
B
R

IC
S

R
S

-96-9
H

usfeldtetal.:
Low

erB
ounds

forD
ynam

ic
A

lgorithm
s

BRICS
Basic Research in Computer Science

Lower Bounds for Dynamic Transitive
Closure, Planar Point Location, and
Parentheses Matching

Thore Husfeldt
Theis Rauhe
Søren Skyum

BRICS Report Series RS-96-9

ISSN 0909-0878 April 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

LOWER BOUNDS FOR DYNAMIC TRANSITIVE CLOSURE,
PLANAR POINT LOCATION, AND PARENTHESES MATCHING

THORE HUSFELDT, THEIS RAUHE, AND SØREN SKYUM

BRICS∗

Department of Computer Science, University of Aarhus
Ny Munkegade, DK–8000 Århus C, Denmark

Abstract. We give a number of new lower bounds in the cell probe model
with logarithmic cell size, which entails the same bounds on the random access
computer with logarithmic word size and unit cost operations.

We study the signed prefix sum problem: given a string of lengthn of zeroes
and signed ones, compute the sum of its ith prefix during updates. We show a
lower bound of Ω(logn/ log logn) time per operations, even if the prefix sums
are bounded by logn/ log logn during all updates. We also show that if the
update time is bounded by the product of the worst-case update time and the
answer to the query, then the update time must be Ω

�√
(logn/ log logn)

�
.

These results allow us to prove lower bounds for a variety of seemingly unre-
lated dynamic problems. We give a lower bound for the dynamic planar point
location in monotone subdivisions of Ω(logn/ log logn) per operation. We give
a lower bound for the dynamic transitive closure problem on upward planar
graphs with one source and one sink of Ω(logn/(log logn)2) per operation.
We give a lower bound of Ω

�√
(logn/ log logn)

�
for the dynamic membership

problem of any Dyck language with two or more letters. This implies the same
lower bound for the dynamic word problem for the free group with k gener-
ators. We also give lower bounds for the dynamic prefix majority and prefix
equality problems.

1. Introduction

We introduce a new technique for proving lower bounds for dynamic algorithms
in the cell probe model. With this, we easily derive lower bounds for half a dozen
natural problems, including the following:

Computational Geometry: Dynamic planar point location in monotone sub-
divisions cannot be solved faster than Ω(logn/ log logn). The important al-
gorithm of Preparata and Tamassia [16] achieves upper bounds of O(log2 n)
per update and O(logn) per query.

Graph algorithms: Dynamic transitive closure in planar acyclic digraphs with
one source and one sink that are on the same face cannot be solved faster
than Ω(logn/(log logn)2). Tamassia and Preparata [17] achieve a logarithmic
upper bound for this problem.

Parentheses matching: The dynamic membership problem for the Dyck lan-
guages (alternatively, the dynamic word problem for the free group) cannot
be solved faster than Ω

(√
logn/ log logn

)
per operation. Frandsen et al. [7]

show polylogarithmic upper bounds for this problem.

∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.

No lower bounds (in the cell probe model) for any of these problems have been
published to the knowledge of the authors, even though an exponentially worse
bound of Ω(log logn/ log log logn) can be seen to hold for most of them, using an
unpublished result by Beame and Fich [3], that improves work of Miltersen [13].
Lower bounds for harder variants of dynamic transitive closure and dynamic planar
point location follow from [9, 12].

In the rest of the paper, our nomenclature for dynamic problems omits the prefix
‘dynamic’ for brevity, since all our problems are of this type.

1.1. Roadmap. The Introduction contains a short presentation of our model of
computation and recalls a seminal result for this, the Fredman–Saks bound [10],
that will be important to us.

The main part of the paper proves two theorems that can be viewed as general-
isations of the Fredman–Saks bound. The lower bounds for planar point location
and transitive closure follow from the first theorem, while the bound for parentheses
matching follows from the second.

Much of the present paper can be enjoyed without knowledge of the proof of the
Fredman–Saks bound; hence we present our results as a reduction to that result
rather than modifying the original proof [10], trading elegance for (what we hope
is) readability.

1.2. The Cell Probe Model. Our lower bounds work in the cell probe model [19],
where the only resource is memory access—all computation is for free; we consider
word size O(logn) for concreteness. Hence our bounds hold on all natural (and
some unnatural) models of random access machines with logarithmic word size.
For example, the cost or availability of operations like multiplication does not enter
into the argument. Also, there are no assumptions on the the size of the memory
or its organisation relative to the structure of the instance.

