
consider now the following question:

What arithmetical statements are provable in EA2+ AC0,0-qf +Π0
1-AC−?

A first observation is that Π0
1-AC− proves Π0

1-CA−, i.e.

∃f∀x(f(x) = 0↔ A(x)),

where A(x) is a Π0
1-formula without function parameters. Combined with

the axiom QF-IA this yields every function parameter-free instance of Σ0
1-

IA. Hence the first-order system EA +Σ0
1-IA is a subsystem of EA2+ AC0,0-qf

+Π0
1-AC−.

What is the precise relationship between EA2+ AC0,0-qf +Π0
1-AC− and EA

+Σ0
1-IA?

It will turn out that the former theory is conservative over the latter for

some formulas, including Π0
3-sentences, but not for all formulas.

That EA2+ AC0,0-qf cannot be conservative over EA +Σ0
1-IA without some

restriction imposed on the formulas follows from the following observation:

By applying the functional Φmaxfx := max
i≤x

(f(i)) to the function g in Π0
1-AC−

one obtains the corresponding instance of the so-called (bounded) collection

principle for Π0
1-formulas

Π0
1-CP : ∀x ≤ a∃y A(x, y)→ ∃z∀x ≤ a∃y ≤ z A(x, y),

where A ∈ Π0
1.

So EA2+ AC0,0-qf +Π0
1-AC− proves every function parameter-free instance

of Π0
1-CP, i.e. EA +Π0

1-CP is a subsystem of EA2+ AC0,0-qf +Π0
1-AC−.

It is well-known (see [18]) that there exists an instance A of Π0
1-CP which

is not provable in EA +Σ0
1-IA. On the other hand EA +Π0

1-CP is Π0
3-

conservative over EA +Σ0
1-IA by a result due to H. Friedman and (implicitly)

J.Paris/L.Kirby [17] (see e.g. [7] for details). The universal closure of the

instance A of Π0
1-CP can be shown to be equivalent to a Π0

4-sentence in EA

+Σ0
1-IA. Hence EA2+ AC0,0-qf +Π0

1-AC− is not Π0
4-conservative over EA

+Σ0
1-IA.

Here is another arithmetical use of Π0
1-AC− we can make relative to EA2+

AC0,0-qf:
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As mentioned above, Π0
1-CA− is a trivial consequence of Π0

1-AC− (in the

presence of classical logic). Now combining Π0
1-CA− with AC0,0-qf one can

easily prove ∆0
2-CA− and therefore every function parameter-free instance

of ∆0
2-IA. Hence EA +∆0

2-IA is a subsystem of EA2+ AC0,0-qf +Π0
1-AC− as

well even if the functional Φmax were not included in EA2.

So the arithmetical strength of Π0
1-AC− depends heavily on the second-order

axioms, like QF-IA, AC0,0-qf and the characterizing axioms for functionals

as Φmax, which are available in the context in which Π0
1-AC− is considered.4

As a special corollary of the results of this paper it follows that

EA2+ AC0,0-qf +Π0
k-AC− is Π0

k+2-conservative over EA +Σ0
k-IA, which im-

plies the result of H. Friedman, J.Paris/L.Kirby. Furthermore we show that

EA2+ AC0,0-qf +Π0
k-AC− is conservative over EA +Σ0

k-IA w.r.t. monotone
formulas of arbitrary complexity. These results are sensitive to small changes

of the base system EA2: E.g. if we add the primitive recursive functional Φit

defined by

Φitfg0 := g(0) Φitfgx
′ := f(x,Φitfgx)

to EA2, then the Ackermann-function becomes provably total in

EA2 + Φit+ AC0,0-qf +Π0
1-AC− and the resulting system proves the consis-

tency of EA +Σ0
1-IA: EA2 + Φit+ AC0,0-qf proves the second-order axiom of

Σ0
1-induction. Combined with Π0

1-CA− one obtains every function parameter-

free instance of Σ0
2-IA. Hence EA +Σ0

2-IA (which is known to prove the to-

tality of the Ackermann-function as well as the consistency of EA +Σ0
1-IA)

is a subsystem of EA2 + Φit+ AC0,0-qf +Π0
1-AC−.

Using a more involved argument one can show that already

EA2 + Φit + Π0
1-AC− proves the totality of the Ackermann function (see

chapter 12 of [10] for details on this).

So any proof of conservation of systems based on Π0
k-AC− over Σ0

k-IA has
to take into account carefully the structure of the functionals of type level 2
which are definable in the given system.

Things become of course even more complicated for the systems GnAω+

AC-qf +∆ instead of EA2+ AC0,0-qf which we are treating in this paper. In
particular we show the following result:

4Both aspects are not taken into account appropriately in [21] where Π0
k-CA− and

Π0
k-AC− are studied systematically for the first time. As a consequence of this, theorems

5.8,5.13 and corollaries 5.9,5.14 in [21] are not correct (see [11] and in particular chapter
12 of [10] for a thorough investigation of this matter).
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Let t, ξ1, ξ2 be closed terms of GnAω and B :≡ ∀u1∀v ≤τ tuBar(u, v) a

sentence of GnAω where Bar(u, v) ∈ Π0
∞. Then for every k ∈ IN the following

rule holds

If

GnAω + AC-qf + ∆ `
∀u1∀v ≤τ tu(∆0

k+1-CA(ξ1uv) ∧Π0
k-AC(ξ2uv)→ Bar(u, v))

then

GnAω + Σ0
k-IA + ∆̃ +Mon(B) ` ∀u1∀v ≤τ tuBar(u, v),

where Mon(B) expresses that B is monotone in the sense of definition 2.3
below and
∆̃ := {∃Y ρδ ≤ s∀xδ, zγA0(x, Y x, z) : ∀xδ∃y ≤ρ sx∀zγA0(x, y, z) ∈ ∆}.
(∆ and consequently ∆̃ may be empty).

If Bar ∈ Π0
k+2, then the monotonicity assumption Mon(B) can be avoided,

i.e. the conlusion can be strengthened to

GnAω + Σ0
k-IA + ∆̃ ` ∀u1∀v ≤τ tuBar(u, v).

These results will be used also to prove new conservation results for

EA +Π0
k-CP over EA +Σ0

k-IA which strengthen the Friedman-Paris-Kirby

result.5

Finally we consider generalizations Π0
k-UB−|\ of the principle of uniform Σ0

1-

boundedness Σ0
1-UB− which was studied in [12].6 In [14] we showed that

Σ0
1-UB− proves already relative to G2Aω+ AC-qf many important analyt-

ical theorems (like Dini’s theorem, the attainment of the maximum for

f ∈ C([0, 1]d, IR), the sequential Heine-Borel property for [0, 1]d, the exis-

tence of an inverse function for every strictly monotone function f ∈ C[0, 1]

and others) but does not contribute to the growth of extractable bounds,
thereby guaranteing the extractability of polynomial bounds when applied
in the context of G2Aω+ AC-qf.

5A proof-theoretic treatment of the Friedman-Paris-Kirby result was first given in [21].
However the proof in [21] contains a serious gap. See [1] for a correction of Sieg’s proof.
Another proof-theoretic treatment can be found in [3].

6Whereas we generally use the superscript ‘−’ to denote the restriction S− of a schema
S to function parameter-free instances of S, this superscript has a different meaning in
the context of principles of uniform boundedness. Although this might be troublesome we
wish to stick to the notation for these principles from [12] where they were introduced.
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Whereas the straightforward generalization of Σ0
1-UB− to Π0

k-formulas is in-
consistent with G2Aω already for k = 1, our restricted version

Π0
k-UB−|\ ( introduced in the present paper) is consistent. In [15] we im-

plicitly used (a special case of) Π0
1-UB−|\ to prove the Bolzano-Weierstraß

principle and the Ascoli-lemma and it were these proofs which were used to
calibrate faithfully the arithmetical strength of these principles.

One of the results on Π0
k-UB−|\ to be proved in the present paper is that we

may strengthen the assumption of the rule stated above by adding

Π0
k-UB−|\(ξ3uv) to ∆0

k+1-CA(ξ1uv) ∧Π0
k-AC(ξ2uv).

2 Monotone formulas and their Skolem

normal forms

In this section we review some of the proof-theoretic tools from [13] on which
the present paper is based and also recall some of the basic concepts and
definitions from [12].
The set T of all finite types is defined inductively by

(i) 0 ∈ T and (ii) ρ, τ ∈ T⇒ τ(ρ) ∈ T.

Terms which denote a natural number have type 0. Elements of type τ(ρ)
are functions which map objects of type ρ to objects of type τ .
The set P ⊂ T of pure types is defined by

(i) 0 ∈ P and (ii) ρ ∈ P⇒ 0(ρ) ∈ P.

