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COMPOSITIONAL SAFETY LOGICS

J.H. Andersen and K.G. Larsen
BRICS, Aalborg University, Denmark

June 17, 1997

In this paper we present a generalisation of a promising composi-
tional model–checking technique introduced for finite–state sys-
tems by Andersen in [And95] and extended to networks of timed
automata by Larsen et al in [LPY95a, LL95, LPY95b, KLL+97a].
In our generalized setting, programs are modelled as arbitrary
(possibly infinite–state) transition systems and verified with re-
spect to properties of a basic safety logic. As the fundamental
prerequisite of the compositional technique, it is shown how log-
ical properties of a parallel program may be transformed into
necessary and sufficient properties of components of the pro-
gram. Finally, a set of axiomatic laws are provided useful for
simplifying formulae and complete with respect to validity and
unsatisfiability.

1 Introduction

It is well–known that the major problem in applying automatic verification
techniques to analyze concurrent systems is the potential combinatorial ex-
plosion of the state space arising from parallel composition. During the
last decade, various techniques have been developed to avoid this explosion
problem, either by symbolic representation of the state space using BDD
[BCM+90, GW91], by application of partial order methods [GW91, Val90]
which suppresses unnecessary interleavings of transitions, or by application
of abstractions and symmetries [BCM+90, CFJ93, CGL92].

A recently introduced [And95] and very promising technique is a com-
positional technique, which avoids global state–space construction and –
exploration by gradually moving components of a concurrent system from
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the system description into the specification. Consider the following verifi-
cation problem

(P1 | . . . |Pn) |= ϕ (1.1)

where (P1 | . . . |Pn) is the concurrent system to be verified and ϕ is a for-
mula specifying a desired property. The compositional technique allows a
component (Pn say) to be removed from the network and instead added
to the specification ϕ. This results in a quotient formula ϕ/Pn expressing
the sufficient and necessary property of (P1 | . . . |Pn−1) in order that (1.1)
holds. That is, the original verification problem reduces to

(P1 | . . . |Pn−1) |= ϕ/Pn (1.2)

Now repeating this process of quotienting iteratively yields equivalent verifi-
cation problems with decreasing numbers of components and hence decreas-
ing state–space sizes. However, this idea alone is clearly not enough to solve
the explosion–problem as the explosion may now show up as an exponential
growth in the sizes of the quotient formulas instead. The crucial observation
in [And95] is that each quotienting should be followed by a minimization of
the formula based on a small collection of efficiently implementable strate-
gies.

The three parameters to the compositional method are the following: 1)
the components Pi and their semantic modelling; 2) the notion of parallel
composition, and 3) the logic for specifying properties. In order for the com-
positional method to be applicable the combination of the three parameters
must obviously satisfy the following two criteria:

1. The logic must be expressive enough that the quotient formulas can
be expressed.

2. There must be heuristics for simplifying formulas of the logic.

In [And95] the compositional method is developed for a setting of finite–state
systems with parallel composition being that of CCS [Mil89]. As specifica-
tion formalism is used the modal µ-calculus [Koz82]. Using a prototype
implementation experimental evidence is given that the technique may im-
prove results obtained using BDDs.

In [LPY95a, LL95, LPY95b] the compositional method has been extended
to deal with real–time systems modelled as networks of timed automata
[AD90, AD92], with a real–time version of the modal µ–calculus [LLW95]

2



used as specification formalism. In [KLL+97b] the real–time extension of
the technique is applied to the verification of a mutual exclusion protocol;
experimental results obtained using a tool implementation of the method
gives further evidence of the potential of technique.

In this paper we show how to satisfy the basic requirements of the composi-
tional method in a generalized setting, where the components are modelled
as arbitrary (possibly infinite–state) transition systems The notion of par-
allel composition is that of interleaving, and as specification formalism is
considered a minimal safety logic.

To meet the two criteria of the compositional method, the safety logic is
extended in a minimal way to be closed with respect to quotienting. Pos-
sible strategies for simplifying formulas are suggested by a set of axiomatic
laws for formula equivalence. The laws are shown complete with respect to
validity and unsatisfiability of formulas.

