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Abstract Interpretation in the Operational Semantics

Hierarchy

David A. Schmidt
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March 18, 1997

Abstract

We systematically apply the principles of Cousot-Cousot-style abstract interpreta-
tion (a.i.) to the hierarchy of operational semantics definitions—flowchart, big-step, and
small-step semantics. For each semantics format we examine the principles of safety and
liveness interpretations, first-order and second-order analyses, and termination proper-
ties. Application of a.i. to data-flow analysis, model checking, closure analysis, and
concurrency theory are demonstrated. Our primary contributions are separating the
concerns of safety, termination, and efficiency of representation and showing how a.i.
principles apply uniformly to the various levels of the operational semantics hierarchy
and their applications.

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation. Permanent
address: Computing and Information Sciences Department, Kansas State University, Manhattan, KS 66506
USA. schmidt@cis.ksu.edu. Also partially supported by NSF CCR-9302962 and CCR-9633388.
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1 Introduction

Abstract interpretation (a.i.) is accepted as the correctness foundation for data-flow analysis
of flowchart programs [11, 12, 31], and related research has demonstrated that a.i. can be
applied to nonflowchart programs defined by denotational semantics [1, 6, 15, 20, 31, 35,
42, 51, 45, 46, 47] and structural operational semantics [13, 24, 56, 57, 58, 59, 66]. Model
checking is another important applications area [8, 17, 18, 63, 64].

In this paper, we survey abstract interpretation in the hierarchy of operational semantics:
flowchart semantics, big-step (natural) semantics, and small-step semantics. We define it,
explain how to do it, show how to terminate it, and apply it to data-flow analysis, model
checking, and concurrency theory. We examine the distinctions between safety and liveness
interpretations and first-order and second-order analyses (collecting semantics), and we
handle challenges that arise in the semantics forms: Big-step semantics cannot express
divergence, so we employ coinductive definition techniques in response; small-step semantics
generate sequences of program configurations that are unbounded in size, so we abstractly
interpret source language syntax itself.

The paper’s technical concepts are taken from the trailblazing research of Cousot and
Cousot [16, 11, 12, 13, 14, 15]; our contribution is the expository and systematic use of
these concepts in an important applications arena.

The structure of the paper goes as follows: Basic concepts appear in Section 1.1; Section
2 applies the concepts to a thorough development of abstract interpretation of flowchart
semantics. Sections 3 and 4 apply a.i. to big-step semantics and small-step semantics,
respectively, addressing problems unique to these formats. Applications are intertwined
with the semantic forms upon which they are based. Section 5 concludes.

1.1 What is Abstract Interpretation?

Given that the concrete interpretation (c.i. ) of a program is the execution trace of the
program applied to run-time data, we say that the abstract interpretation (a.i. ) is the
execution trace of the program applied to tokens that denote properties of the run-time
data—an a.i. is a “symbolic execution” where the symbols have semantic content. An
example is implementation of type inference by an a.i. where run-time data are replaced
by datatype tokens, e.g., data like 2 and true are replaced by int and bool, respectively, and
the program executes on datatype tokens.

When run-time data sets are replaced by tokens, the operations within the program must
be revised to compute consistently on the tokens. In algebraic terminology, the program’s
flowchart is a “signature”; when the flowchart’s boxes are instantiated with operations
that compute on run-time data, one obtains a c.i. of the signature; when the boxes are
instantiated with operations on tokens, one obtains an a.i. of the signature; and when there
is a homomorphism from the c.i. into the a.i. , then the a.i. is a safe simulation of the c.i.
(There also exist “live simulations,” which are discussed later.) For example, the concrete
semantics of the operation y:=x+1 is the usual assignment, and the abstract semantics is
a type inference: y is assigned t, if x’s value is t ∈ {int, real}, else y is assigned > (error
type).

A crucial issue is termination: although the c.i. of a program with its run-time data
might terminate, the a.i. might not, because the tokens are less precise. For example, the
abstract interpretation of a test, x>0, cannot be decided when the token value of x is int.
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entry

exit

x:=x div2
x:=succ x

ffeven x

tt

Concrete Transitions:
Val = Nat
2n ` even x→ 2n ` x := x div2

2n+ 1 ` even x→ 2n+ 1 ` exit
2n ` x := x div2→ n ` x := succ x

2n+ 1 ` x := x div2→ n ` x := succ x

n ` x := succ x→ n+ 1 ` even x

Concrete interpretation:

4 ` even x

3 ` exit

3 ` even x

2 ` x := succ x

4 ` x := x div2

Figure 1: Flowchart and concrete interpretation

This forces the a.i. to traverse both execution paths that emanate from the test, implying
that loop paths can be traversed forever. Therefore, an a.i. must be coupled with a strategy
for termination. The strategy must ensure a program’s a.i. is a trace where every infinite
path contains a node that is a repetition of one seen earlier in the path, that is, the trace
is a regular tree. Techniques like memoization [58, 59] and widening [11] can ensure regular
trees.

Once an a.i. is terminated, one must extract information from it and apply the in-
formation to validation or code improvement. The information extracted is the collecting
semantics; both c.i. and a.i. possess collecting semantics, which can be first- or second-
order [45]. A first-order collecting semantics is a mapping from a program’s program points
(flowchart boxes) to the input domains of the program points. That is, the collecting se-
mantics defines the range of values that enter the program points. A second-order collecting
semantics maps program points to the set of execution paths that lead into (or, dually, lead
out from) the program points. An a.i. that is a safe simulation of a c.i. will produce a
collecting semantics that is a superset of the homomorphic image of the one for the c.i.

The usual collecting semantics for a type inference is first order, whereas the collecting
semantics for an available-expressions analysis is (forwards) second-order, and a live-variable
analysis produces a (backwards) second-order collecting semantics. There exist more general
forms of collecting semantics [13], which are discussed later.

For efficiency, an implementation will build a compact representation of an a.i. ’s ex-
ecution trace or even bypass the trace and construct a representation of the collecting
semantics directly—the cache computed by a flow analysis is a classical example [3]; the
“cache” computed by denotational-semantics analysis is another [28].

We begin by developing these notions for the operational semantics of flowchart lan-
guages.

2 Abstract Interpretation of Flowchart Programs

The principles of abstract interpretation were established for flowchart programs by Cousot
and Cousot [11], and most of the material in this section is a review of their work. Precedents
for the use of traces as seen in this section are found in [16, 32, 31].

Figure 1 shows a flowchart program that uses a storage vector with a single variable, x.
A state is a storage vector, program point pair, v ` pp, and state transitions are listed in
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Abstract Transitions:
AbsVal = {e, o}
e ` even x→ e ` x := x div2

o ` even x→ o ` exit
v ` x := x div2→ e ` x := succ x

v ` x := x div2→ o ` x := succ x,
for all v ∈ AbsVal

e ` x := succ x→ o ` even x
o ` x := succ x→ e ` even x

Abstract interpretation:

e ` even x

e ` x := x div2

o ` x := succ x e ` x := succ x

o ` even x

o ` exit

e ` even x
...

Figure 2: Abstract interpretation of flowchart

the middle column of the Figure. The program’s c.i. is drawn as a trace; since the program
is deterministic, the trace has one path. The trace in the Figure is finite, but a divergent
program would generate an infinite trace.

Perhaps better target code can be generated for commands whose inputs are always
even numbers. This motivates an a.i. of the form displayed in Figure 2. The Val set
is abstracted to AbsVal = {e, o}, denoting even and odd numbers, respectively, and each
concrete transition is revised into one or more abstract transitions. The resulting abstract
semantics must be nondeterministic in its interpretation of div2. This implies that the a.i.
should be a set of traces, but we represent the set by a single, nondeterministic, trace tree.
Thus, the program’s a.i. contains more paths than what appear in the c.i. Also, the a.i.
trace is infinite, but the infinite path contain a repetition node, meaning that the tree is
regular and has the finite representation shown in the Figure—termination of the a.i. is not
a problem here, because the set of commands and the AbsVal set are finite.

2.1 Relating Concrete to Abstract Traces

Intuition tells us that a homomorphism should relate the concrete transition relation in
Figure 1 to the abstract one in Figure 2. Let β : Val → AbsVal map concrete data to the
abstract tokens that best represent them: e.g., β(2n) = e and β(2n + 1) = o, for n ≥ 0.
Expressed in terms of the transition relation, the homomorphism property reads: for all
program points, pp, and c ∈ Val,

c ` pp→ c′ ` pp′ implies there exists a′ ∈ AbsVal
such that β(c) ` pp→ a′ ` pp′ and β(c′) v a′

The inequality, β(c′) v a′, is a weakening of the expected β(c′) = a′ because an acceptable
a.i. can lose precision. For example, we might code the div2 operation in Figure 2 so
that it is deterministic: a ` x := xdiv2 → > ` x := succ x, for all a ∈ AbsVal, where >
represents “either even or odd.” The extra element necessitates an approximation ordering
[13] on AbsVal = {e, o,>}: a v > and a v a, for all a ∈ AbsVal. Then, we require that the
transition relation is monotonic with respect to the ordering:

a1 ` pp→ a′1 ` pp′ and a1 v a2 imply a2 ` pp→ a′2 ` pp′ and a′1 v a′2

4



Momentarily, we will see that existence of the homomorphism property ensures that a
program’s a.i. is a safe simulation of its c.i. , but additional notations are convenient: First,
define a binary relation, safeV al ⊆ Val×AbsVal, as

c safeV al a iff β(c) v a

that is, c is safely approximated (or represented) by a. Next, define a safety relation upon
the states:

c ` pp safeState a ` pp iff c safeV al a

that is, a concrete state is safely approximated by an abstract state if the respective input
values are related and the corresponding program points are the same pp.

Since a trace is a tree of transitions, we will write root(t) to denote the start state of trace
t. If there is a transition, v ` pp → v′ ` pp′, and root(t) = v′ ` pp′, we write c ` pp −→ t

to denote the composite trace. Finally, because of the nondeterminism in trace trees, we
generalize the above notation to sets of transitions and traces: if {v ` pp→ vi ` ppi}1≤i≤n
is a set of transitions from the state v ` pp, and {ti | root(ti) = vi ` ppi}1≤i≤n is a set
of traces, we write c ` pp −→ {ti | root(ti) = vi ` ppi}1≤i≤n to denote the composite
nondeterministic trace tree.