The cell probe model is so strong that no lower bound better than Ω(logn/
log logn) is known for any problem in Polynomial Time. This is discouraging
in light of the fact that the best known algorithm for many dynamic problems is
‘recompute from scratch.’ However, recent breakthroughs in algorithms for random
access machines [1, 2, 18] show that widely-held beliefs about the relevance for real
computers of lower bounds in weaker models may be mistaken.

Unfortunately, cell probe lower bounds are often hard to come by and the range
of general techniques is limited. We believe that the techniques of the present paper
are widely applicable; we substantiate this claim by proving new lower bounds for
several well-studied problems from various fields.

1.3. Prefix Parity. We use a result of Fredman and Saks [10] that gives a lower
bound on the complexity of the prefix parity problem: given a vector x1, . . . , xn of
bits, maintain a data structure that is able to react to the following operations for
all i = 1, . . . , n:

change(i): negate the value of xi,
parity(i): return

⊕i
j=1 xj, the parity of the first i elements.

The Fredman–Saks bound. Let tu denote the worst-case update time and let tq
denote the worst-case query time for any solution of the prefix parity problem. Then

tq ∈ Ω
(logn

log(tu logn)

)
.(1)

2

Especially, no algorithm can run faster than Ω(logn/ log logn) time per operation.
Dietz [6] shows this bound to be tight.

We mention at this point that the Fredman–Saks bound holds for amortised
complexity also. So do all our results; we claim this without proof and will not
mention it again to keep the presentation simple.

2. Prefix Balancing

2.1. Signed Prefix Sum. To prove our lower bounds, we introduce the signed
prefix sum problem. Given a vector y1, . . . , yn ∈ {0,±1}n, maintain a data structure
that is able to react to the following operations for all i = 1, . . . , n:

change(i, a): let yi = a ∈ {0,±1},
sum(i): return

∑i
j=1 yj .

Obviously, the Fredman–Saks bound holds for signed prefix sum, since it is a gen-
eralisation of the prefix parity problem. The data structure of Dietz [6] can be used
for an optimal Θ(logn/ log logn) implementation.

2.2. Range Reduction. We first show that signed prefix sum remains difficult
even when the range of

∑
j≤i yj is reduced.

Theorem 1. Let tu denote the worst-case update time and let tq denote the worst-
case query time for any solution of the signed prefix sum problem with the restriction
that at all times during the updates,∣∣∣ i∑

j=1
yj

∣∣∣ = O
(logn

log logn

)
for all 1 ≤ i ≤ n.(2)

Then (1) holds.

Proof. Let x ∈ {0, 1}n be an instance of the prefix parity problem and assume
that we have a solution to the signed prefix sum problem that works under the
restriction (2). We construct an instance y ∈ {0,±1}n to the latter such that
yi = 0 if and only if xi = 0. Note that since 1 = −1 mod 2 we can answer the query
parity(i) by returning the parity of sum(i). To prove the desired lower bound we
only have to keep the value of

∑
j≤i yj small. The rest of the proof explains how

to construct y with this property—namely, how to choose values from {−1,+1} for
the nonzero elements.

Write

m =
⌈

logn
log logn

⌉
in the rest of the paper. We introduce sequences w1, . . . , wm such that w1 is a
subsequence of y and wk+1 is a subsequence of wk. The sequences are defined as
follows: w1 contains exactly the nonzero entries of y. The elements of each sequence
are either single or coupled with a neighbouring element. The singles in the kth
sequence constitute the elements of wk+1.

Note that every nonzero element of y is coupled at most once among all se-
quences. The values of these elements will be chosen from {+1,−1} such that the
sum of each couple is zero.

We will maintain a distance invariant: that there are at least logn elements
between any two singles. This ensures that |wk+1| ≤

⌈
|wk|/ logn

⌉
, so wm contains

3

at most a (single) element, which we will pair up with a dummy element yn+1 for
simplicity.

Let us see how to maintain the invariant during updates. Whenever a bit in x
is flipped, a nonzero element in y becomes zero or vice versa, which means that an
element is inserted into or deleted from w1.

insertions: Consider the case where a new element yi is inserted into list wk.
If there are no singles among the nearest 2 logn neighbours of yi then we can
insert yi as a single in wk and as a new element in wk+1.