The paper is organized as follows: In the next section we describe our general
setting for modelling parallel programs. For this setting we introduce in
Section 3 a minimal modal for expressing safety properties. A necessary
extension of this logic allowing for quotienting is then provided in Section 4.
In Section 5 we present an axiomatization allowing formulae to be simplified
and being complete with respect to validity and unsatisfiability. Finally,
we apply the quotient construction and the provided axiomatization to the
verification of a (simple) shared variable program in Section 6.
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

P1
∆
=

loop1 : if x ≥MAX

then goto exit1

else x := x+ 1;
goto loop1

exit1 :


|



P2
∆
=

loop2 : if x = 0
then goto exit2

else x := x− 1;
goto loop2

exit2 :


Figure 1: A parallel counter.

2 Programs and Transition Systems

Component programs as well as their composition are modelled as arbitrary
transition systems.

Definition 1 (Transition system)A transition system is a tuple 〈S, s0,Σ〉
where: S is a set of states, s0 ∈ S is a start state and Σ ⊂ S×S is a transition
relation. 3

Parallel composition is equally general: given two transition systems T1 =
〈S, s0,Σ1〉 and T2 = 〈S, s0,Σ2〉 over the same set of states and with the same
start state we define the composition of T1 and T2 as the transition system
T = T1 | T2 = 〈S, s0,Σ1 ∪ Σ2〉. That is we model parallel composition as
pure interleaving.

In typical applications, the state–space S of a composition of programs P =
P1 | · · · |Pn over a shared data–domain D will be described as the product of
the local state-spaces Si of the individual programs and D, that is S = S1×
· · ·×Sn×D. To ensure that Si acts as a local state–space for the component
Pi, one may impose the following constraint on the transition relation Σi

modelling the behaviour of Pi: whenever (〈s1, . . . , sn, d〉, 〈s′1, . . . , s′n, d′〉) ∈
Σi then sj = s′j for all j 6= i. Thus, transitions of Pi may depend on the
global state but can only effect the local state of Pi and the shared data.

Example 1 [Parallel counter] Consider the program of Figure 1. Both
component programs P1 and P2 have two local control–states. In the loop

state P1 repeatedly increments the value of the shared variable x until it
reaches the value MAX, at which point P1 goes to the terminating exit
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control state. Dually, in the loop control state, P2 repeatedly decrements
x unless it has reached the value 0, at which point P2 goes to the termi-
nating exit control state. In the interleaved parallel composition of P1

and P2, the value of x will in most states be incremented or decremented
non–deterministically. Thus, the termination properties of the combined
program is less obvious than those of the component programs. Formally,
we describe P1 and P2 in terms of transition systems:

Ti = 〈S1 × S2 × N, 〈loop1, loop2, 0〉,Σi〉, i ∈ {1, 2}

where Si = {loopi, exiti} and:

Σ1 =
{

(〈loop1, l2, n〉, 〈loop1, l2, n+ 1〉) | n < MAX and l2 ∈ S2

}
∪{

(〈loop1, l2, n〉, 〈exit1, l2, n〉) | n ≥MAX and l2 ∈ S2

}
Σ2 =

{
(〈l1, loop2, n〉, 〈l1, loop2, n− 1〉) | n > 0 and l1 ∈ S1

}
∪{

(〈l1, loop2, n〉, 〈l1,exit2, n〉) | n ≤ 0 and l1 ∈ S1

}
The composition of P1 and P2 is then described by the transition system:

T = 〈S1 × S2 ×N, 〈loop1, loop2, 0〉,Σ1 ∪ Σ2〉

3

3 Safety Logic

We first introduce a minimal modal logic, Lsafe
S , for expressing safety prop-

erties of programs over a given set of states S. Formulae in Lsafe
S are given

by the following BNF:

ϕ ::= B
∣∣∣ ϕ ∧ ϕ ∣∣∣ 2ϕ ∣∣∣ X

where B ⊆ S is a condition over a set of states and X is a formula identifier
of a finite set of identifiers Id. X is declared by some declaration D ∈ Id→
Lsafe
S . Note that Lsafe

S is parameterized with the set of states over which
conditions are expressed.