A program’s c.i. , tC , is safely approximated (or simulated) by an a.i. , tA, iff
tC safeTrace tA, where

t safeTrace t
′ iff root(t) safeState root(t

′), and, for every transition, root(t) −→ ti,

there exists a transition, root(t′) −→ t′j, such that ti safeTrace t
′
j

The intent of safeTrace is that every computation path in tC is safely approximated by one
in tA. The consequences of this property will be studied later.

A technical issue is that the definition of safeTrace is recursive, and the largest such rela-
tion satisfying the recursion is desired. This motivates definition and proof by coinduction,
which is discussed in the next section.

We now reach the payoff for the definitions: for program p and input c ∈
Val, let traceC(p0, c) be p’s c.i. , where p0 is p’s entry program point; similarly,
traceA(p0, a) is the program’s a.i. , for a ∈ AbsVal.1 Then, c safeV al a implies
traceC(p0, c) safeTrace traceA(p0, a), when the following relational homomorphism property
holds for the concrete and abstract transition relations:

c safeV al a and c ` pp→ c′ ` pp′ imply there exists a′ ∈ AbsVal
such that a ` pp→ a′ ` pp′ and c′ safeV al a

′

The relational homomophism property is easily proved equivalent to the homomorphism
property given earlier.

From here on, we work entirely with the relational representations; alternative frame-
works are discussed at length in [13]. Indeed, it is possible to begin the discussion of
safety not with a β map but with a relation, safeV al , provided that safeV al is U-closed:
c safeV al a and a v a′ imply c safeV al a

′ [13, 43, 58].

1The definitions for traceC(p0, c) and traceA(p0, a) are in Section 2.3.
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2.2 Inductively and Coinductively Defined Sets

The flowchart traces in the previous section can be infinite, and proofs on infinite traces are
best worked with coinductive techniques [2, 54, 40], which we now review. The following
presentation is summarized from Cousot and Cousot [14].

We begin with the classical inductive definition. Let U be a universe of terms, and let
F :P(U) → P(U) be continuous2 with respect to the powerset lattice 〈P(U),⊆〉. The set
defined inductively by F is lfpF =

⋃
i≥0 Si, where S0 = {} and Si+1 = F (Si). Note also that

lfpF =
⋂{S′ | closedFS′}, where closedFS

′ iff F (S′) ⊆ S′. That is, lfpF is the smallest
closed set. The latter definition gives a standard reasoning technique, fixed point induction:
to prove lfpF ⊆ P , that is, every element of lfpF has property P , it suffices to find a set
S′ ⊆ P such that closedFS

′. When F is defined from a BNF rule, then proving closedFP
is a structural induction proof.

When the above definitions are dualized, we obtain coinduction: for U and F as above,
the set defined coinductively by F is gfpF =

⋂
i≥0 Ti, where T0 = U and Ti+1 = F (Ti). Also,

gfpF =
⋃{T ′ | denseFT ′}, where denseFT

′ iff T ′ ⊆ F (T ′). That is, gfpF is the largest
dense set. This gives the reasoning technique of fixed point coinduction: to prove Q ⊆ gfpF ,
it suffices to find a set, Q′, such that Q ⊆ Q′ and denseFQ

′. When a property, P , is defined
coinductively as P = gfpF , then proving denseF (gfpG) is a standard way of proving that
coinductively defined set gfpG has P .

Here are brief examples. Let U be a universe of strings of at most countably infinite
(ω-) length; the BNF rule, V ::= 0 | 1V generates the continuous functional
V̄ : P(U) → P(U); V̄ (S) = {0} ∪ {1s | s ∈ S}; we obtain lfpV̄ = {1n0 | n ≥ 0}, whereas
gfpV̄ = lfpV̄ ∪ {1ω}.

It is helpful to think of strings as traces with a single path; when calculating lfpV̄ , Si
contains those traces of length i or less that are certified members of lfpV̄ ; in contrast, Ti
contains those traces that are certified as far as length i and are not yet excluded from
membership in gfpV̄ .

Say that we wish to prove that all strings in lfpV̄ are finite: by fixed-point induction, we
need only show that the set is finite ⊆ U is closed: V̄ (is finite) ⊆ is finite. This is the usual
structural induction proof. A fixed-point coinduction typically involves recursively defined
predicates: say that we wish to show, for all strings (trees) in gfpV̄ , that no 1 follows a 0.
Define these predicates:

ok(s) iff zeroes(s) or s = 1 or (s = 1t and ok(t))
where zeroes(s) iff s = 0 or (s = 0t and zeroes(t))

These predicates are circular, so consider the corresponding functionals: ok′(P ) = {s |
(gfp zeroes′(s)) or s = 1 or (s = 1t and t ∈ P )}, zeroes′(Q) = {s | s = 0 or (s =
0t and t ∈ Q)}, and define Ok = gfp ok′. (This ensures that 1ω ∈ Ok, for example.) To
prove gfpV̄ ⊆ Ok, it suffices to prove denseok′ gfpV̄ , which requires the trivial lemma that
densezeroes′{0}.

For the remainder of this paper, we use a universe, U , of finitely branching trees of at
most countably infinite (ω-) depth[23, 25].

2A monotone function would suffice, but continuity ensures fixed point convergence by the first limit
ordinal.
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2.3 Coinduction Applied to Concrete and Abstract Interpretations

An execution trace is an element of a (co)inductively defined set, which we now define. Here
is the specification of a well formed trace (wft):

1. v ` pp is a wft;

2. If {v ` pp → vi ` ppi}i∈I is the set of all possible transitions from state v ` pp, and
for each i, ti is a wft such that root(ti) = (vi ` ppi), then v ` pp −→ {ti}i∈I is a wft.

When the above definition is interpreted inductively, the well-formed traces are the
finite ones; a coinductive interpretation includes the countably infinite traces. We use the
coinductive interpretation.

For program p with entry point p0 and input v0, it is traditional to generate its trace,
trace(p0, v0), by working from the start state, v0 ` p0, and expanding all possible transitions.
Some auxiliary notation is needed to make this precise: If t is an incomplete trace, l is a leaf
in t, and t′ is a trace such that root(t′) = l, then we write [t′/l]t to denote the replacement
of l by trace t′. A set of such substitutions is written [t′i/li]i∈It.

The generation of trace(p0, v0) is formalized in stages, ti, i ≥ 0:

• t0 = v0 ` p0

• tk+1 = for each leaf, li = (vi ` ppi), i ∈ I, in tk,

let {vi ` ppi → vij ` ppij}1≤ij≤in be all possible transitions from li,

in [vi ` ppi −→ {vij ` ppij}1≤ij≤in/li]i∈Itk

Clause 2 states that all leaves in tk are expanded by all possible one-step transitions to
generate tk+1. Finally, define trace(p0, v0) = limi≥0 ti, which is a well-defined trace.3

Both the c.i. and the a.i. of a program are defined in the above fashion. Next, the safety
relation, safeTrace , is defined coinductively, and we can now prove the simulation property:
for inputs c ∈ Val, a ∈ AbsVal, c safeV al a implies trace(p0, v) safeTrace trace(p0, a).

The proof proceeds as follows: First, note that safeTrace = gfpF (S) =
{(t, t′) | root(t) safeState root(t′) and for all root(t) −→ ti, there exists root(t′) −→
t′j such that S(ti, t

′
j)}. Let wftC and wftA denote the set of well-formed concrete and

abstract traces respectively, and consider the set S0 = {(t, t′) | t ∈ wftC , t
′ ∈

wftA, and root(t) safeState root(t
′)}. We know that (trace(p0, c0), trace(p0, a0)) ∈ S0, so

the result we desire will follow from the proof that S0 ⊆ F (S0). This goes as follows: For
(t, t′) ∈ S0, when root(t) −→ ti, where ti ∈ wftC and root(ti) = (ci ` pi), there must exist
a transition root(t′) → aj ` pi such that ci safeV al aj by the relational homomorphism
property. Since t′ ∈ wftA, aj ` pi must be the root of some trace t′j ∈ wftA, implying that
root(t′) −→ t′j . Finally, it is immediate that (ti, t

′
j) ∈ S0.

3This is proved by fixed point coinduction: we note that wft = gfpW , where W (S) = {t | (i) t = (v `
pp), or (ii) t = (v ` pp −→ {ti}i∈I) and {v ` pp → vi ` ppi}i∈I are all possible transitions from v `
pp and for all i ∈ I, ti ∈ S and root(ti) = (vi ` ppi)}. Consider the set S0 = {t |
t is a subtree of trace(p0, v0)}; the result follows from that proof that S0 ⊆W (S0). The key to the proof is
that every t ∈ S0 has root(t) = v ` pp that was created as a leaf at some stage, tk, implying that at stage
tk+1, v ` pp −→ {vi ` ppi}i∈I , where each vi ` ppi is itself the root of a trace in S0.
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2.4 A Comparison with Mathematical Induction

It is useful to consider how the above proof resembles a proof done by induction on the length
of the trace. For simplicity, consider deterministic traces (sequences) only and an arbitrary
safety relation, R . The claim that concrete trace tC = C0 → C1 → · · · → Ci → · · · is
simulated by abstract trace tA = A0 → A1 → · · · → Ai → · · · is defined as ∀i ≥ 0, Ci R Ai;
the induction proof goes in two steps:

• C0 R A0

• Ci R Ai implies Ci+1 R Ai+1

When the result is proved by coinduction, these two steps will reappear, but some startup
machinery is required: The universally quantified safety property is recoded recursively as
safe = gfpF , where F (S) = {(t, t′) | head(t) R head(t′) and (tail(t), tail(t′)) ∈ S}. The
usual difficulty in the coinductive proof is selecting the set to be proved dense for F , but a
standard choice focusses upon the heads of the traces: S0 = {(t, t′) | head(t) R head(t′)}.
First, we must show that (tC , tA) ∈ S0; this is the “basis step.” Next, we must show
that S0 ⊆ F (S0); this is the “induction step,” because it quickly decomposes to using
head(t) R head(t′) to prove head(tail(t)) R head(tail(t′)).