Otherwise, if there is a single yj close to i, we have to change the coupling
of elements in wk. According to the invariant, all elements in the logn neigh-
bourhood of yj are coupled. We make new couples of these elements and yj
and yi and remember to delete yj from wk+1.

deletions: Consider now the case where we want to delete yi from wk. If yi
is a single then we remove it and delete it from wk+1. The case where yi is
coupled with some y′i is handled as above, since deleting yi corresponds to
removing the couple and inserting y′i as a single.

In both cases, the distance invariant is maintained, at most O(logn) are re-
coupled and at most one element inserted into or deleted from wk+1. Hence the
update time for each change operation in the worst case is

tu = O
(log2 n

log logn
· t
)
,(3)

where t is the update time of the data structure for signed prefix sum.
Now for the query operation. We first explain how the values from {−1,+1}

are given to the nonzero element of y. The rule is straightforward and arbitrary:
when a new couple is created, the leftmost element is assigned the value −1 and
the rightmost +1.

To find
∑
j≤i yj , first note that we can ignore couples (yi, y

′
i) with i, i′ ≤ j, since

their sum is zero. So we restrict our attention to elements yi in couples (yi, y
′
i) with

i ≤ j < i′. In every sequence wk there can be at most one such couple (because
elements are coupled with a neighbour in the same sequence), so the number of
contributing yi is at most m. This ensures that the range condition (2) holds and
proves correctness. The bound on the query time follows from the Fredman–Saks
bound.

2.3. Planar Point Location. A classical problem in Computational Geometry is
planar point location: given a subdivision of the plane, i.e. a partition into polygonal
regions induced by the straight-line embedding of a planar graph, determine the
region of query point q ∈ R2.

In the dynamic version, updates consist of insertion and

Fig. 1

deletion of vertices or (chains of) edges. An important re-
striction of the problem, for which our bound will apply,
considers only monotone subdivisions, where the subdivi-
sion consists of polygons that are monotone (so no straight
line crosses any polygon more than twice). Preparata and
Tamassia [16] give an algorithm that runs in time O(log2 n)
per operation. Several other dynamic algorithms for this
and other types of subdivisions have been found since, see [4] for a survey.

4

To prove a lower bound for this problem we construct a monotone subdivision
from the signed prefix sum instance y ∈ {0,±1}n. This is easier drawn than
explained formally; Fig. 1 shows the subdivision corresponding to y = (0, 0, +1,
+1, −1, 0, +1 ,0). There are 2 unbounded polygons at the sides and 2m strip-like
ones with common sides and common top and bottom corners at infinity. Each of
the strip-like polygons mimics the path described by y with +1 meaning ‘go right’
and −1 meaning ‘go left.’

Now comes the only, but crucial, use of our range reduction (2): when y is
changed, the subdivision can be updated in polylogarithmic time (given a fast data
structure for planar point location) because is is so narrow.

To answer a sum query for the ith prefix, we query the names of the polygons
that contain the points (0, 0) and (0, i) (assuming some appropriate placement of
the origin). The distance between these polygons is precisely the answer, so we
can indeed implement a data structure for signed prefix sum. We conclude that (1)
is a lower bound on the time per operation for planar point location in monotone
subdivisions.

3. Binary Search

Using a simple binary search strategy, we can prove lower bounds for a variety of
other problems. The cleanest application is for the majority function. This tells us
a bit about the complexity of range searching as well. Following the same melody,
we give lower bounds for a dynamic graph problem.

3.1. Prefix Majority. The prefix majority problem is defined in analogy with the
prefix parity problem from Sect. 1.3; the query operation is

majority(i): return ‘true’ iff there are more ones than zeroes in the ith prefix.
We will show how to use Thm. 1 to prove a lower bound of

tq = Ω
(logn

log log2 n

)
, if tu = logO(1) n(4)

for any implementation, where tu and tq denote the update and query time, re-
spectively. We know no better upper bound than O(logn/ log logn) per operation
(again, Dietz’ data structure [6]), so the result leaves a double-logarithmic gap.

To see that (4) holds, let y ∈ {0,±1}n be an instance of signed prefix sum.
We first construct an instance x ∈ {0, 1}2n to the prefix majority problem in the
obvious way:

−1 7→ 00, 0 7→ 01, +1 7→ 11.(5)

The majority of a prefix of this instance is one if and only if the signed sum of the
corresponding prefix in y is positive. This is the main idea.