A formula ϕ of Lsafe
S is interpreted with respect to a declaration and a

transition relation in the following obvious sense:
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Definition 2 Let S be a set of states and Σ ⊆ S × S a transition relation
over S. Let D ∈ Id→ Lsafe

S be a declaration. The satisfaction relation |=D,Σ
is the maximal relation satisfying the following set of implications:

s |=D,Σ ϕ ∧ ψ ⇒ s |=D,Σ ϕ and s |=D,Σ ψ
s |=D,Σ 2ϕ ⇒ whenever (s, s′) ∈ Σ then s′ |=D,Σ ϕ
s |=D,Σ B ⇒ s ∈ B
s |=D,Σ X ⇒ s |=D,Σ D(X)

3

Any relation satisfying the above implications is a satisfiability relation. It
follows from standard fixpoint theory [Tar55] that |=D,Σ is the union of all
satisfiability relations and that the above implications are biimplications for
|=D,Σ.

Example 2 Continuing Example 1, we may wonder whether there are
executions of P1 |P2 in which P2 will terminate. Let ¬exit2 denote the set
of all states 〈l1, l2, n〉 where l2 6= exit2. Then the property that no execution
will bring P2 to termination may be expressed as follows 1

X
∆
= ¬exit2 ∧ 2X

3

4 Quotienting and LS
Now let P1 and P2 be component programs modelled as transition relations
Σ1 and Σ2 over some common global state space S. Verification problems
for P1 |P2 then becomes assertions of the form s |=D,Σ1∪Σ2

ϕ.

To meet the requirements of the compositional method, we are required to
describe a technique for moving parts of Σ1 ∪Σ2 (say Σ2 which corresponds
to the component P2) into ϕ. More precisely, we offer a construction for
quotienting a formula ϕ with respect to a transition relation Σ2 such that:

s |=D,Σ1∪Σ2
ϕ iff s |=D,Σ1

ϕ/Σ2

1Clearly P1 |P2 does not satisfy this property and later (in Section 6) we shall provide
a proof of this fact using the compositional proof technique.
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In order to express quotient formulae we extend Lsafe
S with a new construc-

tion ∆ � ϕ, where ∆ ⊆ S × S (the so–called step–operator). Formulae
of the resulting extended logic, simply called LS , is given by the following
BNF:

ϕ ::= B
∣∣∣ ϕ ∧ ϕ ∣∣∣ 2ϕ ∣∣∣ X ∣∣∣ ∆� ϕ

where ∆ ⊆ S × S. The interpretation of LS extends that of Lsafe
S (Defini-

tion 2) with the following implication:

s |=D,Σ ∆ �ϕ ⇒ whenever (s, s′) ∈ ∆ then s′ |=D,Σ ϕ

To see how ∆� ϕ is used in quotienting consider a simple assertion of the
form

s |=D,Σ1∪Σ2
2B (4.1)

Now clearly (4.1) holds if s′ ∈ B whenever (s, s′) ∈ Σ1 and s′′ ∈ B whenever
(s, s′′) ∈ Σ2. More concisely, this becomes s |=D,Σ1

2B and s |=D,Σ1
Σ2 � B.

Thus the quotient formula 2B/Σ2 is precisely 2B ∧ Σ2 � B.

Generally, the quotient–construction is given by the following definition:

Definition 3 (Quotienting) Let φ be an LS-formula and let Σ ⊆ S×S be

a transition relation. Then the quotient formula (φ/Σ) is defined inductively
over φ as follows

ϕ ∧ ψ/Σ = ϕ/Σ ∧ ψ/Σ

2ϕ/Σ = 2ϕ/Σ ∧ Σ�ϕ/Σ

∆�ϕ/Σ = ∆�ϕ/Σ

B/Σ = B

X/Σ = XΣ

Where XΣ is a new identifier. For D a declaration over Id and Σ a transition
relation, DΣ is the declaration over IdΣ = {XΣ | X ∈ Id} given by DΣ =