Although the above example was meant to emphasize the similarities between mathe-
matical induction and coinduction proof techniques, one notes also that the primary distinc-
tion between the two techniques is that the former decomposes traces into their component
states whereas the latter handles the traces as whole entities. As trace structures and their
properties grow in complexity, it becomes more convenient to work with coinduction—safety
properties stay simple and proofs stay short.

2.5 How to Derive the Abstract Semantics from the Concrete One

Once the abstract domain, AbsVal, is selected, we wish to derive the abstract semantics from
the concrete one so that the relational homomorphism property holds. For each program
point, pp, we define the abstract transition rule

a ` pp→ a′ ` pp′ if there exists c ∈ Val
such that c safeV al a, c ` pp→ c′ ` pp′, and c′ safeV al a

′

The above condition is sufficient, but not necessary, for a relational homomorphism: If
AbsVal is partially ordered, safeV al is U-closed, and c′ safeV al uA, where A = {a′ |
c′ safeV al a

′}, then one obtains a better quality analysis by using a ` pp→ uA ` pp′.4

2.6 Liveness Abstract Interpretations

The examples so far are oriented towards safety analyses, where an a.i. contains more
transitions in its trace than does the corresponding c.i. A liveness analysis is the dual: An
a.i. contains a transition only if all corresponding c.i.s possess a corresponding transition.
Liveness analyses are of primary interest when one wishes to validate properties such as
starvation freedom.

4Indeed, these conditions suffice for defining a Galois connection between P(Val) and AbsVal, for which
there is extensive advice for deriving precise analyses [12, 13, 39, 44, 58].
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Abstract Transitions:
AbsVal = {e, o,>}
e ` even x→ e ` x := x div2

o ` even x→ o ` exit
v ` x := x div2→ > ` x := succ x,

for all v ∈ AbsVal
e ` x := succ x→ o ` even x
o ` x := succ x→ e ` even x
> ` x := succ x→ > ` even x

e ` even x

e ` x := x div2

> ` x := succ x

> ` even x

(deadlocked)

Example:

Figure 3: Liveness abstract interpretation

As before, one defines an abstract value set, AbsVal, and a binary relation, liveV al ⊆
Val × AbsVal; a relation, liveState , must be defined so that the liveness relation on traces
is expressed as follows:

t liveTrace t
′ iff root(t) liveState root(t

′), and
for every transition, root(t′) −→ t′j,
there exists a transition, root(t) −→ ti, such that ti safeTrace t

′
j

That is, the c.i. is a simulation of the a.i. .
Figure 3 shows the concrete semantics of Figure 1 naively abstracted for a liveness anal-

ysis. Unfortunately, the reuse of AbsVal from Figure 2 produces an uninteresting liveness
analysis that can analyze only one loop iteration—the problem is the abstract transition
rule for x:=x div2, which cannot give a precise output. At best, a >-value can be used,
and this leads to deadlock at the loop’s test. Selecting the appropriate abstract domains
for liveness analysis is a little-understood art.

To prove the liveness relation between the c.i. and the a.i. , the (dual of the) relational
homomorphism property is required, and this can be obtained by deriving the abstract
semantics from the concrete one as follows:

a ` pp→ a′ ` pp′ only if for all c ∈ Val,
c liveV al a implies c ` pp→ c′ ` pp′, and c′ liveV al a

′

2.7 Termination of the Abstract Trace

The a.i. in Figure 2 is infinite, but its construction is finite because a state repeats in the
infinite path; the trace is a regular tree and can be represented by a finite one with backwards
arc(s). Unfortunately, there is no guarantee that every a.i. is a regular tree: for example,
constant propagation analysis uses an infinite AbsVal set, and the a.i. proceeds just like its
corresponding c.i. To terminate, constant propagation maintains a “memo table” or “cache”
of program points and the inputs that arrive at those points. This concept is realized within
a.i. as a memoization [58, 59] or widening [11] of the abstract trace.

Figure 4 shows a constant propagation analysis with memoization. When a program
point repeats in the trace, all previous inputs to the point are joined with the newest one,
and the trace proceeds. This forces termination but with loss of precision. The memoized
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entry

x=0

x:=succ x

exittt

ff

Concrete Transitions:
Val = Nat
0 ` x = 0→ 0 ` x := succ x

n+ 1 ` x = 0→ n+ 1 ` exit
n ` x := succ x→ n+ 1 ` x = 0

Abstract Transitions:

AbsVal = Val>

above rules plus
> ` x = 0→ > ` x := succ x

> ` x = 0→ > ` exit
> ` x := succ x→ > ` x = 0

1 t 2 = > ` x = 0

Memoized a.i.:

1 ` x = 0

1 ` x := succ x

2 ` x = 0

1 t > =
> ` x := succ x

> ` x := succ x

> ` x = 0

> ` exit

Figure 4: Memoized abstract interpretation

trace can be defined in stages, like before:

• t0 = v0 ` p0

• tk+1 = for each leaf, li = (vi ` ppi), i ∈ I, in tk,

let {vi ` ppi → vij ` ppij}1≤ij≤in be all possible transitions from li;
and for each ppij, let Vij = t{v′ | v′ ` ppij appears in tk}
in [vi ` ppi −→ {vij t Vij ` ppij}1≤ij≤in/li]i∈Itk

Clause 2 states how all previous inputs to a program point, pij, are joined with the newest
input, vij, to make a new leaf, vij t Vij ` ppij, in the trace.

Memoization ensures termination if (i) AbsVal is partially ordered so that it is a sup-
semilattice of finite height, that is, joins exist and there exist no infinite chains of distinct
elements; and (ii) the abstract operations are monotone on AbsVal. Monotonicity ensures
that for each program point, pp, the sequence of states, ai ` pp, i ≥ 0, occurring along a
path in the a.i. forms a chain, and the finite height property ensures that the chain finishes
with a repeating node.

If safety has been proved for the nonmemoized a.i. , safety is preserved for the memoized
one, since safeTrace is U-closed. (The proof goes by coinduction.)

2.8 Collecting Semantics: First-Order and Second-Order

Once a program’s trace is constructed, whether it is a c.i. or an a.i. , information must be
extracted from it for validation or code improvement. The extracted information is called
the collecting semantics.

The classic collecting semantics is first order: It associates to each program point the
set of input values that appeared at the program point in the trace [11, 45]: for trace, t,
collt : ProgramPoint → P(Val) is defined as

collt(pp) = {v | v ` pp is a state in t}

In Figure 1, colltC (even x) = {3, 4}, and in Figure 2, colltA(even x) = {e, o}.
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The term “collecting semantics” has been used traditionally for the information taken
from the c.i. , but it is equally applicable to an a.i. , and we see in Section 2.8 that an
iterative data-flow analysis calculates exactly the collecting semantics of a memoized a.i.
An a.i. ’s collecting semantics is sometimes weakened by joining the abstract values for a
program point: coll′t(pp) = tcollt(pp), since in practice this is easier to calculate and often
suffices for code improvement applications.

If the usual safety result has been proved, that is, the abstract semantics simulates
the concrete semantics, then it follows that the collecting semantics for the a.i. safely
approximates the collecting semantics of the corresponding c.i. , which is the “funda-
mental theorem” of abstract interpretation: for program, p, if c safeV al a, then for all
pp ∈ ProgramPoint,

colltrace(p0,c)(pp) ⊆ γ(colltrace(p0,a)(pp)),

where γ : P(AbsVal) → P(Val) is defined γS = {c | exists a ∈ S such that c safeV al a}.
A dual result holds for liveness analysis.

Perhaps more important but less well understood is second-order collecting semantics,
which associates to each program point the set of paths that go into or that emanate from
the program point; we define the forwards and backwards collecting semantics as follows:

fcollt(pp) = {p | p is a path in t from root(t) to some v ` pp}
bcollt(pp) = {p | p is a maximal path in t such that root(p) = v ` pp}

Notable applications of second-order collecting semantics are available-expression and live-
variable data-flow analyses, which are respectively forwards and backwards, but second-
order collecting semantics lie at the foundations of model-checking, as well; this application
is examined below.

Finally, Cousot and Cousot [13] suggest that the collecting semantics of a trace can be
any property or set of properties expressed in a logic, L. Given a trace, t, and proposition,
φ ∈ L, we write t |= φ if φ holds true of t. For the sake of discussion, we define the collecting
semantics of t to be collt = {φ | t |= φ}. As above, we wish to define collecting semantics
of both a concrete and abstract interpretations, and we assume that the same L can be
used for both concrete and abstract traces.

With this approach, we must first prove a weak consistency relation between the safety
relation, safeTrace , and L:

tC safeTrace tA ⇒ ( for all φ ∈ L, φ |= tA ⇒ φ |= tC)

That is, any property possesed by an abstract trace, tA, must also hold for a corresponding
concrete trace, tC . This is the minimum needed to work confidently with L. Next, one
might desire a weakly complete relationship:

tC safeTrace tA iff ( for all φ ∈ L, φ |= tA ⇒ φ |= tC)

To have weak completeness, there must be a close—or even exact—match between L and
AbsVal.

The two above notions are titled “weak” because decidability is lacking: tC safeTrace tA
and tA 6 |=φ does not imply tC |= ¬φ. If one replaces the rightmost ⇒ in the definitions
above by iff, one obtains strong consistency and strong completeness, respectively. The
strong versions of the definitions give decidability, but the price one pays is either an AbsVal
set that differs little from Val or a low-precision definition of L.

These notions of soundness and completeness are developed by Dams in his thesis [17].

11



2.9 Representations of the Collecting Semantics

If the purpose for calculating an a.i. is to obtain an abstract collecting semantics for program
points, then an implementation can generate the a.i. implicitly while calculating explicitly
a representation of the collecting semantics. Typically, this is done by computing upon a set
of equations or constraints that defines the collecting semantics, one equation/constraint
per program point; solution of the equations/constraints yields the collecting semantics.
Examples of such representations of the collecting semantics are the table generated from
solving a set of data flow equations (see the next section); the cache generated from solving
a set of denotational semantics equations [28, 10]; and the solution of a constraints set
generated for type inference [4, 5, 67] or control-flow analysis [27, 52].5

Because of the emphasis placed upon the collecting semantics, it is all too easy to
confuse an a.i. with the collecting semantics extracted from it. As a result, precision can
be inadvertantly lost when an algorithm for calculating directly the collecting semantics is
formulated before the a.i. upon which it is based. Also, safety proofs are complicated when
they are worked on the collecting semantics algorithm rather than upon the a.i. .