Brackets whose occurrences are uniquely determined are often omitted, e.g.
we write 0(00) instead of 0(0(0)). Furthermore we write for short τρk . . . ρ1

instead of τ(ρk) . . . (ρ1). Pure types can be represented by natural num-

bers: 0(n) := n+ 1. The types 0, 00, 0(00), 0(0(00)) . . . are so represented by

0, 1, 2, 3 . . .. For arbitrary types ρ ∈ T the degree of ρ (for short deg(ρ) ) is

defined by deg(0) := 0 and deg(τ(ρ)) := max(deg(τ),deg(ρ) + 1). For pure
types the degree is just the number which represents this type.

Description of the theories (E)–GnA
ω

Our theories T ω used in this paper are based on many–sorted classical logic
formulated in the language of all finite types plus the combinators Πρ,τ ,Σδ,ρ,τ

which allow the definition of λ–abstraction. T ωi denotes the intuitionistic
variant of T ω.
The systems GnAω (for all n ≥ 1) are introduced in [12] to which we refer
for details. GnAω has as primitive relations =0,≤0 for objects of type 0, the

7



constant 00, functions min0,max0, S
00 (successor), A0, . . . , An, where Ai is the

i–th branch of the Ackermann function (i.e. A0(x, y) = y′, A1(x, y) = x +

y, A2(x, y) = x · y, A3(x, y) = xy, . . .), functionals of type level 2: Φ1, . . . ,Φn,

where Φ1fx = max0(f0, . . . , fx) and Φi is the iteration of Ai−1 on the f–

values for i ≥ 2, i.e. Φ2fx =
x∑
i=0

fi,Φ3fx =
x∏
i=0

fi, . . .. We also have a

bounded search functional µb and bounded predicative recursion provided by

recursor constants R̃ρ (where ‘predicative’ means that recursion is possible

only at the type–0–level as in the case of the (unbounded) Kleene-Feferman

recursors R̂ρ). Moreover GnAω contains a quantifier-free rule of extensionality

QF–ER.
In addition to the defining axioms for the constants of our theories all
true sentences having the form ∀xρA0(x), where A0 is quantifier–free and

deg(ρ) ≤ 2, are added as axioms. By ‘true’ we refer to the full set–theoretic
model Sω. In given proofs however only very special universal axioms will be
used which can be proved in suitable extensions of our theories. Nevertheless
we include them all as axioms in order to emphasize that (proofs of) uni-
versal sentences do not contribute to the growth of extractable bounds. In
particular this covers all instances of the schema of quantifier-free induction
(The main results in this paper are also valid for the variant of GnAω

i where

the universal axioms are replaced by the schema of quantifier–free induction).

The restriction deg(ρ) ≤ 2 has a technical reason discussed in [12].

G∞Aω :=
⋃
n∈IN

GnAω.

PAω, PAω
i are the extensions of GnAω, GnAω

i obtained by the addition of the

schema of full induction and all (impredicative) primitive recursive function-

als in the sense of [5].
E–T ω(i) denotes the theory which results from T ω(i) when the quantifier–free

rule of extensionality is replaced by the axioms of extensionality (E)

∀xρ, yρ, zτρ(x =ρ y → zx =τ zy)

for all finite types (x =ρ y is defined as ∀zρ1
1 , . . . , z

ρk
k (xz1 . . . zk =0 yz1 . . . zk)

where ρ = 0ρk . . . ρ1).

GnRω and T denote the sets of all closed terms of (E)–GnAω
(i) and (E)–PAω

(i).

Tk is the subset of all closed terms of T which contain the Gödel-recursors
Rρ for ρ of type level ≤ k only.

Definition 2.1 Between functionals of type ρ we define relations ≤ρ (‘less

8



or equal’) and s–majρ (‘strongly majorizes’) by induction on the type:

 x1 ≤0 x2 :≡ (x1 ≤0 x2),

x1 ≤τρ x2 :≡ ∀yρ(x1y ≤τ x2y);

 x∗ s–maj0 x :≡ x∗ ≥0 x,

x∗ s–majτρ x :≡ ∀y∗ρ, yρ(y∗ s–majρ y → x∗y∗ s–majτ x
∗y, xy).

Remark 2.2 ‘s–maj’ is a variant of W.A. Howard’s relation ‘maj’ from [6]

which is due to [2]. For more details see [8].

Let A(a) be a formula of GnAω (a are all free variables of A) and

∃x∀yAD(x, y, a) its Gödel functional interpretation (see e.g. [24] for details

on Gödel’s functional interpretation). We say that a tuple of closed terms t

realizes the monotone functional interpretation of A(a) if7

(∗) ∃x(t s-maj x ∧ ∀a, y AD(x a, y, a))

(Monotone functional interpretation which directly extracts a tuple t satisfy-

ing (∗) from a proof of A(a) was introduced in [9]. See also [12] for details.)

Definition 2.3 ([13]) Let A ∈ L(GnAω) be a formula having the form

A ≡ ∀u1∀v ≤τ tu∃y0
1∀x0

1 . . .∃y0
k∀x0

k∃wγA0(u, v, y1, x1, . . . , yk, xk, w),

where A0 is quantifier–free and contains only u, v, y, x, w free, t ∈ GnRω and

τ, γ are arbitrary finite types.

1) A is called (arithmetically) monotone if

Mon(A) :≡
∀u1∀v ≤τ tu∀x1, x̃1, . . . , xk, x̃k, y1, ỹ1, . . . yk, ỹk( k∧

i=1
(x̃i ≤0 xi ∧ ỹi ≥0 yi) ∧ ∃wγA0(u, v, y1, x1, . . . , yk, xk, w)

→ ∃wγA0(u, v, ỹ1, x̃1, . . . , ỹk, x̃k, w)
)
.

7Here t s-maj x means
∧
i

(ti s-maj xi).
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2) The Herbrand normal form AH of A is defined to be

AH :≡ ∀u1∀v ≤τ tu∀hρ1
1 , . . . , h

ρk
k ∃y0

1, . . . , y
0
k, w

γ

A0(u, v, y1, h1y1, . . . , yk, hky1 . . . yk, w)︸ ︷︷ ︸
AH0 :≡

,

where ρi = 0 (0) . . . (0)︸ ︷︷ ︸
i

.

Remark 2.4 In definition 2.3 (and theorems 2.5,2.7 below) one may also

have tuples ‘∃w’ instead of ‘∃wγ’ in A where w = wγ1
1 , . . . , w

γl
l and γi is

arbitrary. Also instead of ∀u1 we may have ∀u where u = uρ1
1 , . . . , u

ρq
q with

deg(ρi) ≤ 1 for 1 ≤ i ≤ q. In particular we can consider an innermost

existential number quantifier ∃y0
k+1 as part of ∃w and an outermost universal

number quantifier ∀x0
0 as part of ∀u. So for ∀x0

0 and ∃y0
k+1 no monotonicity

is required in definition 2.3.1).

Theorem 2.5 ([13]) Let n ≥ 1 and Ψ1, . . . ,Ψk ∈ GnRω. Then

GnAω +Mon(A) ` ∀u1∀v ≤τ tu∀h1, . . . , hk
( k∧
i=1

(hi monotone)

→ ∃y1 ≤0 Ψ1uh . . .∃yk ≤0 Ψkuh∃wγAH0
)
→ A,

where (hi monotone) :≡ ∀x1, . . . , xi, y1, . . . , yi(
i∧

j=1
(xj ≥0 yj)→ hix ≥0 hiy).

Definition 2.6 (Bounded choice) b–AC:=
⋃

δ,ρ∈T

{
(b–ACδ,ρ)

}
denotes the

schema of bounded choice

(b–ACδ,ρ) : ∀Zρδ(∀xδ∃y ≤ρ Zx A(x, y, Z)→ ∃Y ≤ρδ Z∀xA(x, Y x, Z)).

In general GnAω ` AH does not imply GnAω ` A (see [13] for a detailed

discussion of this phenomenon), which is in contrast to the first-order case

where the derivability of AH follows from that of A by Herbrand’s theorem
(see [20]). If however A is monotone then this rule is valid also for GnAω

(but for very different reasons):

Theorem 2.7 ([13]) Let A be as in thm.2.5 and ∆ be a set of sentences

∀xδ∃y ≤ρ sx∀zηG0(x, y, z) where s is a closed term of GnAω and G0 a
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quantifier-free formula, and let A′ denote the negative translation8 of A. Then
the following rule holds:



GnAω+AC–qf + ∆ ` AH ∧Mon(A)⇒
GnAω + ∆̃ ` A, and by monotone functional interpretation one can

extract a tuple Ψ ∈ GnRω such that

GnAω
i + ∆̃ ` Ψ satisfies the monotone functional interpretation of A′,

where ∆̃ := {∃Y ≤ρδ s∀xδ, zηG0(x, Y x, z) : ∀xδ∃y ≤ρ sx∀zηG0(x, y, z) ∈ ∆}.
(In particular the second conclusion can be proved in GnAω

i + ∆+ b-AC).