{XΣ ∆
= ϕ/Σ |X ∆

= ϕ ∈ D}. 3

Theorem 1 (Correctness of Quotienting) Let Σ1 and Σ2 be transition
relations, and let D be a declaration. Then

s |=D,Σ1∪Σ2
ϕ ⇔ s |=DΣ2 ,Σ1

ϕ/Σ2

Proof: See Appendix. 3
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5 Axiomatization

Having introduced the logic LS the question of axiomatizing equivalence
between and validity of formulae naturally arises. Besides providing funda-
mental theoretical insight these axiomatizations are crucial in simplifying
quotient formulae and hence making the compositional approach to model
checking feasible.

By |=D,Σ ϕ ' ψ we denote that ϕ and ψ are equivalent with respect to the
declaration D and the transition relation Σ in the obvious sense, that is:

|=D,Σ ϕ ' ψ iff ∀s ∈ S.s |=D,Σ ϕ ⇔ s |=D,Σ ψ

By |= ϕ ' ψ we denote that |=D,Σ ϕ ' ψ holds for all D and Σ, and by we
denote that |=Σ ϕ ' ψ holds for all D.

A formula ϕ is valid whenever |= ϕ ' S and we denote this by |= ϕ. A
formula is unsatisfiable if |= ϕ ' ∅ which we denote2 |= ¬ϕ. Now —
due to the single universal modality 2 of LS — it is not hard to see that
validity (unsatisfiability) of formulae reduces to validity (unsatisfiability)
with respect to the total (empty) transition relation, that is:

Lemma 1 Let ϕ be a formula of LS . Then |= ϕ if and only if |=S×S ϕ ' S.
Moreover |= ¬ϕ if and only if |=∅ ϕ ' ∅. 3

Note that for 2-free formulae ϕ and ψ equivalence is independent of the
interpreting transition relation. That is for any Σ:

|=Σ ϕ ' ψ if and only if |= ϕ ' ψ

Let ϕ be a recursion-free formula. Then by replacing all occurrences of sub-
formulae of the form 2η with Σ� η we obtain a Σ-equivalent formula ϕΣ,
i.e. |=Σ ϕ ' ϕΣ. It follows that:

|=Σ ϕ ' ψ if and only if |= ϕΣ ' ψΣ

Applied to the special case of validity and unsatisfiability this yields:

Lemma 2 Let ϕ be a recursion-free formula of LS . Then |= ϕ if and only if
|= ϕS×S ' S. Moreover |= ¬ϕ if and only if |= ϕ∅ ' ∅ 3

2The notation ¬ϕ does not imply that ¬ϕ is added to the logic as a construct
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` B1 ∧B2 ' B1 ∩B2 (5.1)

` ∅� ϕ ' S (5.2)

` ∅ ∧ ϕ ' ∅ (5.3)

` S ∧ ϕ ' ϕ (5.4)

` 2ϕ ∧2ψ ' 2 (ϕ ∧ ψ) (5.5)

` ∆� ϕ ∧∇� ϕ ' (∆ ∪∇)� ϕ (5.6)

` ∆� ∇� ϕ ' ∆ ◦ ∇� ϕ (5.7)

` ∆� ϕ ∧∆� ψ ' ∆� (ϕ ∧ ψ) (5.8)

` ∆� B ' ∆−1(B) (5.9)

` B ∧∆� ϕ ' B ∧∆� (∆(B) ∧ ϕ) (5.10)

` B ∧∆� ϕ ' B ∧∆↓B� ϕ (5.11)

` ∆� ϕ ∧∇� ψ ' ∆\∇� ϕ ∧∇\∆� ψ ∧ (5.12)

∆ ∩∇� (ϕ ∧ ψ)

Table 1: Equivalence laws of LS .

In Table 1 we state a number of laws for equivalence between formulae. To
ease notation we introduce a couple of operators on sets of transitions.