Our recommendation is that an algorithm for calculating the collecting semantics should
be defined and proved safe with respect to the a.i. upon which it is based.

2.10 Application: Data-Flow Analysis

A standard iterative data-flow analysis encodes a program and its data flow as a set of
simultaneous equations, one equation per program point. The equations are solved with
a least fixed-point iteration [3]. As noted in the previous section, a data-flow analysis
calculates a representation of a collecting semantics.

For example, the collecting semantics of the even-odd analysis of the program in Figure
1 is encoded with flow equations named inpp, for each pp ∈ ProgramPoint, of the form

inpp =
⊔

q∈pred pp
fq(inq)

where AbsVal = {⊥, e, o,>}, feven x(v) = v, fx:=x div2(v) = >, and fx:=succ x(e) = o,
fx:=succ x(o) = e, and fx:=succ x(>) = >.

An equation, inpp, defines the data flow into pp; to initialize, an extra equation is written
for the program’s entry point: inentry = e.

Figure 5 shows the solution of the equations for the example. The process starts from
⊥-elements, and a computational partial ordering [13], which in this case coincides with the
approximation ordering, is used to calculate the join operation, t, and solve the equations.
It takes little work to prove that the solution of the data-flow equations is exactly the first-
order collecting semantics of the program’s memoized a.i. : Column i of the table in the
Figure 5 equals the collecting semantics of stage i of the memoized a.i. in Figure 4.6

Many flow analyses—available expressions and live variables, for example—are second-
order, because the analyses must calculate execution paths containing histories of expression

5Contrast this with the classic formulation of strictness analysis [6], which is a true a.i. and not a
calculation of a collecting semantics.

6Indeed, the collecting semantics of an a.i. is known historically as the meet-over-all-paths analysis (MOP),
whereas the collecting semantics of a memoized a.i. is known as the maximal fixed-point analysis (MFP)
[45].
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inentry = e

ineven x = inentry t fx:=succ x(inentry)
inx:=x div2 = ineven x

inx:=succ x = fx:=x div2(inx:=x div2)
inexit = ineven x

iteration 0 1 2 3 4 5 6 7
entry ⊥ e e e e e e e
even x ⊥ ⊥ e e e > > >
x:=x div2 ⊥ ⊥ ⊥ e e e > >
x:=succ x ⊥ ⊥ ⊥ ⊥ > > > >
exit ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ > >

Figure 5: Iterative data-flow analysis

φ ∈ Proposition p ∈ PrimitiveProp Z ∈ Iden

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | 2φ | 3φ | µZ.φ | νZ.φ | Z

Let State be the states of a trace, and let ρ ∈ PEnv = Iden → P(State). Define
[[ · ]] ∈ Proposition → PEnv → P(State) as

[[p]]ρ = {s | s |= p}
[[¬p]]ρ = {s | s 6|= p}
[[φ1 ∧ φ2]]ρ = [[φ1]]ρ ∩ [[φ2]]
[[φ1 ∨ φ2]]ρ = [[φ1]]ρ ∪ [[φ2]]
[[2φ]]ρ = {s | for all s′ such that s→ s′, s′ ∈ [[φ]]ρ}
[[3φ]]ρ = {s | there exists s′ such that s→ s′ and s′ ∈ [[φ]]ρ}

[[µZ.φ]]ρ =
⋃
i≥0 Si, where

{
S0 = ∅
Si+1 = [[φ]]([Z 7→ Si]ρ)

[[νZ.φ]]ρ =
⋂
i≥0 Si, where

{
S0 = State
Si+1 = [[φ]]([Z 7→ Si]ρ)

[[Z]]ρ = ρ(Z)

Figure 6: Mu-calculus syntax and semantics

evaluation and futures of variable use. These flow analyses must calculate representations of
the paths, namely, sets of available expressions and sets of live variables. In this fashion, a
representation of a second-order collecting semantics is calculated. Second-order data-flow
analyses are intimately related to model checking, which we now examine.

2.11 Application: Model Checking

Model checking is a technique for validating properties of paths in a program’s trace [7, 17,
38]. The technique is used primarily to validate safety and liveness properties of circuits
and protocols, but it is applicable to validating finite-state traces of programs, which can
be obtained by a.i. [8, 17].

Properties are stated in a logic, L, of which CTL* [7] and mu-calculus [65] are commonly
used; we employ the latter. Figure 6 defines the syntax and semantics of the mu-calculus.
The two modal operators are central: 2φ holds true at a state, s, in a trace, written s |= 2φ,
if all one-step transitions from s go to states, s′ such that s′ |= φ. Similarly, s |= 3φ if
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there exists a transition from s to a successor state, s′, such that s′ |= φ. Properties that
span paths longer than one transition are conveniently coded by the recursion operators, µ
and ν; to state that φ holds true for every state in every path (including the infinite ones)
from the current state, one writes νZ.φ∧2Z, and to assert that φ must hold true at a state
located some finite distance from the current one, one writes µZ.φ ∨3Z.

The trace in Figure 2 can be model checked for simple path properties—for example,
one can verify that all paths from the trace’s root must include the command x:=succ x

by checking the proposition µZ.(pp = x := succ x)∨2Z, where pp denotes the value of the
program point at a state in the trace. One can check if a state may lead to termination
via µZ.(pp = exit) ∨ 3Z, and this proposition appears to be true for the root, but this
is unsound: because an a.i. adds extra execution paths, it might add one that leads to an
exit, where no such path exists in the corresponding c.i. (Consider the c.i. for the example
program with input 2.)

It is easy to prove that model checking upon a safe a.i. is (weakly) consistent when the
3 operator is removed from the calculus; call the result the box-mu-calculus. Dually, the
diamond-mu-calculus can be used to model check a proved-live a.i.

Here, the collecting semantics of a safe a.i. are those propositions in the box-mu-calculus
that hold for the root of the trace. The collecting semantics is fundamentally second-order.

Finally, it is striking that second-order data-flow analyses can be encoded as propositions
in the mu-calculus [19, 63, 64]; the propositions are model checked on an a.i. where AbsVal =
{•} and c safeV al • holds for all c ∈ Val—of course, this is exactly the program’s control
flow graph. When the nodes of the control flow graph are annotated with local information
(gen-, and kill-sets), the model check effectively propagates the local information through
the nodes of the graph, like a data-flow analysis does.

For example, the flow equations for very busy expressions analysis [37] have format

V BEpp = UsedInpp ∪ (NotModpp ∩ (
⋂

q∈succ pp
V BEq))

which calculates the set of expressions that must be used at some point in the future from
the entry to program point, pp. The flow equations are solved with a greatest fixed point
calculation: the initial approximation are sets of all the expressions in the program, and
iteration of the equations on the initial approximation trims the sets down to size.

The above flow equation format translates to a mu-calculus proposition that asks
whether a specific expression, e, is very busy at a state:

isV BEe = νZ.IsUsede ∨ (¬IsModifiede ∧2Z)

Based on the local information, IsUsede and IsModifiede for each flowchart box, the model
checker attempts to validate the proposition for the nodes of the control flow graph—the
model checker is the “engine” for calculating data flow.7

Rather than working with the control flow graph, one can obtain higher precision model
check by working with a less trivial a.i. of the flowchart—the model checker calculates
a second-order collecting semantics of the a.i. . Clarke, Grumberg, and Long use this
technique for circuit and protocol validation [8].

7Note that the mu-calculus formula for computing live variables is coded islivex = µZ.IsUsedx ∨
(¬IsKilledx ∧ 3Z, which is an unsound proposition to check with a safe a.i. In practice, the information
gleaned from a live variable analysis is in fact used to detect dead variables, where isdeadx = ¬islivex,
which is a sound proposition to model check.
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op ∈ PrimitiveOperation
e ∈ Expression
f, x ∈ Id

e ::= op(ei)i∈1..n | if e1 e2 e3 | rec f x. e | e1 e2 | x

v ∈ Val = Nat ∪Bool ∪ Clos
〈ρ, x, f, e〉 ∈ Clos = Env × Id× Id×Expression
ρ ∈ Env = Id

fin→ Val

{ρ ` ei ⇓ vi}i∈1..n

ρ ` op(ei)i∈1..n ⇓ fopC(vi)i∈1..n

ρ ` e1 ⇓ tt ρ ` e2 ⇓ v
ρ ` if e1 e2 e3 ⇓ v

ρ ` e1 ⇓ ff ρ ` e3 ⇓ v
ρ ` if e1 e2 e3 ⇓ v

ρ ` rec f x. e ⇓ 〈ρ, f, x, e〉 ρ ` x ⇓ ρ(x)

ρ ` e1 ⇓ 〈ρ′, f ′, x′, e′〉 ρ ` e2 ⇓ v′ ρ′ ⊕ {f ′ 7→ 〈ρ′, f ′, x′, e′〉, x′ 7→ v′} ` e′ ⇓ v
ρ ` e1 e2 ⇓ v

Figure 7: Concrete big-step semantics

There is a correspondence in the other direction as well: The standard algorithm for
checking CTL (or mu-calculus without alternating fixed-point quantifiers) translates a CTL
proposition into a first-order flow equation set and solves iteratively [21].

3 Analysis of Big-Step Semantics

Flowchart models break down when higher-order procedural languages and other language
paradigms arise, and we must rely upon more modern forms of operational semantics. We
begin with big-step (natural) semantics [36, 51], where a language’s semantics is the set of
derivations generated inductively from a set of inference rule schemes. Figure 7 gives the
concrete semantics of an untyped, higher-order functional language where all user-defined
abstractions are recursive.8 Primitive operations, op, are interpreted as functions, fopC ,
on Val. User-defined abstractions are packaged into closures, which are interpreted upon
invocation.

A natural semantics is attribute grammar-like, because its inherited attributes sit to
the left of the turnstile in a sequent, and its synthesized attributes sit to the right of the
down-pointing arrow. Figure 8 shows a c.i. of a convergent program that uses two primitive
operations, even and div2, whose interpretations are given in the Figure.