The weakened conclusion GnAω + ∆̃ + Mon(A) ` A follows already from

GnAω+ AC-qf +∆ ` AH .9

3 Making arithmetical comprehension

monotone

In this section we consider the arithmetical content of instances Π0
k-CA(ξuv)

of Π0
k-CA which are used in given proofs of sentences ∀u1∀v ≤τ tuBar(u, v)

as discussed in the introduction.

Definition 3.1

Π0
k-CA(f) :≡ ∃g1∀x0(gx =0 0↔ ∀u0

1∃u0
2 . . .∃(d)u0

k(f(x, u) =0 0)).10

Remark 3.2 There is no need here to incorporate closure under number

parameters in the definition of Π0
k-CA(f), i.e. by defining

Π0
k-CA(f) :≡ ∀l0∃g1∀x0(gx =0 0↔ ∀u0

1∃u0
2 . . .∃(d)u0

k(f(l, x, u) =0 0)),

since the latter can be reduced to the former (relative to GnAω for n ≥ 2) by
coding l, x together and applying comprehension without number parameters
to this pair.

8Here we can use Gödel’s [4] translation or any other of the various negative transla-
tions. For a systematical treatment of negative translations see [16].

9This last assertion is not stated in the formulation of the theorem in [13] but does
follow immediately from its proof.

10Whether one has here ‘∃u0
k’ or ‘∀u0

k’ depends of course on whether k is even or odd.
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In order to be able to apply the method of elimination of Skolem functions
for monotone formulas from section 2 we follow this strategy:

Construct an arithmetical principle Aar(f) such that for suitable ξ1, ξ2 ∈
GnRω:

1) GnAω `Mon(∀f Aar(f)),

2) GnAω ` ∀f(ASar(ξ1f)→ Π0
k-CA(f)) and

3) GnAω ` ∀f(Π0
k-CA(ξ2f)→ Aar(f)).

Because of 2) the use of Π0
k-CA(ξuv) in a given proof of a monotone sentence

∀u1∀v ≤τ tuBar(u, v) can be reduced to the use of ASar(ξ
′uv) (where ξ′uv :=

ξ1(ξuv)) which in turn (by 1) and theorem 2.7) can be reduced to the use of

Aar(ξ
′uv). Because of 3) nothing is lost by this reduction.

It will turn out that the correct principle Aar(f) is a ‘monotone version’

Π0
k-TNDmon(f) of the tertium-non-datur principle for Π0

k-formulas.

Definition 3.3 In the following m := k
2

if k is even (resp. m := k−1
2

if k is

odd).

1) The Π0
k-tertium-non-datur axiom is given by the following formula

(where f is a function variable of appropriate type)11

Π0
k-TND (f) :≡∀x

0(∀y0
1∃z0

1 . . .∀y0
m∃z0

m(∀y0
m+1)(f(x, y1, z1, . . . , ym, zm, (ym+1)) =0 0)

∨∃u0
1∀v0

1 . . .∃u0
m∀v0

m(∃u0
m+1)(f(x, u1, v1, . . . , um, vm, (um+1)) 6= 0)),

2) We also need the following prenex normal form of Π0
k-TND (f):

Π0
k-TND (f)pr :≡
∀x0∃u0

1∀y0
1∃z0

1∀v0
1 . . .∃u0

m∀y0
m∃z0

m∀v0
m(∃u0

m+1∀y0
m+1)

(f(x, y1, z1, . . . , ym, zm, (ym+1)) =0 0∨

f(x, u1, v1, . . . , um, vm, (um+1)) 6= 0),

11Here and in the following the quantifiers ∀y0
m+1,∃u0

m+1 are only present if k is odd.
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3) The Skolem normal form of Π0
k-TND (f)pr is given by

(
Π0
k-TND (f)pr

)S
:≡

∃h1, . . . , hm, (hm+1), g1, . . . , gm∀x0, y0
1, v

0
1, . . . , y

0
m, v

0
m, (ym+1)

(f(x, y1, g1(x, y1), . . . , ym, gm(x, y1, . . . , ym, v1, . . . , vm−1), (ym+1)) =0 0∨

f(x, h1x, v1, . . . , hm(x, y1, . . . , ym−1, v1, . . . , vm−1), vm,

(hm+1(x, y1, . . . , ym, v1, . . . , vm))) 6= 0).

Remark 3.4 For n ≥ 2 we have coding of finite tuples (of fixed length) avail-
able in GnAω. Hence quantifier-blocks can be contracted to a single quantifier.
Since in all of our results we assume that (at least) n ≥ 2, it is no restriction
in the definition above to consider only single quantifiers.

Lemma 3.5 For every k ∈ IN the following implication can be proved in
G1Aω:

∀f((Π0
k-TND (f)pr)S → Π0

k-CA (f)).

Proof:
For notational simplicity we confine ourselves to the case k = 4 which well
shows the general pattern of the proof for arbitrary k:

(Π0
4-TND(f)pr)S yields the existence of functions g1, g2, h1, h2 such that

(1)

 ∀x, y1, v1, y2(f(x, y1, g1(x, y1), y2, g2(x, y1, y2, v1)) = 0

∨∀v2(f(x, h1x, v1, h2(x, y1, v1), v2) 6= 0)).

(1) in turn yields

(2)

 ∀x, y1, v1(∀y2∃z2f(x, y1, g1(x, y1), y2, z2) = 0

∨∀v2(f(x, h1x, v1, h2(x, y1, v1), v2) 6= 0)),

(3)

 ∀x, y1, v1(∀y2∃z2f(x, y1, g1(x, y1), y2, z2) = 0

∨∃u2∀v2(f(x, h1x, v1, u2, v2) 6= 0)),

(4)

 ∀x, y1(∀y2∃z2f(x, y1, g1(x, y1), y2, z2) = 0

∨∀v1∃u2∀v2(f(x, h1x, v1, u2, v2) 6= 0)),
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(5)

 ∀x, y1(∃z1∀y2∃z2f(x, y1, z1, y2, z2) = 0

∨∀v1∃u2∀v2(f(x, h1x, v1, u2, v2) 6= 0))

and finally

(6) ∀x(∀y1∃z1∀y2∃z2f(x, y1, z1, y2, z2) = 0∨∀v1∃u2∀v2(f(x, h1x, v1, u2, v2) 6= 0)).

(1) applied to y1 := h1x, v1 := g1(x, h1x), y2 := h2(x, h1x, g1(x, h1x)) gives

(∗) :≡
∀x0

(
f(x, h1x, g1(x, h1x), h2(x, h1x, g1(x, h1x)), g2(x, h1x, h2(x, h1x, g1(x, h1x)),

g1(x, h1x))) = 0∨∀v2(f(x, h1x, g1(x, h1x), h2(x, h1x, g1(x, h1x)), v2) 6= 0)
)
.

We now show (+) :≡
∀x0

(
f(x, h1x, g1(x, h1x), h2(x, h1x, g1(x, h1x)), g2(x, h1x, h2(x, h1x, g1(x, h1x)),

g1(x, h1x))) = 0↔ ∀y1∃z1∀y2∃z2(f(x, y1, z1, y2, z2) = 0)
)
.

(+) yields the claim of the lemma with

gx := Φxh1h2g1g2 := f(x, h1x, g1(x, h1x), h2(x, h1x, g1(x, h1x)),

g2(x, h1x, h2(x, h1x, g1(x, h1x)), g1(x, h1x))).

Proof of (+):
‘→’: Φxfh1h2g1g2 = 0 implies

¬∀v2(f(x, h1x, g1(x, h1x), h2(x, h1x, g1(x, h1x)), v2) 6= 0).

Hence by (2) (putting y1 := h1x, v1 := g1(x, h1x))

∀y2∃z2(f(x, h1x, g1(x, h1x), y2, z2) = 0)

and therefore
∃z1∀y2∃z2(f(x, h1x, z1, y2, z2) = 0),

i.e.
¬∀v1∃u2∀v2(f(x, h1x, v1, u2, v2) 6= 0).

By (6) this implies

∀y1∃z1∀y2∃z2(f(x, y1, z1, y2, z2) = 0).

‘←’: Φxfh1h2g1g2 6= 0 implies by (∗)

∀v2(f(x, h1x, g1(x, h1x), h2(x, h1x, g1(x, h1x)), v2) 6= 0)
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and therefore
∃u2∀v2(f(x, h1x, g1(x, h1x), u2, v2) 6= 0),

i.e.
¬∀y2∃z2(f(x, h1x, g1(x, h1x), y2, z2) = 0).

By (4) this yields (putting y1 := h1x)

∀v1∃u2∀v2(f(x, h1x, v1, u2, v2) 6= 0)

and therefore
∃u1∀v1∃u2∀v2(f(x, u1, v1, u2, v2) 6= 0),

which concludes the proof of (+) and hence of the lemma.

Definition 3.6 For a Π0
k-formula

A(a) ≡ ∀x0
1∃x0

2 . . . ∃(d)x0
kA0(a, x1, x2, . . . , xk) of GnAω (where a are all free

variables of A which may have arbitrary type) we define

Ã(a) :≡
∀x0

1∃x0
2 . . .∃(d)x0

k∀x̃1 ≤ x1∃x̃2 ≤ x2 . . .∃(d)x̃k ≤ xkA0(a, x̃1, x̃2, . . . , x̃k).