∆(B) = {s′ ∈ S | (s, s′) ∈ ∆ ∧ s ∈ B}
∆−1(B) = {s ∈ S | (s, s′) ∈ ∆⇒ s′ ∈ B}
∆ ◦ ∇ = {(s, s′′) ∈ S × S | ∃s′ ∈ S. (s, s′) ∈ ∆ ∧ (s′, s′′) ∈ ∇}
∆ ↓B= {(s, s′′) ∈ ∆ | s ∈ B}

The laws are sound in the following sense:

Theorem 2 (Soundness) Whenever ` ϕ ' ψ then |= ϕ ' ψ 3

The laws enable all recursion-free formulae to be transformed into the fol-
lowing strong normal-form:
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Definition 4 A formula ϕ is in strong normal-form if ϕ is of the form:

ϕ ≡ B ∧2ϕ′ ∧
∧
i∈I

∆i � ϕi

where ϕ′ and ϕi (i ∈ I) are themselves in strong normal-form and:

i) i 6= j → ∆i ∩∆j = ∅ ii) ∆i = ∆i ↓B
iii) Bϕi = ∆i(B) iv) B =

⋂
i∈I

∆−1
i (Bϕi)

where for a formula ϕ in strong normal-form Bϕ refers to the conjunct B of
ϕ. 3

Theorem 3 For any recursion-free formula ϕ of LS there exists a strong
normal-form formula ϕ′ such that ` ϕ ' ϕ′.

Proof: By using the laws (5.1) through (5.8) iteratively we can bring any
formula ϕ into a formula ϕ′ of the required (syntactic) form. To meet the
requirements i) through iv) we can apply the remaining laws (5.9) through
(5.13). 3

For recursion-free formulae the laws of Table 1 are complete with respect to
validity and unsatisfiability as stated below:

Theorem 4 (Completeness) Let ϕ be a recursion-free formula. Then:

Whenever |= ϕ then ` ϕS×S ' S and whenever |= ¬ϕ then ` ϕ∅ ' ∅

3

It still is an open question as to whether the laws of Table 1 are complete
w.r.t. to general formula equivalence — though we conjecture this to be the
case.
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6 Example

Let us now apply the compositional quotient technique to the program de-
scribed in Example 1 and the property given in Example 2. For simplicity
we consider the following simplified version of the program of Example 1:

P1
∆
=

while true do
if x ≥MAX then x := x+ 1

 |


P2
∆
=

while true do
if x > 0 then x := x− 1


In this simplified version both P1 and P2 have a single control location. The
state-space therefore degenerates to N (i.e. the value of the shared variable
x). The transition relation given by the components P1 and P2 are now:

Σ1 = {(n, n+ 1) |n ∈ N}
Σ2 = {(n + 1, n) |n ∈ N}

The property of divergence of P2 can be expressed simply as: the value of x
is invariantly different from 0, i.e:

X
∆
= {0}{ ∧2X

Now, we claim that for no state (i.e. no k ∈ N) the above program P1 |P2

will have this property. That is:

Claim 1 For any k ∈ N: k 6|=Σ1∪Σ2
X 3

In fact – which should be intuitively clear – component P2 is entirely to
blame for this; no matter what component P1 does the composite program
P1 |P2 will always fail having the property X for all states. That is:

Claim 2 For any Σ ⊆ N× N and any k ∈ N: k 6|=Σ X/Σ2 3

Note that Claim 1 follows from Claim 2 by taking Σ = Σ1 and applying the
quotient theorem (Theorem 1). To justify Claim 2 for a particular k ∈ N
we actually only need a certain initial part of Σ2 (Σ≤k2 ). For k ∈ N define:

Σ≤k2 = {(n + 1, n) |n < k}
Σ>k

2 = Σ2\Σ≤k

Now Claim 2 follows from the following theorem by instantiating it to Σ ∪
Σ>k

2 and using the fact that ϕ/Σ1/Σ2 ' ϕ/(Σ1 ∪ Σ2).