Figure 9 gives the abstract semantics for an even-odd analysis for the language in Fig-
ure 7. The abstract semantics must reinterpret the primitive functions, fopA, on AbsVal,
and ideally the inference rules are modified in no other way. But problems arise with

nondeterminism: For example, if the language possessed the rules ρ ` e1 ⇓ v1
ρ ` e1 or e2 ⇓ v1

and

8The problems addressed in this section are not unique to functional languages; a while-loop language
with procedures behaves similarly [51].
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let p = (rec f x.if even x 1 f(x div2))

let ρ = {}
let cl = 〈ρ, f, x, if even x ...〉
let ρi = [f 7→ cl, x 7→ i]ρ

ρ ` p ⇓ cl

ρ ` p 5 ⇓ 1

ρ ` 5 ⇓ 5 ρ5 ` if ... ⇓ 1

ρ5 ` f(x div2) ⇓ 2ρ5 ` even x ⇓ ff

ρ5 ` f ⇓ cl ρ2 ` if ... ⇓ 1ρ5 ` x div2 ⇓ 2ρ5 ` x ⇓ 5

ρ5 ` x ⇓ 5 ρ2 ` 1 ⇓ 1ρ2 ` even x ⇓ tt

ρ2 ` x ⇓ 2fdiv2(2n) = n

feven(2n) = tt
feven(2n+ 1) = ff

fdiv2(2n+ 1) = n

Note:

Figure 8: Concrete interpretation of derivation

ρ ` e2 ⇓ v2
ρ ` e1 or e2 ⇓ v2

, then a c.i. for e1 or e2 would use just one of the rules, but a safe a.i.

must employ both. This suggests that the a.i. should be a set of derivations, but it is tra-
ditional to encode the set into a single, nondeterministic, derivation tree. Working with a
single tree forces us to join the synthesized attributes, v1 and v2, in effect generating a new

rule scheme for the a.i. :
ρ ` e1 ⇓ v1 ρ ` e1 ⇓ v1
ρ ` e1 or e2 ⇓ v1 t v2

. This issue arises again with if: when

its test, e1, cannot be resolved to tt or ff (we momentarily use > to denote this situation),
then both e2 and e3 must be interpreted and their values joined.9

Figure 10 displays the a.i. of the example program. It is an infinite (but regular)
derivation tree, which is problematic, because the standard, inductive interpretation of
natural semantics prohibits infinite derivations—we must interpret the abstract semantics
coinductively. Also, the synthesized attribute, a, for the repeated state, ρ> ` if... ⇓ a, is
unresolved. The equality a = ota must be satisfied, which suggests that the approximation
ordering on AbsVal be used to calculate the least such a that satisfies the equation. More
precisely, we desire the least derivation tree that satisfies the regular tree schema. We tackle
these issues in turn.

3.1 Safety Properties of Finite and Infinite Derivations

For the moment, we backtrack and assume that both concrete and abstract semantics are
defined inductively. Thus, for a universe, U , of finitely-branching trees, the set of well-
formed derivation trees derived from a set of inference rules, R, is the least set satisfying

9This raises the issue of the approximation ordering on AbsVal. The definitions of the four sets in
Figure 9 are well founded, so the sets can be defined as the smallest ones that satisfy the equations. The
approximation ordering is defined in the obvious way: AbsNat is defined discretely; AbsVal is the (disjoint)
union of its three components, where the orderings of the components are preserved, plus the extra element,
>, such that a v >, for all a ∈ AbsVal; the ordering on AbsEnv is pointwise; and AbsClos’s ordering is
defined componentwise (Id and Expr are ordered discretely).
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v ∈ AbsVal = (AbsNat ∪Bool ∪AbsClos)>
such that v v >, for all v ∈ AbsVal

n ∈ AbsNat = {e, o}
〈ρ, x, f, e〉 ∈ Clos = AbsEnv × Id× Id×Expression
ρ ∈ AbsEnv = Id

fin→ AbsVal

Semantics rules for if, rec, (e1 e2), and x carry over from Figure 7. Replace the rule
for op and add one rule for if as follows:

{ρ ` ei ⇓ vi}i∈1..n

ρ ` op(ei)i∈1..n ⇓ fopA(vi)i∈1..n

ρ ` e1 ⇓ > ρ ` e2 ⇓ v2 ρ ` e3 ⇓ v3

ρ ` if e1 e2 e3 ⇓ v2 t v3

Figure 9: Abstract big-step semantics

the predicate wftreeR ⊆ U :

wftreeR(t) iff there exists s1, · · · , sn
root(t)

∈ R, n ≥ 0,

and for all child subtrees, ti, i ∈ 1 . . . n, of t, root(ti) = si and wftreeR(ti)

For simplicity, R is a set of rules, rather than rule schemes.
As before, a safety relation must be defined to relate the concrete and abstract intepre-

tations, and we begin with the safety relation for the value sets, which is defined for the
example as

• v safeV al >, for all v ∈ Val;

• 2n safeV al e and 2n+ 1 safeV al o, for n ≥ 0;

• tt safeV al tt and ff safeV al ff;

• 〈ρC , f, x, e〉 safeV al 〈ρA, f, x, e〉 iff ρC safeEnv ρA;

• ρC safeEnv ρA iff domain(ρC) = domain(ρA) and for all i ∈
domain(ρC), ρC(i) safeV al ρA(i)

Note that safeV al is U-closed, which is required. Of course, the relational homomorphism
property must hold for corresponding operations fC and fA: if ci safeV al ai, for all i ∈ 1..n,
then fC(ci)i∈1..n safeV al fA(ai)i∈1..n.

The safety relation on sequents is ρC ` e ⇓ c safeSeq ρA ` e ⇓ a iff ρC safeEnv ρA and
c safeV al a. As before, a c.i. , tC , is safely simulated by an a.i. , tA, if tC safeTree tA holds,
where safeTree is the least relation such that tC safeTree tA iff root(tC) safeSeq root(tA) and
for every child subtree ti of tA, there exists a child subtree tj of tA such that ti safeTree tj.

10

The intuition is that every computation path in tC is safely approximated by some path in
tA.

We desire the general result that for every source language program, p, concrete environ-
ment, ρC , and abstract environment, ρA, ρC safeEnv ρA implies that for every tC ∈ wftreeC

10Note that j need not equal i, e.g., consider the c.i. and a.i. for if e1 e2 e3.
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ρ ` p ⇓ cl

let p = (rec f x.if even x 1 f(x div2))

let ρ = {}
let cl = 〈ρ, f, x, if even x ...〉
let ρi = [f 7→ cl, x 7→ i]ρ in

ρ ` 5 ⇓ o

ρ ` p 5 ⇓ o t a

ρo ` even x ⇓ ff ρo ` f(x div2) ⇓ o t a

ρo ` if ... ⇓ o t a

ρo ` f ⇓ cl ρo ` x div2 ⇓ >

ρ> ` if ... ⇓ o t a = a

ρ> ` even x ⇓ > ρ> ` 1 ⇓ o ρ> ` f(x div2) ⇓ a

ρ> ` x div2 ⇓ >ρ> ` f ⇓ cl

Note:

feven(e) = tt
feven(o) = ff
feven(>) = >
fdiv2(v) = >

for all v ∈ AbsVal ρ> ` if ... ⇓ a
...

Figure 10: Abstraction interpretation of derivation

such that root(tC) = ρC ` p ⇓ c, for every tA ∈ wftreeA such that root(tA) = ρA ` p ⇓ a,
it is the case that tC safeTree tA. The proof comes easily by induction on the height of the
concrete derivation tree; see [26, 51] for example proofs in this style.

3.2 Infinite Abstract Derivations

We desire that every program with a c.i. also possess an a.i. , and Figure 10 makes clear
that infinite abstract derivations are necessary. This implies that the abstract semantics
rule set, A, defines by coinduction wftreeA, which includes infinite well-formed derivations.
Unfortunately, because of the synthesized attributes in the sequents, the coinductively de-
fined set also includes multiple derivations for a program, p, and its initial ρA—an example
appears in Figure 10, where fixing a = o yields a well-formed infinite derivation, as does
setting a = >. For best precision one desires the least tree, which means one must partially
order the set of derivation trees.11

The infinite trees do not impact safety: although the predicate safeTree is defined
coinductively, the safety proof proceeds again by induction on the height of the concrete
tree, which remains finite. This works because any infinite paths in the abstract tree explore
divergent computations that do not arise in the concrete tree.

3.3 Infinite Concrete Derivations

An inductive definition of the concrete semantics means that divergent programs cannot be
studied. The obvious remedy is to use a coinductive interpretation, but the price one pays is

11This requires that the inference rules are monotone with respect to the ordering.
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{ρ ` ej ⇓ vj}j∈1..k−1 ρ ` ek ⇑, for some k ≤ n
ρ ` op(ei)i∈1..n ⇑

ρ ` e1 ⇑
ρ ` if e1 e2 e3 ⇑

ρ ` e1 ⇓ tt ρ ` e2 ⇑
ρ ` if e1 e2 e3 ⇑

ρ ` e1 ⇓ ff ρ ` e3 ⇑
ρ ` if e1 e2 e3 ⇑

ρ ` e1 ⇑
ρ ` e1 e2 ⇑

ρ ` e1 ⇓ 〈ρ′, f ′, x′, e′〉 ρ ` e2 ⇑
ρ ` e1 e2 ⇑

ρ ` e1 ⇓ 〈ρ′, f ′, x′, e′〉 ρ ` e2 ⇓ v′ ρ′ ⊕ {f ′ 7→ 〈ρ′, f ′, x′, e′〉, x′ 7→ v′} ` e′ ⇑
ρ ` e1 e2 ⇑

Figure 11: Negative big-step inference rules

that a divergent program, p, and initial environment, ρC , might have multiple, well-formed,

infinite derivations; a simple example comes from the rule,
ρ ` loop ⇓ v
ρ ` loop ⇓ v , which generates

a family of distinct, well-formed infinite trees with roots of the form, ρC ` loop ⇓ v, for all
v ∈ Val. We would desire the least such tree, whose root is (apparently) ρC ` loop ⇓ ⊥,
and indeed this approach can be formalized with the usual least fixed-point theory [58]. But
the nonleast trees remain and they complicate the safety proofs. For this reason, we pursue
an approach suggested by P. Cousot based on G∞-SOS [14] where there are two forms
of inference rules, positive ones and negative ones: (i) the existing inference rules are the
positive rules, and they generate finite, convergent derivation trees; (ii) new inference rules,
the negative rules, are written specifically for divergent computation and are interpreted
coinductively.