In the following we need a variant Mon∗ of Mon where monotonicity is
required for all number quantifiers (compare this with remark 2.4):

Definition 3.7 Let A(a) :≡ ∀x0
1∃y0

1 . . .∀x0
k∃y0

kA0(a, x1, y1, . . . , xk, yk).
12

Then

Mon∗(A(a)) :≡ ∀x1, x̃1, y1, ỹ1, . . . , xk, x̃k, yk, ỹk(
k∧
i=1

(x̃i ≤0 xi ∧ ỹi ≥0 yi)→

(A0(a, x1, y1, . . . , xk, yk)→ A0(a, x̃1, ỹ1, . . . , x̃k, ỹk)).

Lemma 3.8 For Ã(a) as in the previous definition we have

GnAω `Mon∗(Ã(a)).

Proof: Trivial.

The Π0
k-collection principle is the schema

Π0
k-CP : ∀x ≤0 a∃y0A(x, y)→ ∃z0∀x ≤0 a∃y ≤0 z A(x, y),

for all Π0
k-formulas A(x, y).

12Here the quantifiers ∀x0
1 and ∃y0

k may be empty (‘dummy’) quantifiers.
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Convention 3.9 In Π0
k-CP (and other axiom schemas which we will con-

sider below) A(x, y) may contain arbitrary parameters (besides x, y) of the

language we consider. E.g. if we write GnAω + Π0
k-CP then instances of

Π0
k-CP may contain parameters of arbitrary type. In EA +Π0

k-CP however

(where EA denotes first-order elementary recursive arithmetic) instances of

Π0
k-CP of course contain only number parameters.

Π0
k-CP is equivalent over many systems (e.g. GnAω for n ≥ 3) to the axiom

schema of finite choice for Π0
k-formulas

Π0
k-FAC : ∀x ≤0 a∃y0A(x, y)→ ∃z0∀x ≤0 aA(x, (z)x),

for all Π0
k-formulas A(x, y) (with the convention stated above).

In the presence of function variables as in GnAω the schema Π0
k-CP can be

expressed as a single second-order axiom ∀fΠ0
k-CP(f), where

Π0
k-CP(f) :≡

∀l
0, a0

(
∀x ≤0 a∃y0∀u0

1∃u0
2 . . .∃(d)u0

k(f(l, a, x, y, u) =0 0)

→ ∃z0∀x ≤0 a∃y ≤0 z∀u0
1∃u0

2 . . .∃(d)u0
k(f(l, a, x, y, u) =0 0)

)
.

By incorporating the universal closure w.r.t. to arithmetical parameters

∀l0, a0 in Π0
k-CP(f), we achieve that the universal closure of every instance of

Π0
k-CP which contains only number parameters can be written as a sentence

Π0
k-CP(ξ) in GnAω where ξ is a closed term (essentially the characteristic

function of the quantifier-free matrix of the Π0
k-formula A(x, y)) which will

be of importance below.

The same is true for the principle of Σ0
k-induction Σ0

k-IA(f) which we need
below:

Σ0
k-IA(f) :≡



∀l0
(
∃u0

1∀u0
2 . . .∀(d)u0

k(f(l, 0, u) =0 0)∧

∀x0(∃u0
1∀u0

2 . . .∀(d)u0
k(f(l, x, u) =0 0)→

∃u0
1∀u0

2 . . .∀(d)u0
k(f(l, x′, u) =0 0))

→ ∀x0∃u0
1∀u0

2 . . . ∀(d)u0
k(f(l, x, u) =0 0)

)
.

Lemma 3.10 Let A(a), Ã(a) be as in definition 3.6. Then for suitable

ξ1, . . . ξl, ξ̃1, . . . , ξ̃l̃ ∈ GnRω the following holds:

GnAω `
l∧
i=1

Π0
k−2-CP(ξia)→ (A(a)→ Ã(a))
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and

GnAω `
l̃∧
i=1

Π0
k−3-CP(ξ̃ia)→ (Ã(a)→ A(a))

(Here and in the following we use the convention that Π0
k-S is empty (i.e.

≡ (0 = 0) for an axiom schema S if k < 0).

Proof: Induction on k: For k = 0, 1 the lemma is trivial. So let k ≥ 1.
k 7→ k + 1 : Consider

A(a) ≡ ∀x0
1∃x0

2 . . .∃(d)x0
k+1A0(a, x1, x2, . . . , xk+1) ∈ Π0

k+1.

By the induction hypothesis applied to the Π0
k-formula

∀x2∃x3 . . .∀(d)xk+1¬A0(a, x1, . . . , xk+1)

we have instances Π0
k−2-CP(ξia) (note that instances of Π0

k−3-CP can be

considered as instance of Π0
k−2-CP as well) such that

∧
i

Π0
k−2-CP(ξia) implies

(relative to GnAω

∃x2∀x3 . . .∃(d)xk+1A0 ↔
∃x2∀x3 . . .∃(d)xk+1∃x̃2 ≤ x2∀x̃3 ≤ x3 . . . A0(a, x1, x̃2, . . . , x̃k+1).

Hence

A(a)

↔ ∀x1∃x2 . . .∃(d)xk+1∃x̃2 ≤ x2 . . .∃(d)x̃k+1 ≤ xk+1A0(a, x1, x̃2, . . . , x̃k+1)

↔ ∀x1∀x̃1 ≤ x1∃x2 . . .∃(d)xk+1∃x̃2 ≤ x2 . . . A0(a, x̃1, x̃2, . . . , x̃k+1)
Π0
k−1

-CP (ξ̂a)

→
←

(logic)

∀x1∃x2∀x̃1 ≤ x1∃x̂2 ≤ x2∀x3 . . .∃(d)xk+1∃x̃2 ≤ x̂2 . . .∃(d)x̃k+1 ≤ xk+1A0(a, x̃)

↔ ∀x1∃x2∀x̃1 ≤ x1∀x3 . . .∃(d)xk+1∃x̃2 ≤ x2 . . .∃(d)x̃k+1 ≤ xk+1A0(a, x̃)

↔ ∀x1∃x2∀x3∀x̃1 ≤ x1∃x4 . . .∃(d)xk+1∃x̃2 ≤ x2 . . .∃(d)x̃k+1 ≤ xk+1A0(a, x̃).

In the same way as we shifted ∀x̃1 ≤ x1 over ∃x2 we now move ∀x̃1 ≤ x1

over ∃x4, then permute ∀x̃1 ≤ x1 with ∀x5, move over ∃x6 and so on until

we obtain Ã(a). This requires only Π0
k−3-instances (or simpler ones) of CP
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which can be considered a fortiori as instances Π0
k−2-CP(ζja). Putting things

together we have shown that (relative to GnAω):

Π0
k−1-CP(ξ̂a) ∧

∧
i

Π0
k−2-CP(ξia) ∧

∧
j

Π0
k−2-CP(ζja)→ (A(a)→ Ã(a))

and ∧
i

Π0
k−2-CP(ξia) ∧

∧
j

Π0
k−2-CP(ζja)→ (Ã(a)→ A(a)),

which concludes the proof of the lemma.

Since in our main results we assume n ≥ 2 or n ≥ 3 for the level n of GnAω we
also use for simplicity G2Aω in the following definition and lemmas although
some of them can be carried out even in G1Aω.

Definition 3.11 (and lemma) For m ∈ IN let Φ ∈ G2Rω be such that

G2Aω ` ∀f (0)...(0), x0, y0
1, z

0
1 , . . . , y

0
m, z

0
m, (ym+1)

(Φfxy1z1 . . . ymzm(ym+1) =0 0

↔ ∀ỹ1 ≤ y1∃z̃1 ≤ z1 . . .∀ỹm ≤ ym∃z̃m ≤ zm(∀ỹm+1 ≤ ym+1)

(f(x, ỹ1, z̃1, . . . , ỹm, z̃m, (ỹm+1)) =0 0)).

We denote Φf by f ′.

Lemma 3.12 Let k ≥ 1. There are (effectively) finitely many terms
ξ1, . . . , ξl ∈ G2Rω such that

G2Aω ` ∀f
(
(

l∧
i=1

Π0
k−2-CP(ξif))→ (Π0

k-CA(f)↔ Π0
k-CA(f ′))

)
.

Proof: The lemma follows from lemma 3.10.

Definition 3.13 The ‘monotone’ tertium-non-datur is given by

Π0
k-TND

mon
(f) :≡∀x

0∃u0
1∀y0

1∃z0
1∀v0

1 . . .∃u0
m∀y0

m∃z0
m∀v0

m(∃u0
m+1∀y0

m+1)∀x̃ ≤ x

(f ′(x̃, y1, z1, . . . , ym, zm, (ym+1)) =0 0∨f ′(x̃, u1, v1, . . . , um, vm, (um+1)) 6= 0),

Lemma 3.14 1) G2Aω ` ∀f((Π0
k-TNDmon(f))S → (Π0

k-TND(f ′)pr)S).
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2) G2Aω ` ∀f(Mon∗(Π0
k-TNDmon(f))).