11



Theorem 5 For any Σ ⊆ N× N and for any k ∈ N: k 6|=Σ X/Σ
≤k
2

Proof: Let Y ≤k be defined by the following equation:

Y ≤k
∆
= {0 . . . k}{ ∧2Y ≤k

We prove by induction on k that X/Σ≤k2 ' Y ≤k.
Basis k = 0: Trivial, as Σ≤0

2 = ∅. It is then easy to see that X/∅ ' X and

as the equation for Y ≤0 is exactly that of X, it follows that X/Σ≤0
2 'Σ Y ≤0.

Step: By definition Σ≤k+1
2 = Σ≤k2 ∪ {(k + 1, k)}. Again, by using the fact

that ϕ/Σ1/Σ2 ' ϕ/(Σ1 ∪ Σ2) and by induction hypothesis we have:

X/Σ≤k+1
2 ' (X/Σ≤k2 )/{(k + 1, k)} IH' Y ≤k/{(k + 1, k)}

Now expanding the definition of Y ≤k yields:

Y ≤k/{(k + 1, k)} ∆
= {0 . . . k}{ ∧2(Y ≤k/{(k + 1, k)})∧
{(k + 1, k)}� (Y ≤k/{(k + 1, k)})

' {0 . . . k}{ ∧2(Y ≤k/{(k + 1, k)})∧
{(k + 1, k)}�

(
{0 . . . k}{ ∧ (Y ≤k/{(k + 1, k)})

)
Now, by using the laws of Table 1 we can simplify Y ≤k/{(k + 1, k)} in the
following manner3:

{0 . . . k}{ ∧2Z ∧ {(k + 1, k)}�
(
{0 . . . k}{ ∧ Z

)
' by (5.8)

{0 . . . k}{ ∧2Z ∧ {(k + 1, k)}� {0 . . . k}{ ∧ {(k + 1, k)}� Z

' by (5.9)

{0 . . . k}{ ∧2Z ∧ {0 . . . k + 1}{ ∧ {(k + 1, k)}� Z

' by (5.11)

{0 . . . k + 1}{ ∧2Z ∧ {}� Z

' by (5.2)

{0 . . . k + 1}{ ∧2Z

That is, Y ≤k/{(k + 1, k)} – and hence X/Σ≤k+1
2 – satisfies precisely the

defining equation for Y ≤k+1. 3

3For better readability we substitute Z for Y ≤k/{(k + 1, k)}

12



7 Concluding Remarks

We have presented a generalisation of the promising compositional model–
checking technique presented in [And95] and extended in [LPY95a, LL95,
LPY95b] to programs modelled as arbitrary (possibly infinite–state) transi-
tion systems.

Both our quotient construction and laws of equivalence between formulae
may be applied to the more specialized settings of [And95, LPY95a, LL95,
LPY95b] but also to other settings such as shared variable models as demon-
strated in the Example of the paper and studied in [ASM96]. In fact, we
believe that the framework offered by our paper may serve as a guideline
when instantiating the compositional model–checking technique to a variety
of settings.

In a practical implementation care must of course be taken in choosing a
suitable and compact representation of the sets of states and the relation
on states occurring in formulae. In addition the representation should lead
to efficiency in manipulation using the laws of Table 1. For finite state
programs BDD’s are obvious candidates [ASM96] and for networks of timed
automata a variety of techniques for representing subsets of the Euclidean
space exists.

Appendix

Theorem 6 (Correctness of Quotienting) Let Σ1 and Σ2 be transition
relations, and let D be a declaration. Then

s |=D,Σ1∪Σ2
ϕ ⇔ s |=DΣ2 ,Σ1

ϕ/Σ2

3

Proof (⇐):: Let S = {(s, ϕ) | s |= ϕ/Σ2}. We prove S+ = S ∪ |=D,Σ1∪Σ2
is a

satisfiability relation underD,Σ1∪Σ2 according to the extended Definition 2.