To formalize this, say that a sequent, ρ ` e ⇓ v, for v ∈ Val, is positive; next, introduce
a new sequent form, ρ ` e ⇑, representing divergence, and say that it is negative.

The concrete semantics has two rule sets:

• R+, the positive rules, which are inference rules of the form s1 · · · sn
s0

, where all se-
quents, si, i ∈ 0..n, are positive;

• R−, the negative rules, which are inference rules of the form s1 · · · sn
s0

, where s0 is
negative.

For the example, the positive rules are exactly the ones in Figure 7; Figure 11 shows the
negative rules. For example, the first rule in Figure 11 states, if convergent derivations exist
for arguments, ei, i ∈ 1..k − 1, but ek is divergent, then so is op(ei)i∈1..n.

The positive rules define the set of positive trees:

wftree+
C(t) iff there exists

s1, · · · , sn
root(t)

∈ R+ and for all child subtrees,

ti, i ∈ 1 . . . n, of t, root(ti) = si and wftree+
C (ti)

Take the inductive interpretation of this predicate. Next, define the negative trees by

wftree−C(t) iff there exists
s1, · · · , sn
root(t)

∈ R− and for all child subtrees,

ti, i ∈ 1 . . . n, of t, root(ti) = si and (wftree+
C (ti) or wftree−C (ti))
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Take the coinductive interpretation of this predicate. The set of well-formed derivation
trees is wftreeC = wftree+

C ∪ wftree−C . It is trivially true that wftree+
C ∩ wftree−C = {}.

The safety proof requires an extension to the definition of safeSeq :

• (ρC ` e ⇓ c) safeSeq (ρA ` e ⇓ a) iff ρC safeEnv ρA and c safeV alue a

• (ρC ` e ⇑) safeSeq (ρA ` e ⇓ a) iff ρC safeEnv ρA

The definition of safeTree remains as before: safeTree = gfp F , where F (S) =
{(tC , tA) | root(tC) safeSeq root(tA) and for every child subtree ti of tC , there ex-
ists a child subtree tj of tA such that (ti, tj) ∈ S}. As before, the goal is that every
concrete derivation starting from ρC , e is safely approximated by every abstract deriva-
tion starting from ρA, e. This follows from the proof that S0 ⊆ F (S0), where S0 =
{(t, t′) | t ∈ wftreeC , t

′ ∈ wftreeA, root(t
′) = ρA ` e ⇓ a, and ((root(t) = ρC ` e ⇓

c, ρC safeEnv ρA, c safeV al a) or (root(t) = ρC ` e ⇑, ρC safeEnv ρA))}.
The proof goes as follows: Consider a pair, (t, t′) ∈ S0; If t ∈ wftree+

C , then we ap-
peal to the earlier safety result for finite trees. If t ∈ wftree−C , then we must prove: (i)
root(t) safeSeq root(t

′)—since root(t) is a negative sequent, this is immediate from the defi-
nition of S0; (ii) for every child subtree, ti of t, there is some child subtree, tj , of t′, such that
(ti, t

′
j) ∈ S0. This property must be verified explicitly by inspection of the inference rules

used to derive t and t′, respectively; for our example language, we consider one example
case: Say that the root of t is derived by this rule for divergent function application:

ρ ` e1 ⇓ 〈ρ′, f ′, x′, e′〉 ρ ` e2 ⇓ v′ ρ′ ⊕ {f ′ 7→ 〈ρ′, f ′, x′, e′〉, x′ 7→ v′} ` e′ ⇑
ρ ` e1 e2 ⇑

. Consider subtree, t1, whose root is ρC ` e1 ⇓ 〈ρ′C , f ′, x′, e′〉. This is a posi-
tive sequent, so we appeal to the safety result for finite concrete trees to verify that
t′1 must be a subtree whose root is ρA ` e1 ⇓ 〈ρ′A, f ′, x′, e′〉, where ρ′C safeEnv ρ′A.
Hence, (t1, t

′
1) ∈ S0. Similarly, root(t2) = ρC ` e2 ⇓ c′, a finite tree, implying that

root(t′2) = ρA ` e2 ⇓ a′, c′ safeV al a′, and therefore (t2, t
′
2) ∈ S0. Finally, for

root(t3) = ρ′C ⊕ {f ′ 7→ 〈ρ′C , f ′, x′, e′〉, x′ 7→ c′} ` e′ ⇑, we deduce from our knowledge about
root(t′1) and root(t′2) that root(t′3) = ρ′A ⊕ {f ′ 7→ 〈ρ′A, f ′, x′, e′〉, x′ 7→ a′} ` e′ ⇓ a, for some
a ∈ AbsVal. This implies (t3, t

′
3) ∈ S0.

It is crucial to the simplicity of the proof that the negative sequents free us from reasoning
about abstract synthesized attributes, e.g., a in the very last case above (cf. [58]).

3.4 Termination

We require that an a.i. terminate, and memoization can be utilized when the AbsVal set is
infinite. Memoization proceeds as in the case of the flowcharts seen in Section 2.6: an a.i.
is generated in stages, starting from a root sequent, t0 = ρA ` p ⇓ ⊥. (The ⊥ means that
the synthesized attribute is unknown.) At stage i + 1, each leaf in ti are expanded by an
inference rule; if ρ ` e ⇓ ⊥ is a newly generated leaf, the leaf is revised to ρ t ρ′ ` e ⇓ ⊥,
where ρ′ = t{ρ′′ | ρ′′ ` e ⇓ a appears in ti}.12 This gives ti+1. The completed tree is
limi≥0ti.

12The intuition is that the tis are generated by a breadth-first Prolog interpreter executing the inference
rules.
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Memoization guarantees production of a regular tree when the AbsVal set is partially
ordered and has the finite-chain property. This follows because a natural semantics is
semicompositional,13 that is, all syntax phrases that appear within the a.i. are subphrases
of the original source program, thus there are a finite number of them.14

3.5 Application: Set-Based Analyses

The >-value and the t-operation that appear in the abstract semantics destroy precision;
we prefer to say fdiv2A(e) equals {e, o} rather than >. Worse still, the even-odd analysis of
the program (if even(m div2) (rec f x.0) (rec g y.1))n joins the closures for rec

f x.0 and rec g y.1, producing >, for which there is no inference rule for function appli-
cation. An artificial rule for function application can be invented, but it is worthwhile to
investigate set-based analyses instead [27, 34].

When working with sets, the abstract semantics rules use synthesized attributes of the
form P(AbsVal); three of the modified rules from Figure 9 are

{ρ ` ei ⇓ Si}i∈1..n

ρ ` op(ei)i∈1..n ⇓ {fopA(ai)i∈1..n | ai ∈ Si, i ∈ 1..n}

ρ ` e1 ⇓ S1 ρ ` e2 ⇓ S2
{ρi + (fi 7→ cli) + (xi 7→ vj) ` ei ⇓ Sij

| cli = 〈ρi, fi, xi, ei〉 ∈ S1, vj ∈ S2}
ρ ` e1 e2 ⇓ ∪{Sij | cli ∈ S1, vj ∈ S2}

ρ ` e1 ⇓ S1 {ρ ` ei ⇓ Si | (tt ∈ S1 ⇒ i = 2), (ff ∈ S1 ⇒ i = 3)}
ρ ` if e1 e2 e3 ⇓ ∪{Si | (tt ∈ S1 ⇒ i = 2), (ff ∈ S1 ⇒ i = 3)}

For example, the first rule states that the evaluation of each argument, ei, yields a set of val-
ues, Si; the result of op(ei) must therefore be the set of all fA(ai)i∈1..n, for all combinations
of ai ∈ Si, i ∈ 1..n.

The a.i. of the example in Figure 10 is reworked in Figure 12; the precision of the trace
increases yet safety is preserved. Notice also that the recursion, a = {o} ∪ a, can be solved
in the complete lattice P(AbsVal) (the computational ordering), giving a = {o}—there is
no need for > and no need for an approximation ordering upon AbsVal.

When sets of closures appear in an a.i. , the analysis is called a closure analysis [29,
30, 50, 53, 60, 61]. The complexity of a closure analysis is high, and a major challenge is
finding efficient, safe simulations.

To simplify notation, we represent a closure by a 〈ρ, `〉 pair, where ` is a unique “label”
of a rec phrase, ` : rec f x.e. Next, we ignore primitive values in this discussion and define

AbsVal = {•} ∪AbsClos
AbsClos = AbsEnv× Label
AbsEnv = Id

fin→ AbsVal

13This term is due to Neil Jones.
14In contrast, a substitution-based semantics might not have this property. For example, the substitution

semantics rule for function application would be
e1 ⇓ rec f x.e e2 ⇓ v [rec f x.e/f ][v/x]e ⇓ v′

e1 e2 ⇓ v′
.
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let p = (rec f x.if even x 1 f(x div2))

let ρ = {}
let cl = 〈ρ, f, x, if even x ...〉
let ρi = [f 7→ cl, x 7→ i]ρ in

ρ ` p ⇓ {cl}

ρ ` p 5 ⇓ {o} ∪ a

ρo ` even x ⇓ {ff}

ρo ` if ... ⇓ {o} ∪ a = aρ ` 5 ⇓ {o}

ρo ` f(x div2) ⇓ {o} ∪ a

ρo ` x div2 ⇓ {e, o}ρo ` f ⇓ {cl}

ρe ` if ... ⇓ {o} ρo ` if ... ⇓ a

ρe ` even x ⇓ {tt} ρ> ` 1 ⇓ {o}

Note:

feven(e) = tt
feven(o) = ff
fdiv2(e) = {e, o}
fdiv2(o) = {e, o}

Figure 12: Set-based abstract interpretation

To reduce the overhead with sets, we redefine AbsClos in an isomorphic form:

AbsVal = {•} ∪AbsClos

AbsClos = Label
fin→ P(AbsEnv)

AbsEnv = Id
fin→ AbsVal

Now, the task is finding simplifications of AbsClos. One that is related to the n-CFA
analyses proposed by Shivers [50, 61] defines AbsClos as AbsClosn, for some fixed n ≥ 0,
where

AbsClosn = Label
fin→ P(AbsEnvn)

AbsEnv0 = {•}
AbsEnvi+1 = Id

fin→ AbsVali
AbsVali = {•} ∪AbsClosi

The set AbsClosn limits the depth to n of the closures that can be produced by the analysis,
ensuring that the AbsVal set is finite. Surprisingly useful analyses can be performed for
n = 0 [60, 61], but a complication to limiting the depth of closures is that a function
application might be forced to synthesize an environment for the closure ` 7→ {•} when
the closure is applied to an argument. (Indeed, this is always the case for 0-CFA.) There
are a variety of safe methods for synthesizing the environment—a natural one examines
the derivation tree for sequents of the form ρ′ ` ` : rec f x.e ⇓ {` 7→ {•}} and joins the
respective ρ′s, thus (safely) confusing the creation sites (cf. “call sites” [62]) of the closure.