Proof: 1) follows by putting x̃ := x.

2) Follows immediately from the definition of Π0
k-TNDmon(f).

Proposition 3.15 G2Aω ` ∀f((Π0
k-TNDmon(f))S → Π0

k-CA(f ′)).

Proof: Lemmas 3.5 and 3.14.1.

Lemma 3.16 One can construct a ξ ∈ G2Rω such that

G2Aω+ AC0,0-qf ` ∀f(Π0
k-CA(ξf)→ Π0

k-CP(f)).

Proof:
Using Π0

k-CA(ξf) for a suitable ξ ∈ G2Rω one can reduce Π0
k-CP(f) to Π0

0-CP

which is provable in G2Aω+ AC0,0-qf.

Proposition 3.17 For a suitable ξ ∈ G2Rω one has

G2Aω+ AC0,0-qf ` ∀f
(
(Π0

k-TNDmon(ξf))S → Π0
k-CA(f)

)
.

Proof: Induction on k: k = 0, 1 : easy. Let k > 1 and lets assume that

the proposition holds for all m < k. Π0
k−2-CP(ξif) denote the instances of

Π0
k−2-collection from lemma 3.12 which are needed to show

Π0
k-CA(f)↔ Π0

k-CA(f ′).

Let ξ̂ ∈ G2Rω be (using lemma 3.16) such that13

(1)G2Aω+ AC0,0-qf ` Π0
k−2-CA(ξ̂f)→ (Π0

k-CA(f)↔ Π0
k-CA(f ′)).

By the induction hypothesis we have

(2) G2Aω+ AC0,0-qf ` ∀f
(
(Π0

k−2-TNDmon(ξ̃f))S → Π0
k−2-CA(f)

)
for a suitable ξ̃ ∈ G2Rω. So by proposition 3.15 (3) :≡

G2Aω+AC0,0-qf ` (Π0
k-TNDmon(f))S∧(Π0

k−2-TNDmon(ξ̃(ξ̂f)))S → Π0
k-CA(f).

13Note that two instances Π0
k-CA(ξ1f) ∧ Π0

k-CA(ξ2f) can be coded together into one
instance Π0

k-CA(ξ3f) in G2Aω.
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Introducing dummy quantifiers, (Π0
k−2-TNDmon(ξ̃(ξ̂f)))S can be reduced to

(Π0
k-TNDmon(ξ∗f))S for a suitable ξ∗ ∈ G2Rω. Furthermore

(4) (Π0
k-TNDmon(h))S → (Π0

k-TNDmon(f))S ∧ (Π0
k-TNDmon(g))S

for

h(x, y, z) =

 f(x̃, y, z) if x = 2x̃

g(x̃, y, z) if x = 2x̃+ 1.

Hence

(5) (Π0
k-TNDmon(ξf))S → (Π0

k-TNDmon(f))S ∧ (Π0
k-TNDmon(ξ∗f))S

for a suitable ξ ∈ G2Rω. By (3) and (5) we have

G2Aω+ AC0,0-qf ` (Π0
k-TNDmon(ξf))S → Π0

k-CA(f).

Lemma 3.18 Let k ≥ 1 and A ∈ Σ0
k−1. Then

G3Aω + Σ0
k-IA ` ∀x0∃u0∀x̃ ≤0 x(∀y0A(x̃, y) ∨ ∃ũ ≤ u¬A(x̃, ũ)).

Proof: Assume

(+) ∀u0∃x̃ ≤ x(∃y¬A(x̃, y) ∧ ∀ũ ≤ uA(x̃, ũ)).

We show by induction on n:

(∗) ∀n∃u, x̃

G(n,u,x̃)︷ ︸︸ ︷
lth x̃ = n+ 1 ∧ ∧

i,j≤n
i6=j

((x̃)i 6= (x̃)j∧

∧
i≤n

((x̃)i ≤ x) ∧ ∀i ≤ n∃ũ ≤ u¬A((x̃)i, ũ)


(For n = x+ 1 this obviously is contradictory and so ¬(+) is proved).

n = 0: (+) applied to u := 0 yields an x0 ≤ x such that A(x0, 0) and

∃y0¬A(x0, y0). (∗) is now satisfied by taking x̃ := 〈x0〉, u := y0.

n → n + 1: Let u, x̃ be such that (∗) is satisfied for n. By (+) there exists

an xn+1 ≤ x such that ∃yn+1¬A(xn+1, yn+1) and ∀ũ ≤ uA(xn+1, ũ). By (∗)
we have ∀i ≤ n∃ũ ≤ u¬A((x̃)i, ũ). Hence ∀i ≤ n((x̃)i 6= xn+1) and so

û := max(u, yn+1), x̂ := x̃ ∗ 〈xn+1〉 satisfy G(n+ 1, û, x̂).

It remains to show that ∃u, x̃G(n, u, x̃) is equivalent to a Σ0
k-formula:
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Using Σ0
k−1-CP, ∃ũ ≤ u¬A((x̃)i, ũ) can be shown to be equivalent to a Π0

k−1-

formula. Since Σ0
k−1-CP follows from Σ0

k-IA, the whole proof can be carried

out in G3Aω + Σ0
k-IA.

In contrast to Π0
k-TND(f) its monotone version Π0

k-TNDmon(f) does not hold

logically. However it can be proved using Σ0
k-induction. More precisely the

following proposition holds:

Proposition 3.19 Let k ≥ 1. There are finitely many instances Σ0
k-IA(ξif)

such that

G3Aω ` ∀f
(
(

l∧
i=1

Σ0
k-IA(ξif))→ Π0

k-TNDmon(f)
)
.

Proof: By (the proof of) lemma 3.18 there are instances Σ0
k-IA(ξif) which

prove (relatively to G3Aω)

(∗)

 ∀x∃u1∀x̃ ≤ x(∀y1∃z1 . . .∀ym∃zm(∀ym+1)(f ′(x̃, y1, z1, . . . , ym, zm) = 0)

∨∃ũ ≤ u1∀v1 . . .∃um∀vm(∃um+1)(f ′(x̃, ũ, v1, . . . , um, vm) 6= 0))

and therefore by the definition of f ′ (which makes

∃ũ ≤ u1∀v1 . . .∃um∀vm(∃um+1)(f ′(x̃, ũ, v1, . . . , um, vm, (um+1)) 6= 0) mono-

tone w.r.t. ∃ũ) ∀x∃u1∀x̃ ≤ x(∀y1∃z1 . . .∀ym∃zm(∀ym+1)(f ′(x̃, y1, z1, . . . , ym, zm, ) = 0)

∨∀v1 . . .∃um∀vm(∃um+1)(f ′(x̃, u1, v1, . . . , um, vm, ) 6= 0)),

which is equivalent to (∗∗) :≡ ∀x∃u1∀y1∀x̃ ≤ x∃z1(∀y2 . . .∀ym∃zm(∀ym+1)(f ′(x̃, y1, z1, . . . , ym, zm, ) = 0)

∨∀v1 . . . ∃um∀vm(∃um+1)(f ′(x̃, u1, v1, . . . , um, vm, ) 6= 0)).

By a suitable instance of Π0
k−1-CP and the monotonicity of (∗∗) w.r.t. ∃z1

one can ‘shift’ ∀x̃ ≤ x over ∃z1. Now one continues in this way until one

obtains Π0
k-TNDmon(f) which needs only suitable instances of Π0

l -CP with

l < k− 1 which can be considered as instances of Π0
k−1-CP. All the instances

of Π0
k−1-CP used follow from suitable instances of Σ0

k-IA.

Corollary 3.20 G3Aω ` ∀f(Π0
k-CA(ξf) → Π0

kTNDmon(f)) for a suitable
ξ ∈ G3Rω.
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4 Conservation results for Π0
k-AC(f) and ∆0

k-

CA(f, g)

We are now ready to determine the arithmetical content of instances Π0
k-

CA(ξuv) and even Π0
k-AC(ξuv) and ∆0

k+1-CA(ξuv) in proofs of monotone

sentences (and without monotonicity assumption if the logical complexity is

restricted). It turns out that this content is given by certain instances of

Π0
k-TNDmon.

Definition 4.1

Π0
k-AC(f) :≡

 ∀l
0(∀x0∃y0∀u0

1∃u0
2 . . .∃(d)u0

k(f(l, x, y, u) =0 0)

→ ∃g1∀x0∀u0
1∃u0

2 . . .∃(d)u0
k(f(l, x, gx, u) =0 0))

∆0
k-CA(f, g) :≡
∀l0
(
∀x0([∀u0

1∃u0
2 . . .∃(d)u0

k(f(l, x, u) =0 0)↔

∃v0
1∀v0

2 . . .∀(d)v0
k(g(l, x, v) =0 0)])

→ ∃h1∀x0(gx =0 0↔ ∀u1∃u2 . . .∃(d)uk(f(l, x, u) =0 0))
)

∆0
k-CA(f) :≡ ∆0

k-CA(j1
1f, j

1
2f) for the projection functions j1

i ∈ G2Rω.