Case ϕ = 2ψ: Assume (s,2ψ) ∈ S+. We must prove:

(s, s′) ∈ Σ1 ∪ Σ2 ⇒ (s′, ψ) ∈ S+

If (s,2ψ) ∈|=D,Σ1∪Σ2
this holds trivially. Hence assume (s,2ψ) ∈ S and

(s, s′) ∈ Σ1 ∪Σ2:

By definition of S we have s |=D,Σ1
2(ψ/Σ2) ∧ Σ2�ψ/Σ2. We now have two

cases: (s, s′) ∈ Σ1 and (s, s′) ∈ Σ2.
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• If (s, s′) ∈ Σ1 then s |=D,Σ1
2(ψ/Σ2) implies s′ |=D+,Σ1

ψ/Σ2. By
definition of S we then have (s′, ψ) ∈ S+.

• If (s, s′) ∈ Σ2 then s |=D,Σ1
Σ2� ψ/Σ2 implies s′ |=D+,Σ1

ψ/Σ2. By
definition of S we then have (s′, ψ) ∈ S+.

Thus, we have established: (s′, ψ) ∈ S+

(⇒):: Let S = {(s, ϕ/Σ2) | s |=D,Σ1∪Σ2
ϕ}. We prove S+ = S ∪ |=D,Σ1

is a
satisfiability relation under D+,Σ1 according to the extended Definition 2.

Case ϕ = 2ψ: Assume (s,2ψ/Σ2) ∈ S+. By definition of ϕ/Σ we have
2ϕ/Σ2 = 2(ψ/Σ2) ∧ Σ2�ϕ/Σ2. We must then prove:

• (s, s′) ∈ Σ1 ⇒ (s′, ψ/Σ2) ∈ S+

• (s, s′′) ∈ Σ2 ⇒ (s′′, ψ/Σ2) ∈ S+

If (s,2(ψ/Σ2) ∧ Σ2� ψ/Σ2) ∈|=D+,Σ1
this holds trivially. Hence assume

(s,2ψ) ∈ S, (s, s′) ∈ Σ1 and (s, s′′) ∈ Σ2:

By definition of S we have s |=D+,Σ1
2(ψ/Σ2) ∧ Σ2� ψ/Σ2. We now have

two cases: (s, s′) ∈ Σ1 and (s, s′) ∈ Σ2.

• If (s, s′) ∈ Σ1 then s |=D,Σ1
2(ψ/Σ2) implies s′ |=D+,Σ1

ψ/Σ2. By
definition of S we then have (s′, ψ) ∈ S+.

• If (s, s′′) ∈ Σ2 then s |=D,Σ1
Σ2� ψ/Σ2 implies s′′ |=D+,Σ1

ψ/Σ2. By
definition of S we then have (s′′, ψ) ∈ S+.

Thus, we have established both (s′, ψ) ∈ S+ and (s′′, ψ) ∈ S+. 3
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RS-97-11 K̄arlis Čerāns, Jens Chr. Godskesen, and Kim G. Larsen.
Timed Modal Specification — Theory and Tools. April 1997.
32 pp.

RS-97-10 Thomas Troels Hildebrandt and Vladimiro Sassone.Transition
Systems with Independence and Multi-Arcs. April 1997. 20 pp.
Appears in Peled, Pratt and Holzmann, editors, DIMACS
Workshop on Partial Order Methods in Verification, POMIV ’96,
pages 273–288.

RS-97-9 Jesper G. Henriksen and P. S. Thiagarajan.A Product Version
of Dynamic Linear Time Temporal Logic. April 1997. 18 pp. Ap-
pears in Mazurkiewicz and Winkowski, editors, Concurrency
Theory: 8th International Conference, CONCUR ’97 Proceed-
ings, LNCS 1243, 1997, pages 45–58.

RS-97-8 Jesper G. Henriksen and P. S. Thiagarajan.Dynamic Linear
Time Temporal Logic. April 1997. 33 pp.

RS-97-7 John Hatcliff and Olivier Danvy. Thunks and theλ-Calculus
(Extended Version). March 1997. 55 pp. Extended version of
article to appear in the Journal of Functional Programming.

RS-97-6 Olivier Danvy and Ulrik P. Schultz. Lambda-Dropping: Trans-
forming Recursive Equations into Programs with Block Struc-
ture. March 1997. 53 pp. Extended version of an article
to appear in the 1997 ACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation
(PEPM ’97), Amsterdam, The Netherlands, June 1997.