4 Small-step semantics

Flowchart semantics is an example of a small-step semantics, so called because it rewrites
a program configuration, step by step, to a final or normal form. Here, we examine the
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e ::= 0 | α.e | e1 || e2 | µp(e) | p

α.e
α→ e

e1
α→ e′1

e1 || e2
α→ e′1 || e2

e
α→ e′

µp(e)
α→ [µp(e)/p]e′

etc.

plus usual symmetric monoidal laws: 0 || e ≡ e, e1 || e2 ≡ e2 || e1, etc.

Figure 13: Subset of CCS-like language

Let P = µx(α.(β.x || x)) in

β.P || P || P

β.P || β.P || P || P

β.P || P || P

P || P || P

β.P || β.P || P P || P

β.P || P

P

α

β

α

α

α β

α β
β.P || β.P || β.P || P

.

.

.

.

.

.
.
.
.

.

.

.

Figure 14: Example of process creation

more general Plotkin-style structural operational semantics (SOS) [51, 55], where state
transitions are defined by inference rules. The techniques developed for flowchart analyses
by and large adapt, but a new problem arises because SOS definitions can generate new
program syntax on the fly—unlike flowchart semantics, arbitrary SOS derivations are not
semicompositional; this can hinder the termination of an a.i.

As an example, Figure 13 shows a CCS-like notation [41] with a small-step semantics
that spawns processes via unfolding of a recursion constructor, µ.15 Because the µ-rule
generates new program syntax, the semantics derivations will not be semicompositional.
Figure 14 displays a simple example that shows how the operational semantics of the pro-
gram µx.(α.(β.x || x)) generates new processes, that is, new program syntax. All paths in
the behavior tree are infinite, and the newly generated processes make impossible a regular
tree representation. To undertake a terminating abstract interpretation, some means must
be found to limit the dynamically generated processes.

Since there are no semantic value sets in the example to be abstractly interpreted, an
a.i. must abstract the source program syntax itself. To set the stage, we note that every
program configuration has an isomorphic representation as a bag of processes, called a
“process pool” [48, 49]. For example, the configuration β.P || β.P || P is written as the bag
{β.P, β.P, P}.

15The rule for µ in the figure unfolds a µ-process exactly once when it makes a communication step. This

differs from the rule often used:
[µp(e)/p]e

α→ e′

µp(e)
α→ e′

, which operates on closed terms only but allows unbounded

unfolding. Nonetheless, the rules generate bisimular behavior trees.
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β.P || P

P

α

α

α

α

β

(β.P )+ || P

(β.P )+ || P+

(β.P )+ || P+ (β.P )+ || P+

P+

β

(β.P )+ || P+

α β

β

(β.P )+ || P

Let P = µx(α.(β.x || x)) in

β.P || P+

α
(β.P )+ || P+ (β.P )+ || P+ P+

α

β

Figure 15: Abstract interpretation of process creation

Next, as is common to abstract-interpretation applications, assume that the subphrases
of the source program are indexed by “labels,” `i, e.g.,

P = `0:µx (`1:α.`2: (`3:β. `4:x || `5:x))

This means a process pool is just a function of the form Label → Nat, e.g., the bag above
is encoded by the function [`3 7→ 2][`0 7→ 1](λ`.0).16

Our task is to abstractly represent the process pools, which we do by defining the
abstract pools to be functions of the form Label → {0, 1, ω}. Both domain and codomain of
this function space are finite, so there exist a finite number of abstract pools. The example
above is abstracted by [`3 7→ ω][`0 7→ 1](λ`.0), and the safety relation between concrete and
abstract process pools is of course: for cp ∈ Pool, ap ∈ AbsPool,

cp safePool ap iff for all ` ∈ Label, cp(`) ≤ ap(`)

Note that parallel composition, cp1 || cp2, is bag union and its abstraction is just ap1]ap2 =
λ`.ap1(`)⊕ ap2(`), where 1⊕ 1 = ω, and m⊕ n = max{m,n} otherwise.

Figure 15 shows the abstract interpretation of the derivation in Figure 14. For simplicity,
an abstract pool is written as a regular expression, where a “+” marks a process whose
count is ω. Using this representation of the abstract pools, we see that the semantics rules
in Figure 13 can be used as the abstract semantics rules along with one new rule which
accounts for processes whose count is ω:

e
α→ e′

e+ α→ e+ || e′

Since there are a finite number of abstract pools, that is, syntax configurations, the a.i.
must be a regular tree.

Of course, the purpose of abstractly interpreting the syntax is to restore a form of semi-
compositionality. The regular expressions used here were first devised by Codish, Falaschi

16In the example, `3 labels β.x rather than β.P . The discrepency is due to the substitution semantics of
µ-process unfolding. This is tolerated for now—treat x and P as “the same”—but will be repaired in the
next section with an environment semantics.
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and Marriott as “*-abstractions” [9]. In general, one might need a context-free grammar
representation of syntax configurations to recover semicompositionality; the precedent here
is due to Giannotti and Latella [22].

4.1 Safety and Liveness Properties

Safety is stated as before: the a.i. is a simulation of the c.i. :

t safeTrace u iff root(t) safePool root(q)

and for every transition, root(t)
α−→ ti, there exists a transition,

root(u)
α−→ uj , such that ti safeTrace uj

The safety result follows from this relational homomorphic property of the semantics rules:

cp safePool ap and cp
α→ cp′ imply there exists ap′

such that ap
α→ ap′ and cp′ relPool ap′

Recall that a safe a.i. can be model checked consistently with the box-mu-calculus—any
property that holds true of the a.i. holds for the corresponding c.i. s. As before, liveness is
the dual relation: the c.i. is a simulation of the a.i. :

t liveTrace u iff root(t) livePool root(q)

and for every transition, root(u)
α−→ ui, there exists a transition,

root(t)
α−→ tj, such that tj liveTrace ui

For the example in this section, a liveness a.i. requires a different semantics than the
safety a.i. : an abstract pool must be a mapping in Label → {0, 1, . . . , n}, for some fixed
positive n. For example, for n = 2, the abstract pool representation of β.0 || β.0 || α.0 || β.0
is (β.0)2 || α.0.

The relation between concrete pools and the new abstract pools is

cp livePool ap iff for all ` ∈ Label, cp(`) ≥ ap(`)

and the abstract semantics rules are the concrete rules along with

e
α→ e′

en
α→ en−1 || e′

for n > 0, where e1 ≡ e and e0 ≡ 0

Recall that a live a.i. can be model checked consistently with the diamond-mu-calculus.
As noted by Dams [17], ideally the abstract pools for safety and liveness analyses should

be the same, because this lets one model check the full µ-calculus.

4.2 Application: Abstraction on Syntax and Semantics

Now that abstraction of syntax is understood, we consider a full-blown example, where we
must abstract upon both program syntax and input data. Our example is CCS with value
passing, where the values are channel names. The syntax is altered to read

e ::= 0 | α?x.e | α!α′.e | e1 || e2 | µp(e) | p
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c ∈ Expression-configuration p ∈ Process-identifier
e ∈ Expression ρ ∈ Environment
g ∈ Guard v ∈ Channel-expression
x ∈ Argument-identifier α ∈ Channel

c ::= ρ ` e | c1 || c2
e ::= 0 | g.e | e1 || e2 | µp(e) | p

g ::= v?x | v1!v2

v ::= α | x

ρ ::= {xi = αi} ∪ {pj 7→ ρj}
Note: assume each recursive process, µp(e), uses a unique process identifier, p.
Congruences: usual symmetric, monoidal rules (e.g., ρ ` 0 || e ≡ ρ ` e), plus:

ρ ` (e1 || e2) ≡ (ρ ` e1) || (ρ ` e2)
(x = α) ∈ ρ

ρ ` g.e ≡ ρ ` ([α/x]g).e

(p 7→ ρ) ∈ ρ′
ρ′ ` p ≡ ρ ` µp(e)

Computation rules:

ρ ` α?x.e
α?α′→ ρ⊕ {x = α′} ` e ρ ` α!α′.e

α!α′→ ρ ` e ρ ` e ∆→ ρ′ ` e′

ρ` µp(e) ∆→ ρ′ ⊕ {p 7→ ρ}` e′

c1
α?α′→ c′1 c2

α!α′→ c′2

c1 || c2 τ→ c′1 || c′2
c1

∆→ c′1

c1 || c2 ∆→ c′1 || c2

c2
∆→ c′2

c1 || c2 ∆→ c1 || c′2

Figure 16: Concrete small-step semantics of channel passing

where α?x.e inputs a value on channel α and binds it to identifier x within scope e, and
α!α′.e outputs channel α′ on channel α and proceeds with e. The relevant semantics rules
are

α?x.e
α?α′→ [α′/x]e α!α′.e

α!α′→ e
e1

α?α′→ e′1 e2
α!α′→ e′2

e1 || e2
τ→ e′1 || e′2

where τ represents an internal step, a “tau move.”
This semantics defines argument transmission via substitution, but substitutions gen-

erate new program syntax, which hampers an abstract interpretation. For this reason, we
revise the semantics into an environment semantics: each process, e, owns a local environ-
ment, ρ, that holds bindings of identifiers to channels, and we write a process configuration
as ρ ` e. Although it is not essential, we eliminate the substitution semantics for µp(e) by
saving a “closure” of µp(e) in the environment of the unfolded process, e. Figure 16 shows
the modifications.

To simplify matters, we assume that argument identifiers are distinct from process
indentifiers; also, assume that each recursive process, µp(e), uses a unique process identifier,
p. Environments hold bindings of argument identifiers to channels, xi = αi, and bindings
of process identifiers to “closures,” pj 7→ ρj .