Lemma 4.2 Let k ∈ IN. Then for suitable ξ1, ξ2 ∈ G2Rω:

1) G2Aω+ AC0,0-qf ` ∀f(Π0
k-CA(ξ1f)→ Π0

k-AC(f)).

2) G2Aω+ AC0,0-qf ` ∀f(Π0
k-CA(ξ2f)→ ∆0

k+1-CA(f)).

Proof: Obvious.

Below we also need a certain ‘non-standard’ axiom F−

F− :≡

∀Φ2(0), y1(0)∃y0 ≤1(0) y∀k0, z1, n0(
∧
i<0n

(zi ≤0 yki)→ Φk(z, n) ≤0 Φk(y0k)),

where, for zρ0, (z, n)(k0) :=ρ zk, if k <0 n and := 0ρ, otherwise.

F− does not hold in the full set-theoretic type-structure but can be elimi-
nated from proofs of monotone sentences in our theories. This axiom was

introduced and studied in [12] and implies the principle of uniform Σ0
1-

boundedness which was mentioned in the introduction and which will be
generalized in section 5 below.
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Proposition 4.3 Let n ≥ 2, k ≥ 0 and

B :≡ ∀u1∀v ≤τ tu∃a0
1∀b0

1 . . .∃a0
l ∀b0

l ∃wγB0 be a sentence in L(GnAω), where

B0 is quantifier-free and t ∈ GnRω. Let ξ1, ξ2 ∈ GnRω (of suitable types) and

∆ a set of sentences having the form ∀xδ∃y ≤ρ sx∀zηA0 (A0 quantifier-free,

s ∈ GnRω). Then for a suitable ξ ∈ GnRω the following holds:

If

GnAω + ∆+ AC-qf `

∀u1∀v ≤τ tu(∆0
k+1-CA(ξ1uv) ∧Π0

k-AC(ξ2uv)→ ∃a0
1∀b0

1 . . .∃a0
l ∀b0

l ∃wγB0)

then

GnAω + ∆̃ +Mon(B) `
∀u1∀v ≤τ tu(Π0

k-TNDmon(ξuv)→ ∃a0
1∀b0

1 . . . ∃a0
l ∀b0

l ∃wγB0)

and in particular

Gmax(3,n)A
ω + Σ0

k-IA + ∆̃ +Mon(B) ` ∀u1∀v ≤τ tu∃a0
1∀b0

1 . . .∃a0
l ∀b0

l ∃wγB0.

In the assumption of the rule the theory GnAω+∆+ AC-qf can be strengthened

to14 (GnAω + ∆+ AC-qf )⊕ F−. Then in the first conclusion GnAω must be
replaced by Gmax(3,n)A

ω.

Proof: By lemma 4.2, proposition 3.17 and the fact that two instances of

Π0
k-CA can be coded together into a single instance of Π0

k-CA, there is a ξ ∈
GnRω such that

GnAω+ AC0,0-qf

` ∀u1∀v ≤τ tu((Π0
k-TNDmon(ξuv))S → ∆0

k+1-CA(ξ1uv) ∧ Π0
k-AC(ξ2uv).

So the assumption of the rule implies

(1)

 GnAω+ AC-qf + ∆ `
∀u1∀v ≤τ tu(Π0

k-TNDmon(ξuv)→ ∃a0
1∀b0

1 . . .∃a0
l ∀b0

l ∃wγB0).

By lemma 3.14.2) the prenexation15

Apr :≡ ∀u1∀v ≤τ tu∃x∀u1∃y1∀z1∃v1 . . .∃a1∀b1 . . .∃wγ(TNDmon
0 (ξuv)→ B0)

14Here ⊕ means that F− must not be used in the proof of the premise of an application
of the quantifier–free rule of extensionality QF–ER. GnAω satisfies the deduction theorem
w.r.t ⊕ but not w.r.t +.

15Note that Apr is not completely in prenex normal form because of the universal quan-
tifiers hidden in v ≤τ tu. However it has

the form required in theorem 2.7 used below.
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of16

A :≡ ∀u1∀v ≤τ tu(Π0
k-TNDmon(ξuv)→ ∃a0

1∀b0
1 . . .∃a0

l ∀b0
l ∃wγB0)

is monotone if B is:

GnAω `Mon(B)→Mon(Apr).

Now (1) implies

GnAω+ AC-qf + ∆ ` (Apr)H

and therefore using theorem 2.7

GnAω + ∆̃ +Mon(B) ` Apr i.e.

GnAω + ∆̃ + Mon(B) ` A.
The second part of the claim in the proposition now follows from proposition
3.19.
The proof above can be combined with the elimination procedure for F−

given in [12](thm.4.21) yielding the claim about adding F−.

Corollary 4.4 Let k ≥ 1, γ ≤ 2 and ξ1, ξ2 ∈ GnRω. Then the following rule
holds

G∞Aω + ∆+ AC-qf `
∀u1∀v ≤τ tu(∆0

k+1-CA(ξ1uv) ∧ Π0
k-AC(ξ2uv)→ ∃wγB0(u, v, w))

⇒ ∃Φ ∈ Tk−1 such that

PAω
i + ∆̃ ` ∀u1∀v ≤τ tu∃w ≤γ ΦuB0(u, v, w).

Again we may strengthen the theory in the assumption of the rule above by

⊕F−.

Proof: The corollary follows from proposition 4.3 by observing that the

condition Mon(∀u1∀v ≤τ tu∃wγB0) is empty and using the fact that G∞Aω+

∆̃ + Σ0
k-IA has a monotone functional interpretation as developed in [9] (via

negative translation) in PAω
i +∆̃ by terms ∈ Tk−1. The latter follows from the

proof that the negative translation of Σ0
k-IA has a functional interpretation

in Tk−1 (provable in (a subsystem of) PAω
i ) as given in [19] and the fact that

every (closed) term of Tk−1 can be majorized (in the sense of definition 2.1)
by a suitable term in Tk−1 which follows from Howard’s proof of this fact for

full T as given in [6].

16TNDmon
0 denotes the quantifier-free matrix of (some prenex normal form of) Π0

k-
TNDmon.
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Corollary 4.5 Let n ≥ 3 and A be a Π1
1-sentence.

If E-GnAω+ AC1,0-qf +∆0
k+1-CA− + Π0

k-AC−+WKL ` A

then GnAω + Σ0
k-IA +Mon(A) ` A.

Proof:
Using the deduction theorem for E-GnAω, the fact that E-G3Aω+ AC1,0-qf

+F− proves WKL (see [12]) and the existence of characteristic terms ∈ GnRω

for quantifier-free formulas of E-GnAω the assumption implies

E-GnAω+AC1,0-qf + F− `
l∧
i=1

(∆0
k+1-CA(ξi)) ∧

l̃∧
j=1

(Π0
k-AC(ξ̃j))→ A

for certain terms ξi, ξ̃j ∈ GnRω (corresponding to the universal closures of

the instances of ∆0
k+1-CA− and Π0

k-AC− used in the proof).

For suitable ξ, ξ̃ ∈ GnRω we have

GnAω ` ∆0
k+1-CA(ξ)→

l∧
i=1

(∆0
k+1-CA(ξi))

and

GnAω ` Π0
k-AC(ξ̃)→

l̃∧
j=1

(Π0
k-AC(ξ̃j)).

Together with elimination of extensionality (see e.g. [16]) we obtain

(GnAω+ AC1,0-qf) ⊕ F− ` ∆0
k+1-CA(ξ) ∧Π0

k-AC(ξ̃)→ A.

The conclusion now follows from proposition 4.3.

Lemma 4.6 Let ∀u1∀v ≤τ tuA(u, v) be a sentence with A(u, v) ∈ Σ0
k+1.

Then one can construct a sentence ∀u1∀v ≤τ tuÃ(u, v) with Ã(u, v) ∈ Σ0
k+1

such that

1) GnAω `Mon(∀u1∀v ≤τ tuÃ(u, v)),

2) GnAω ` ∀u1∀v ≤τ tu(
l∧
i=1

Π0
k−2-CP(ξiuv)→ (A(u, v)→ Ã(u, v))),

3) GnAω ` ∀u1∀v ≤τ tu(
l̃∧
i=1

Π0
k−1-CP(ξ̃iuv)→ (Ã(u, v)→ A(u, v))),
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where ξi, ξ̃j ∈ GnRω are suitable terms.

Proof: Lemmas 3.8,3.10.