To learn the exact values of y’s prefixes we maintain 2m+ 1 bitstrings xi, where
xi = (11)ix for positive i and xi = (00)ix for negative i. We encourage the reader
to check that this facilitates a binary search for the exact number of ones in x’s
prefixes. The query time for this (and hence for the prefix sum of y) is tq logm,
and since the update time is polylogarithmic if tu is, the bound (4) follows from
Thm. 1.

Note that while we still use the range reduction (2) to maintain our construction
in polylogarithmic time during updates (as in the previous application), we now
also use it to reduce the query time.

5

3.2. Range Searching. A fundamental algorithmic problem is range searching ;
we can put the above result in that framework. The problem is to maintain a set
S ⊆ Rd (for our lower bound, d = 1 is hard enough) under the following operations:

insert(x): insert a point at coordinate x ∈ Rd into S,
delete(x): remove the point at x ∈ Rd from S,
report(R)?: how many points are the in R ∩ S, where R is a rectangle in Rd.

The problem has been studied for many other query operations and our under-
standing of its complexity varies with the type of query. For counting (as above),
the Fredman–Saks bound applies even in one dimension. On the other hand, the
problem of existential range queries (return ‘yes’ iff R ∩ S is nonempty) is among
the most interesting problems at the time of writing, see [14] for some results.

Our lower bound applies to versions of the problem where the query operation
involves the majority function in some disguise. Here is one:

insert(x, c): insert x ∈ Rd of colour c ∈ {blue, red} into S,
delete(x): remove the point at x if it exists,
blue(R): are there more blue than red points in R ∩ S?

This corresponds to asking questions like ‘among the students aged 20 to 25, are
there more males than females?’. Alternatively, in the monochromatic setting, we
can ask: ‘Are there more students aged 20 to 25 than 23 to 30?’, reflected in the
following query:

more(R1, R2): is |R1 ∩ S| > |R2 ∩ S|?
We leave it to the reader formalise this and show that (4) is a lower bound.

3.3. Upward planar graphs. A graph is planar if it can be embedded in the
plane without crossing edges. A digraph is upward planar if it admits a planar
embedding where all edges are directed upward, i.e. their projection on the y-axis
is positive; such a graph is clearly acyclic.

There are planar dags that are not upward planar, like shown in Fig. 2.

I�

�6I 6
�I

Fig. 2

A digraph is a source–sink graph, or st-graph for short, if it has only one
vertex with no incoming edges (the source s) and only one vertex with no
outgoing edges (the sink t). It is well known that a graph is upward planar
iff it is the subgraph of an acyclic planar st-graph that has s and t on the
same face. Fig. 2 shows the last condition to be necessary. The survey [5]

contains a recent list of references to other characterisations of these classes and
many applications in graph drawing; see [17] for more applications.

We give a lower bound of (4) for the transitive closure, i.e. for data structures
that handle the following operations:

insert(u, v): insert an edge from vertex u to vertex v,
delete(u, v): delete the edge from u and v,
path(u, v): ‘Is there a path from u to v?’

Our bound holds even under the severe restriction that at all times, the graph
remains an upward planar st-graph (with the same embedding). The prize for this
generality, compared to a related result [9, 12], is a double-logarithmic factor in the
lower bound.

The construction is very similar to that for planar point location in Sect. 2.3.
From an instance y ∈ {0,±1}n of signed prefix sum, we construct a digraph G =
(V, E). The vertex set consists of the source s, the sink t, and 2m+ 3 vertices for

6

6666666

6666666

� � � � � �6

� � � � � �6

K K K K K K6

6666666

� � � � � �6

6666666

(a) (b)
Fig. 3

each letter yi:

V = { vij | 1 ≤ i ≤ n+ 1,−m− 1 ≤ j ≤ m+ 1 }.
The ith row is connected to its upper neighbour according to the value of yi:

{ (vij, v(i+1)j′) | 1 ≤ i ≤ n,−m− 1 ≤ j ≤ m+ 1 },

where j′ =
{ j + yi, if |j + yi| ≤ m+ 1,
m+ 1, if j + yi = m+ 2,
−m− 1, if j + yi = −m− 2.

For example, if y is (0, 0,+1,+1,−1, 0,+1, 0) the edges look like Fig. 3(a). Note
how the path starting in (1, 0) (the middle vertex in the bottom row) mimics si =∑
j≤i xj. Indeed, there is a path from (1, 0) to (i + 1, u) for 1 ≤ i ≤ n and

−m ≤ u ≤ m if and only if si = u. We are going to use the transitive closure data
structure to detect this.