The computation rules are kept simple by employing the usual symmetric, monoidal
congruences plus three more: the first additional congruence explains how an environment
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τ(α!β)τ(α!α)

∅ ` α!α.0 || ∅ ` α!β.0 || ∅ ` P

∅ ` α!β.0 || ρα ` x!x.0 || ρα ` p
τ(α!α)

≡ ∅ ` α!β.0 || ρα ` α!α.0 || ∅ ` P
ρα ` α!α.0 || ρβ ` x!x.0 || ρβ ` p
≡ ρα ` α!α.0 || ρβ ` β!β.0 || ∅ ` P

(dual to left subtree)

Let P = µp(α?x.(x!x.0 || p)) and ρa = {x = a, p 7→ ∅} in

τ(α!β)

ρβ ` β!β.0 || ρα ` x!x.0 || ρα ` p
≡ ρβ ` β!β.0 || ρα ` α!α.0 || ∅ ` P

τ(α!α)τ(α!α) τ(α!β)

∅ ` α!β.0 || ρα ` x!x.0 || ρα ` p
≡ ∅ ` α!β.0 || ρα ` α!α.0 || ∅ ` P

τ(α!α)

.

.

.

.

.

.

.

.

.

Figure 17: Concrete interpretation of channel passing

is copied to component processes of a system; the second shows how identifier lookup in
the environment is employed; and the third describes recursive process unfolding. The
computation rules are as expected; the only novel rule is the one for recursive processes:
it creates a closure, p 7→ ρ, when the recursively defined process, ρ ` µp(e), is evaluated.
Figure 17 displays an example c.i.

Now, a program’s process pool representation is a bag of (environment,process) pairs.
Assuming that processes are labelled, a process pool is concisely depicted as a function of
form Label → Bag(Environment), where Environment = (ArgumentId → Channel)×
(ProcessId → Environment).17

A manageable abstract semantics defines an abstract pool to be a function of the
form Label → AbsEnv × {0, 1, ω}, where AbsEnv = (ArgumentId → P(Channel)) ×
(ProcessId→ AbsEnv). That is, an abstract environment associates an argument identifier
with a set of possible channels that the identifier might denote.

The safety relation between concrete and abstract process pools becomes

cp safePool ap iff for all ` ∈ Label, |cp(`)| ≤ ap(`) ↓ 2
and for all ρ ∈ cp(`), ρ safeEnv ap(`) ↓ 1

where concrete and abstract environments are related as follows:

({xi = αi}, {pj 7→ ρj}) safeEnv ({xi = Si}, {pj 7→ ρ′j})
iff (i) for all xi, αi ∈ Si, and (ii) for all pj, ρj safeEnv ρ

′
j

Based on the above definitions, it is easy to see, for example, that for concrete pool
{x = α} ` x!x.0 || {x = β} ` x!x.0 || ∅ ` α?y.0 the abstract pool that best describes it is
{x = {α, β}} ` (x!x.0)+ || ∅ ` α?y.0.

17We work only with well-founded, that is, inductively defined, environments.
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As in the previous section, a new computation rule is needed for the abstract pools:

ρ ` e ∆→ ρ′ ` e′

ρ ` e+ ∆→ ρ ` e+ || ρ′ ` e′

The abstract semantics rules are complicated by the sets of channels: If we use the
congruence rule in Figure 16 to define substitution in the abstract semantics, then a set of
channels is substituted for a channel identifier, e.g., {x = {α, β}} ` x!x.0 ≡ {x = {α, β}} `
{α, β}!{α, β}.0. This implies that we should use the following safe, simple, but inexact
abstract rules for communication:

ρ ` S?x.e
α?S′→ ρ⊕ {x = S′} ` e for α ∈ S ρ ` S!S′.e

α!S′→ ρ ` e for α ∈ S
The entire set of channels, S′, is transmitted along any α ∈ S. This is a form of “independent
attribute” analysis of channel flow [33].

In contrast, a “relational analysis” would keep distinct the channels in S; we can for-
malize this idea with the following congruence rule:

(x = S) ∈ ρ
ρ ` g.e ≡

∑
α∈S

ρ ` ([α/x]g).e

The substitution of the elements of a set, S, into g.e generates not one but a set
of new abstract processes to choose from. For example, {x = {α, β}} ` x!x.0 ≡
({x = {α, β}} ` α!α.0) + ({x = {α, β}} ` β!β.0).18 But more importantly, we have, if
(x = S) ∈ ρ, then ρ ` (g.e)+ is bisimilar to ||α∈S ρ ` (([α/x]g).e)+ . This result en-
sures that a process configuration can be understood still as a process pool. Of course,
the price paid for the extra precision of the relational analysis is a slower convergence of
construction of the regular tree.

Figure 18 shows the regular tree that results from the relational analysis of the program
in Figure 17. The interesting stages in the analysis are lettered (a)-(f). The transition
into node (a), that is, the transmission of α!β, generates the configuration ρα ` x!x.0 ||
ρβ ` x!x.0 || ρβ ` p, which has as its abstract representation node (a). The equivalence for
process identifier lookup gives node (b); and the equivalence for argument identifier lookup
gives (c), which is parenthesized to emphasize that node (c) is not actually generated—the
analysis does not generate new source program syntax. (As just stated, ρ{α,β} ` (x!x.0)+

is bisimilar to ρ{α,β} ` (α!α.0)+ || ρ{α,β} ` (β!β.0)+.) The next transition, caused by α!α,
generates node (d), which is a syntax configuration that appeared earlier at (a); so, node
(e) is a result of the memoization process, which joins the respective environments of (a)
and (d). The substitution for p uncovers node (f), which is a repetition of (b).

5 Conclusion

The examples in this paper demonstrate that the principles of abstract interpretation apply
simply and uniformly to the members of the operational semantics hierarchy. In particular,
the trace-based representations of concrete and abstract interpretations make clear that
not only does a.i. apply uniformly across the hierarchy but there exist close connections
between a.i. and methodologies for flow analysis, liveness validation, and model checking.
Unifying these areas within a general framework must be the next challenge.

18The infix “+” operator is external choice, and the usual computation rules for it would be required. We
will not develop this concept further in this paper.
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ρ{α,β} ` (x!x.0)+ || ρβ ` p
τ(α!β)

(≡ ∅ ` α!β.0 || ρα ` α!α.0 || ∅ ` P )

≡ ρ{α,β} ` (x!x.0)+ || ∅ ` P

τ(α!α)

ρ{α,β} ` (x!x.0)+ || ρα ` p
ρ{α,β} ` (x!x.0)+ || ρ{α,β} ` p
≡ ρ{α,β} ` (x!x.0)+ || ∅ ` P

(a)

τ(α!α)

∅ ` α!β.0 || ρα ` x!x.0 || ρα ` p
(b)

(c)

(d)

(e)

(f)

Let P = µp(α?x.(x!x.0 || p)) and ρS = {x = S, p 7→ ∅} in

∅ ` α!α.0 || ∅ ` α!β.0 || ∅ ` P

τ(α!α) τ(α!β)

∅ ` α!β.0 || ρα ` x!x.0 || ρα ` p (dual to left subtree)

≡ ∅ ` α!β.0 || ρα ` x!x.0 || ∅ ` P

(≡ ρ{α,β} ` (α!α.0)+ || ρ{α,β} ` (β!β.0)+ || ∅ ` P )

Figure 18: Abstract interpretation of channel passing

6 Acknowledgements

Mitchell Wand studied an earlier draft of this paper and made many useful suggestions. Helpful
comments and assistance were provided by Ed Clarke, Radhia and Patrick Cousot, Chris Hankin,
Daniel Jackson, Thomas Jensen, Daniel LeMetayer, Flemming and Hanne Nielson, Frank Pfenning,
David Sands, and Andrew Wright.

References

[1] S. Abramsky and C. Hankin, editors. Abstract interpretation of declarative languages. Ellis
Horwood, Chichester, 1987.

[2] P. Aczel. Non-Well-Founded Sets. Lecture Notes 14, Center for Study of Language and Infor-
mation, Stanford, CA, 1988.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison
Wesley, 1986.

[4] A. Aiken and N. Heintze. Constraint-based program analysis. Technical Report
http://http.cs.berkeley.edu/~aiken/popl95.ps, Tutorial talk at 22nd ACM Symp. Prin-
ciples of Programming Languages, 1995.

[5] A. Aiken, E. Wimmers, and T.K. Lakshman. Soft typing with conditional types. In 21st ACM
Symp. on Principles of Programming Languages, Portland, Oregon, 1994.

[6] G. L. Burn, C. Hankin, and S. Abramsky. Strictness analysis for higher-order functions. Science
of Computer Programming, 7:249–278, 1986.

[7] E.M. Clarke, O. Grumberg, and D.E. Long. Verification tools for finite-state concurrent systems.
In J.W. deBakker, W.-P. deRoever, and G. Rozenberg, editors, A Decade of Concurrency:
Reflections and Perspectives, number 803 in Lecture Notes in Computer Science, pages 124–
175. Springer, 1993.

29



[8] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction. ACM Transactions
on Programming Languages and Systems, 16(5):1512–1542, 1994.

[9] M. Codish, M. Falaschi, and K. Marriott. Suspension analysis for concurrent logic programs.
In Proc. 8th Int’l. Conf. on Logic Programming, pages 331–345. MIT Press, 1991.

[10] C. Consel and S.C. Khoo. Parameterized partial evaluation. ACM Trans. Prog. Lang. and Sys.,
15(3):463–493, 1993.

[11] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs. In Proc. 4th ACM Symp. on Principles of Programming Languages, pages 238–252.
ACM Press, 1977.

[12] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. 6th
ACM Symp. on Principles of Programming Languages, pages 269–282. ACM Press, 1979.

[13] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic and Computa-
tion, 2(4):511–547, 1992.

[14] P. Cousot and R. Cousot. Inductive definitions, semantics, and abstract interpretation. In Proc.
19th ACM Symp. on Principles of Programming Languages, pages 83–94. ACM Press, 1992.

[15] P. Cousot and R. Cousot. Higher-order abstract interpretation. In Proc. IEEE Int’l. Conf.
Programming Languages. IEEE Press, 1994.
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