Corollary 4.7 Let n ≥ 3, ∀u1∀v ≤τ tuA(u, v) be a sentence in GnAω with

A(u, v) ∈ Σ0
k+1,

t ∈ GnRω and ξ1, ξ2 ∈ GnRω of suitable types. Then the following rule holds:
If GnAω + ∆+ AC-qf `

∀u1∀v ≤τ tu(∆0
k+1-CA (ξ1uv) ∧Π0

k-AC (ξ2uv)→ A(u, v))

then GnAω + Σ0
k-IA + ∆̃ ` ∀u1∀v ≤τ tuA(u, v).

We may strengthen the theory in the assumption of the rule above by ⊕F−.

Proof:
Let Ã be as in lemma 4.6. Π0

k−2-CP(ξiuv) follows from a corresponding

instance Π0
k−2-AC(ξ̂iuv) of Π0

k−2-AC which can be considered as an instance

Π0
k-AC(ξ̂iuv) of Π0

k-AC. All these instances Π0
k-AC(ξ̂iuv) (i = 1, . . . , l) can

be combined with Π0
k-AC(ξ2uv) into a single instance Π0

k-AC(ξ̂2uv). Hence
the assumption of the corollary yields

GnAω + ∆+ AC-qf `
∀u1∀v ≤τ tu(∆0

k+1-CA (ξ1uv) ∧ Π0
k-AC (ξ̂2uv)→ Ã(u, v)).

The conclusion now follows from proposition 4.3, lemma 4.6 and the fact that

GnAω + Σ0
k-IA ` Π0

k−1-CP.

Corollary 4.8 For n ≥ 3,

E-GnAω+ AC1,0-qf +∆0
k+1-CA− + Π0

k-AC− + WKL is conservative w.r.t.

Π0
k+2-sentences over GnAω + Σ0

k-IA−.

Proof: The corollary follows from the proofs of corollary 4.5 and corollary
4.7.

Remark 4.9 Corollary 4.8 is optimal in the following sense. For every k

there is a sentence A ∈ Π0
k+3 such that

G3Aω + Π0
k-AC− ` A, but G3Aω + Σ0

k-IA /̀ A.

Proof: There is a first-order instance A (i.e. without parameters of type level

> 0) of Π0
k-FAC which does not follow from Σ0

k-IA relative to e.g. G3Aω (see
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[18]). It is clear that G3Aω + Π0
k-AC− ` A. Since the universal closure of A

can be shown to be equivalent to a Π0
k+3-sentence in G3Aω + Σ0

k-IA
− (and

hence in G3Aω + Π0
k-AC−), the claim follows.

Corollary 4.10 Let ∀u1∀v ≤τ tuA(u, v) be a sentence with A(u, v) ∈ Σ0
k+2.

Then for n ≥ 3 the following rule holds:
If GnAω + ∆+ AC-qf `

∀u1∀v ≤τ tu(∆0
k+1-CA (ξ1uv) ∧Π0

k-AC (ξ2uv)→ A(u, v))

then GnAω + Π0
k-CP + ∆̃ ` ∀u1∀v ≤τ tuA(u, v).

We may strengthen the theory in the assumption of the rule above by ⊕F−.

Proof: The corollary follows analogously to the proof of corollary 4.7 using
lemma 4.6 for k + 1 instead of k and the well-known fact (see e.g. [18]) that

GnAω + Π0
k-CP ` Σ0

k-IA.

Corollary 4.11 For n ≥ 3,

E-GnAω+ AC1,0-qf +∆0
k+1-CA− + Π0

k-AC− + WKL is conservative w.r.t.

Π0
k+3-sentences over GnAω + Π0

k-CP−.

Proof: The corollary follows from corollary 4.10 analogously to the proof of
corollary 4.8.

Let EA be Kalmar-elementary arithmetic EA (with number quantifiers) and
let us consider the variant GnAω

− of GnAω where the arbitrary true universal

axioms 9) from its definition in [12] are replaced by the schema of quantifier-

free induction (with arbitrary parameters)17 only. The results above also

hold for GnAω
− since no other universal axioms from 9) were used. EA can

be considered as a subsystem of G3Aω
− and the latter is conservative over the

former. Hence we obtain the following corollaries for EA:

Corollary 4.12 Let A be an arbitrary sentence of EA. Then the following
rule holds:

EA + Π0
k-CP ` A ⇒ EA + Σ0

k-IA +Mon(A) ` A.

In particular we have the following

Corollary 4.13 Let A, Ã be sentences from EA such that

17Or equivalently the second-order axiom of quantifier-free induction.
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1) EA +Π0
k-CP ` A→ Ã,

2) EA +Σ0
k-IA ` Ã→ A and

3) EA +Σ0
k-IA `Mon(Ã).

Then EA +Π0
k-CP ` A implies EA +Σ0

k-IA ` A.

Combined with lemma 4.6 we finally obtain

Corollary 4.14 (Paris-Kirby [17], H. Friedman)

EA +Π0
k-CP is Π0

k+2-conservative over EA +Σ0
k-IA.

5 Generalized principles of uniform bound-

edness and their arithmetical content

In the following we define a generalization of the principle of uniform Σ0
1-

boundedness Σ0
1-UB− which was studied in [12],[14],[15]:

Σ0
1–UB− :≡


∀y1(0)(∀k0∀x ≤1 yk∃z0 A(x, y, k, z)→ ∃χ1∀k0, x1, n0

(
∧
i<0n

(xi ≤0 yki)→ ∃z ≤0 χk A((x, n), y, k, z))),

where A ≡ ∃l0A0(l) is a purely existential formula.

Σ0
1-UB− follows from F− relative to GnAω+ AC1,0-qf (for n ≥ 2).

In G2Aω + Σ0
1–UB− and hence in G2Aω + F−+AC1,0–qf one can give very

short and perspicuous proofs of various important analytical theorems like

• Every pointwise continuous function f : [0, 1]d → IR is uniformly con-
tinuous

• The attainment of the maximum value of f ∈ C([0, 1]d, IR) on [0, 1]d

• The sequential form of the Heine–Borel covering property for [0, 1]d

• Dini’s theorem

• The existence of a uniformly continuous inverse function for every
strictly increasing continuous function f : [0, 1]→ IR.
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Since F− does not contribute to the growth of extractable bounds one can

extract polynomial bounds from proofs in G2Aω + Σ0
1–UB−+ AC-qf.

Whereas the straightforward generalization of Σ0
1-UB− to Π0

k-formulas is not

consistent with GnAω (see [15]), the following restricted form is (although it

does – like Σ0
1-UB− – not hold in the full set-theoretic type structure):

Definition 5.1 Let ρ = 0(0)(0)(1(0))(1), k ≥ 0.

Π0
k-UB−|\(g) :≡

 ∀Φ
ρ, y1(0), a0(∀k0∀x ≤1 yk∃z0A(g,Φ(x, y, k, z), k, z, a)→

∃χ1∀k0∀x ≤1 yk∀l0∃z ≤0 χk A(g,Φ((x, l), y, k, z), k, z, a)),

where A(g, v0, k0, z0, a0) :≡ ∀u0
1∃u0

2 . . .∃(d)u0
k(g(v, k, z, a, u) =0 0) ∈ Π0

k.

Remark 5.2 GnAω ` Π0
0-UB−|\(t) → Σ0

1-UB−, where t ∈ G1Rω such that

t(v, k, z, a) =0 v.

In [15] we have shown that every single (sequence of) instance(s) of the

Bolzano-Weierstraß principle for bounded sequences in IRd and of the Ascoli-

lemma (in the sense of [22]) follows from suitable instances of Π0
1-UB−|\ and

used this to calibrate precisely the contribution of such instances to the
growth of extractable bounds. This indicates the mathematical relevance of
our generalized principles of uniform boundedness.

Proposition 5.3 Let n ≥ 2, k ≥ 0. For suitable ξ ∈ GnRω we have

GnAω+ AC1,0-qf ` F− + Π0
k-CA(ξg)→ Π0

k-UB−|\(g),

where g is a free (function) variable.

Proof:
For a suitable ξ ∈ G2Rω, Π0

k-CA(ξg) yields the existence of a function h such
that

∀v0, k0, z0, a0(hvkza =0 0↔ A(g, v, k, z, a)),

where A is as in definition 5.1. Using h, the assumption of Π0
k-UB−|\(g) can

be expressed as

∀k0∀x ≤1 yk∃z0(h(Φ(x, y, k, z), k, z, a) =0 0).

By Σ0
1-UB−, which follows from F− and AC1,0-qf relative to GnAω (see [12]),

this yields

∃χ1∀k0∀x ≤1 yk∀l0∃z ≤0 χk(h(Φ((x, l), y, k, z), k, z, a) =0 0)
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and hence

∃χ1∀k0∀x ≤1 yk∀l0∃z ≤0 χk A(g,Φ((x, l), y, k, z), k, z, a).