First, we finish the construction by adding some more edges that have only
technical significance and make sure that G is an st-graph. At the ends of the
graph, 2m + 3 edges connect s to the bottom row and 2m + 1 edges connect the
topmost row to t,

{ (s, v1j), (vj(n+1), t) | −m− 1 ≤ j ≤ m+ 1 }.
At the top- and bottommost rows, edges connect s to all vertices that would oth-
erwise be sources:

{ (s, vi(m+1)) | yi−1 = −1 } ∪ { (s, vi(−m−1)) | yi−1 = 1 }.
From this we construct two graphs G+ and G−. In G+, edges connect every

vertex (u, v) with 1 ≤ u ≤ n, −m − 1 ≤ v ≤ m to (u, v + 1). The other graph G−
is constructed symmetrically, with all (u, v) connected to (u, v − 1).

Figure 3(b) depicts it for our example. We have displaced the vertex rows slightly
to make clear that all edges are directed upward. Arrows are removed for readabil-
ity. The vertices at the bottom and top are s and t, respectively.

The desired property of G+ is this: If j = si then there is a path from v10 not
only to vij but also to vij′ for any j′ ≥ j but still none for j′ < j. Likewise, in G−,
there is a path to vij′ for any j′ ≤ j and none for j′ > j. But now we can do a
binary search; the rest of the proof is similar to Sect. 3.1.

7

4. Randomised Prefix Balancing

We return to the signed prefix sum problem and state and prove our second
theorem. In this version, the time for a query is expressed in terms of the size of
its answer.

For a quick motivation, assume that we have a data structure that can only
check for zero, i.e. answer ‘zero’ iff

∑
j≤i yj = 0. Then we can use an exhaustive

search strategy to solve signed prefix sum: (Assume for simplicity that the sum is
positive.)

1. pad y with a number of zeroes to the left,
2. change a padded zero to −1 and query again,
3. repeat from 2 until we get the answer ‘zero.’

Clearly, the number of iterations is exactly the number of −1s we used to balance
the prefix sum down to zero, which in turn is the answer to the query. Theorem 2
allows us to give lower bounds for such a check-for-zero data structure.

Theorem 2. Consider any solution to the signed prefix sum problem. For 1 ≤ i ≤
n, let tiq denote the time for sum(i) and let tu denote the worst-case time for any
update. Then

tu = Ω
(√

logn
log logn

)
, if tiq = O

(
tu ·

∣∣∣ i∑
j=1

yj

∣∣∣).(6)

This bound holds even with the restriction (2).

The proof uses the well-known fact that in a series of independent and fair coin
flips, even though the difference between the number of heads and tails after the
nth trail may be as big as n, the expected value is much smaller:

E
(
|#heads−#tails|

)
= Θ(

√
n).

For a proof, solve Problem 1.6 of [15].
For this idea to work, we first have to observe that the Fredman–Saks bound

works for expected query time as well.

Lemma 1. Let tu denote the worst-case update time and let tq denote the expected
query time for any solution of the prefix parity problem. Then

tq = Ω
(logn

log(tu logn)

)
.

Sketch of proof. Equation (2) in Theorem 3 of [10] states the bound for q being
the worst-case query time. This can be extended to expected time using Yao’s
Minimax principle.

Proof of Theorem. We return to the proof of Theorem 1 and modify our scheme
for giving values {−1,+1} to the nonzero elements of y. The rule is quite straight-
forward: when a new couple is created, either the leftmost element is assigned the
value −1 and the rightmost +1 or vice versa, depending on a fair coin toss.

But then, by Probability Theory, we have

E
(∣∣∣ i∑

j=1
yj

∣∣∣) = Θ(
√
m),(7)

8

where the expectation is over the coin tosses used to determine the values of each
couple.

Hence the expected time for a prefix parity query is

O
(
tu ·

√
logn

log logn

)
.

The theorem now follows from the above lemma.

4.1. Prefix Equality. Consider yet another relative to the prefix parity and ma-
jority problems, the prefix equality problem. The query operation is:

equal(i): return ‘true’ iff the number of ones equals the number of zeroes in the
ith prefix.

We will show that

t = Ω
(√

logn
log logn

)
(8)

is a lower bound on the worst-case time per operation for any implementation.
To see this, consider any algorithm for prefix equality with worst-case time t per

operation. From an instance y ∈ {0,±1}n of signed prefix sum we construct two
strings x+, x− = (01)mx, where x ∈ {0, 1}2n is constructed as in (5). For every
signed prefix sum query we perform an exhaustive search by repeating the following
until we get the answer ‘true’:

1. use equal to see if x+ or x− balance,
2. flip a zero among the first 2m letters of x+ to one,
3. flip a one among the first 2m letters of x− to zero.

The query time is O(t ·
∑
j≤i yj) (we remember to change both strings back) and

the update time is 2t. The last theorem provides the stated bound on t.
The reader should now be able to show lower bounds of the same size for upward

planarity testing or for planar point location where the query returns ‘yes’ iff two
points are in the same polygon.

5. Parentheses Matching

The motivation for our last problem comes from modern editors. In many of
them, a rudimentary syntax check is performed during editing, we focus on the
feature of matching parentheses. Frandsen et al. [7] give polylogarithmic upper
bounds for this problem; their lower bounds leave an exponential gap. Using the
last theorem, we improve these bounds.

5.1. Dyck Languages. The language of properly balanced parentheses contains
strings like () and ()(()) but not)). The notion of balancedness also makes sense
if we add more types of parentheses: ([])() balances but [) does not.

More formally, let A = {a1, . . . , ak} and Ā = {ā1, . . . , āk} be two disjoint sets of
opening and closing symbols, respectively. For example, the pair A = {(, [,do, if }
and Ā = {),], od,fi} captures the nested structure of programming languages. The
one-sided Dyck language Dk over A ∪ Ā is the context-free language generated by
the following grammar:

S → SS | a1Sā1 | · · · | akSāk | ε.

9

Closely related is the two-sided Dyck language D′k over A ∪ Ā defined by

S → SS | a1Sā1 | ā1Sa1 | · · · | akSāk | ākSak | ε.
This corresponds to two-sided cancellation, so now also)(and (][) balance, while
[) still does not.

The two-sided Dyck language has an algebraic interpretation. If we identify āi
with a−1

i and view concatenation as the product operator then x ∈ D′k if and only if
x equals the identity in the free group generated by A. For example, ā1a2ā2a1 ∈ D′2
because a−1

1 a2a
−1
2 a1 evaluates to unity.

The Dyck languages bear the name of the German mathematician Walther von
Dyck (–). They are covered in detail in Harrison’s classical treatment [11].

5.2. The Membership problem. We consider the problem of maintaining mem-
bership in Dk or D′k of a string from (A ∪ Ā)n dynamically. Given a vector
x ∈ (A ∪ Ā)n of even length, initially an1 , maintain x under the following oper-
ations for any Dyck language D:

change(i, a): change xi to a ∈ A ∪ Ā,
member: return ‘yes’ if and only if x ∈ D.

Alternatively, we can use this set of updates for analysing the word problem for the
free group. Here, the member query returns ‘yes’ if and only if

∏
i xi = 1. (In this

context, product or identity may be better names for the query.) However, we
will refrain from distinguishing between the word problem for the free group and
the membership problem for two-sided Dyck languages. Frandsen, Miltersen, and
Skyum [8] study dynamic word problems for other monoids.

5.3. Interval queries. We begin by showing that (8) is a lower bound for the two
single-letter languages with a more powerful query:

interval(i, j): return ‘yes’ if xi . . . xj ∈ D.
Let y ∈ {0,±1}n be an instance of signed prefix sum. Construct an instance of

the Dyck problem,

h(yn)h(yn−1) . . . h(y1) ā4n

where

h(yi) =

{ aaaa, if yi = +1,
aaaā, if yi = 0,
aāaā, if yi = −1.

Note that for any i, the string h(yi) . . . h(y1)ā2(i+s) balances if and only if s =∑
j≤i yj . Therefore to answer a sum query, we check all intervals for x = 0, −1,

+1, −2, +2, . . . , until an interval balances. This takes time O(t · |si|) in the worst
case, where t is the time for an interval-query. The bound follows from Theorem 2.

5.4. Lower Bound for Language Membership. We now show that for Dyck
languages with two or more letters, (8) is a lower bound even for language mem-
bership, i.e. using the original member-query.

We first prove the claim for D′2. We will use the member query for D′2 to solve
an instance of the problem from the last section.