Using proposition 5.3 we can strengthen proposition 4.3 and corollary 4.4 to

Theorem 5.4 Let n ≥ 3, k ≥ 0 and

B :≡ ∀u1∀v ≤τ tu∃a0
1∀b0

1 . . .∃a0
l ∀b0

l ∃wγB0 be a sentence in L(GnAω), where

B0 is quantifier-free and t ∈ GnRω. Let ξ1, ξ2, ξ3 ∈ GnRω (of suitable types)

and ∆ a set of sentences having the form ∀xδ∃y ≤ρ sx∀zηA0 (A0 quantifier-

free, s ∈ GnRω). Then for a suitable ξ ∈ GnRω the following holds:



If

GnAω + ∆+ AC-qf `
∀u1∀v ≤τ tu(∆0

k+1-CA(ξ1uv) ∧ Π0
k-AC(ξ2uv) ∧ Π0

k-UB−|\(ξ3uv)→

∃a0
1∀b0

1 . . .∃a0
l ∀b0

l ∃wγB0)

then

GnAω + ∆̃ +Mon(B) `
∀u1∀v ≤τ tu(Π0

k-TNDmon(ξuv)→ ∃a0
1∀b0

1 . . .∃a0
l ∀b0

l ∃wγB0)

and in particular

GnAω + Σ0
k-IA + ∆̃ +Mon(B) ` ∀u1∀v ≤τ tu∃a0

1∀b0
1 . . .∃a0

l ∀b0
l ∃wγB0.

In the assumption of the rule the theory GnAω+∆+ AC-qf can be strengthened

to (GnAω + ∆+ AC-qf )⊕ F−.

Corollary 5.5 Let k ≥ 1, γ ≤ 2 and ξ1, ξ2, ξ3 ∈ GnRω. Then the following
rule holds

G∞Aω + ∆+ AC-qf ` ∀u1∀v ≤τ tu
(∆0

k+1-CA(ξ1uv) ∧ Π0
k-AC(ξ2uv) ∧ Π0

k-UB−|\(ξ3uv)→ ∃wγB0(u, v, w))

⇒ ∃Φ ∈ Tk−1 such that

PAω
i + ∆̃ ` ∀u1∀v ≤τ tu∃w ≤γ ΦuB0(u, v, w).

Again we may strengthen the theory in the assumption of the rule above by

⊕F−.
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We now show that Π0
k-CA(f) in fact is implied by suitable instances of

Π0
k-UB−|\:

Proposition 5.6 Let n ≥ 2, k ≥ 1. For suitable ξ1, . . . , ξl ∈ G2Rω we have

GnAω `
l∧
i=1

Π0
k-UB−|\(ξif)→ Π0

k-CA(f),

where f is a free (function) variable.

Proof: Induction on k. k = 1: Π0
1-CA(f) is logically equivalent to

(1) ∃g ≤1 1∀x0, y0∃z0((gx =0 0→ f(x, y) =0 0) ∧ (f(x, z) =0 0→ gx =0 0))

and hence to (2) :≡

¬∀g ≤1 1∃x0, y0∀z0¬((gx =0 0→ f(x, y) =0 0) ∧ (f(x, z) =0 0→ gx =0 0)).

For a suitable ξ1 ∈ G2Rω, Π0
1-UB−|\(ξ1f) yields the equivalence of (2) and

(3)

 ¬∃n
0∀g ≤1 1∃x, y ≤ n∀z0

¬((gx =0 0→ f(x, y) =0 0) ∧ (f(x, z) =0 0→ gx =0 0))

i.e.

(4)

 ∀n
0∃g ≤1 1∀x ≤ n

((gx =0 0→ ∀y ≤ nf(x, y) =0 0) ∧ (∀z(f(x, z) =0 0)→ gx =0 0)).

Define

gx :=

 00 if ∀y ≤ n(f(x, y) = 0)

10 otherwise.

Let k ≥ 1. k 7→ k + 1:
Π0
k+1-CA(f) is equivalent to

(∗)

 ∃g ≤1 1∀x0, y0∃z0
(
(gx =0 0→ ∃u0

1∀u0
2 . . .∀(d)u0

k(f(x, y, u) =0 0))∧

(∃u0
1∀u0

2 . . .∀(d)u0
k(f(x, z, u) =0 0)→ gx = 0)

)
.

By induction hypothesis there exists an instance Π0
k-UB−|\(ξ2f) (which can be

considered as an instance Π0
k+1-UB−|\(ξ2f)) which implies (relative to GnAω)

Π0
k-CA(f) and hence the existence of an h such that

∀x, a(h(x, a) =0 0↔ ∃u1∀u2 . . . ∀(d)uk(f(x, a, u) =0 0)).
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By Π0
k+1-UB−|\(ξ3f) (for a suitable ξ3) applied to the negation of (∗),

Π0
k+1-CA(f) is equivalent to

(∗∗)

 ∀n∃g ≤1 1∀x ≤ n
(
(gx =0 0→ ∀y ≤ n∃u0

1∀u0
2 . . . ∀(d)u0

kf(x, y, u) =0 0)

∧(∀z∃u0
1∀u0

2 . . .∀(d)u0
kf(x, z, u) = 0→ gx =0 0)

)
,

which is satisfied by

gx :=

 00 if ∀y ≤ n(h(x, y) = 0)

10 otherwise.

Corollary 5.7 For n ≥ 2, k ≥ 1 the following holds:

1) GnAω ` ∀gΠ0
1-UB−|\(g)→ ∀g̃Π0

k-CA(g̃).

2) GnAω ` ∀gΠ0
1-UB−|\(g)↔ ∀g̃Π0

k-UB−|\(g̃).

Proof: 1) By proposition 5.6 ∀gΠ0
1-UB−|\(g) implies ∀fΠ0

1-CA(f) and hence

∀fΠ0
k-CA(f) (by iteration).

2) follows from 1) and the proof of proposition 5.3.

Let B0,1 be the type-0-bar recursor constant of equality rank 1, i.e. B0,1 is

characterized by the axioms

(BR0,1) :

 x2(y1, n0) < n→ B0,1xzuny =1 z

x(y, n) ≥ n→ B0,1xzuny =1 u(λD0.B0,1xzun
′(y, n ∗D)),

where u is of type 1(1(0)) and

(y, n ∗D)(k0) =1


xk, if k < n

D, if k = n

01, otherwise.

Proposition 5.8 Let n ≥ 3, k ≥ 1, B0(u, v, w) be a quantifer-free formula

of GnAω containing only u, v, w free, tτ1 ∈ GnRω, γ ≤ 2. Then the following
rule holds:

GnAω + ∆+ AC-qf ` ∀gΠ0
k-UB−|\(g)→ ∀u1∀v ≤τ tu∃wγB0(u, v, w)

⇒ ∃Φ ∈ GnRω[B0,1] such that

GnAω + ∆̃ + (BR0,1) + (DC0) ` ∀u1∀v ≤τ tu∃w ≤γ ΦuB0(u, v, w),
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where

(DC0) :≡ ∀x0∃y0A(x, y)→ ∀x0∃z1(z0 =0 x ∧ ∀z0
1A(zz1, z(z

′
1))).

Proof: By proposition 5.3 and corollary 5.7 one has

GnAω+ AC1,0-qf + ∀gΠ0
1-CA(g) ` F− → ∀g̃Π0

k-UB−|\(g̃).

Hence the assumption of the rule to be proved yields

GnAω + ∆+ AC-qf + ∀gΠ0
1-CA(g) ` F− → ∀u1∀v ≤τ tu∃wγB0(u, v, w).

From the work of Spector [23] it follows that GnAω+ AC-qf +∀gΠ0
1-CA(g)

has (via negative translation) a Gödel functional interpretation in GnAω
i +

(BR0,1) by terms ∈ GnRω[B0,1]. In [2] it is shown that the type structure

Mω of the so-called strongly majorizable functionals forms a model of full
bar recursion. From the proof of this fact (restricted to type-0-bar recursion)

one obtains the construction of a term B∗0,1 ∈ GnRω[B0,1] such that

GnAω + (BR0,1) + (DC0) ` B∗0,1 s-maj B0,1,

where ‘s-maj’ is the corresponding syntactic notion of strong majorization as
definined in definition 2.1. Therefore the proof of the fact that (the negative

translation of) GnAω+ AC-qf +∆ has a monotone functional interpretation

(in the sense of [9]) in GnAω
i by terms in GnRω (see [12]) extends to

GnAω + ∆+ AC-qf +∀gΠ0
1-CA(g) yielding a monotone functional interpre-

tation (via negative translation) in GnAω + ∆̃ + (BR0,1) + (DC0) by terms

in GnRω[B0,1]. This has the consequence that as in the case of GnAω + ∆+

AC-qf (see the proof of theorem 4.21 in [12]) we can eliminate F− from the
proof of ∀u∀v ≤ tu∃wB0 and extract a uniform bound Φ on ‘∃w’ which now
of course is only in GnRω[B0,1] (instead of GnRω) and its verification can be

carried out in GnAω + ∆̃ + (BR0,1) + (DC0).
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