Let x ∈ {a, ā}n be an instance of the interval problem for D′1. Let

y = aāx1aāx2aā . . . aāxnaāx
R

10

be an instance of the membership problem and note y ∈ D′2. To answer a query
interval(i, j) we merely insert a matching pair of other parentheses in y at the
corresponding place:

y′ = aāx1aā . . . xi−1bbxi . . . xj b̄b̄xj+1 . . . x
R,

where xR denotes x reversed. It is easy to see that y′ ∈ D′2 iff xi . . . xj ∈ D′1. After
the query, y′ is changed back to y.

In the one-sided case, we have to extend both ends of the instance with paren-
theses to

y = a2naāx1aāx2aā . . . aāxnaāx
Rā2n,

just to make sure y ∈ D2. The rest of the proof is the same.

Acknowledgements. The authors thank Gudmund Skovbjerg Frandsen and Pe-
ter Bro Miltersen for their co-operation.

References

[1] Arne Andersson. Sublogarithmic searching without multiplications. In Proc. 36thFOCS, pages
655–663. IEEE Computer Society, 1995.

[2] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?
In Proc 27thSTOC, pages 427–436, 1995.

[3] Paul Beame and Faith Fich, 1994. Personal communication, reported by Peter Bro Miltersen.
[4] Yi-Jen Chiang and Roberto Tamassia. Dynamic algorithms in computational geometry. Tech-

nical Report CS-91-24, Dept. of Comp. Sc., Brown University, 1991.
[5] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Algo-

rithms for drawing graphs: an annotated bibliography. Available via anonymous ftp from
wilma.cs.brown.edu in /pub/papers/compgeo/gdbiblio.ps.Z, 1994.

[6] Paul F. Dietz. Optimal algorithms for list indexing and subset rank. In Proc. First Workshop
on Algorithms and Data Structures (WADS), volume 382 of Lecture Notes in Computer
Science, pages 39–46. Springer Verlag, Berlin, 1989.

[7] Gudmund Skovbjerg Frandsen, Thore Husfeldt, Peter Bro Miltersen, Theis Rauhe, and Søren
Skyum. Dynamic algorithms for the Dyck languages. In Proc. 4th WADS, volume 955 of
Lecture Notes in Computer Science, pages 98–108. Springer, 1995.

[8] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word prob-
lems. In Proc 34th FOCS, pages 470–479, 1993.

[9] Michael L. Fredman and Monika Rauch Henzinger. Lower bounds for fully dynamic connec-
tivity problems in graphs. Manuscript, preliminary version in STOC 94.

[10] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data struc-
tures. In Proc. 21st STOC, pages 345–354, 1989.

[11] Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.
[12] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia. Complexity models for

incremental computation. Theoretical Computer Science, 130:203–236, 1994.
[13] Peter Bro Miltersen. Lower bounds for union-split-find related problems on random access

machines. In Proc. 26th STOC, pages 625–634. ACM, 1994.
[14] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data structures and

asymmetric communication complexity. In Proc. 27th STOC, pages 103–111. ACM, 1995.
[15] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University

Press, 1995.
[16] Franco P. Preparata and Roberto Tamassia. Fully dynamic point location in a monotone

subdivision. SIAM Journal of Computing, 18(4):811–830, 1989.
[17] Roberto Tamassia and Franco P. Preparata. Dynamic maintenance of planar digraphs, with

applications. Algorithmica, 5:509–527, 1990.
[18] Mikkel Thorup. On ram priority queue. In Proc 7thAnn. Symp. on Discrete Algorithms

(SODA), pages 59–67, 1996.
[19] Andrew Chi-Chih Yao. Should tables be sorted? Journal of the ACM, 28(3):615–628, July

1981.

11

Recent Publications in the BRICS Report Series

RS-96-9 Thore Husfeldt, Theis Rauhe, and S ren Skyum.Lower
Bounds for Dynamic Transitive Closure, Planar Point Lo-
cation, and Parentheses Matching. April 1996. 11 pp. To
appear in Algorithm Theory: 5th Scandinavian Workshop,
SWAT '96 Proceedings, LNCS, 1996.

RS-96-8 Martin Hansen, Hans Ḧuttel, and Josva Kleist. Bisimula-
tions for Asynchronous Mobile Processes. April 1996. 18
pp. Appears inTbilisi Symposium on Language, Logic, and
Computation, 1995.

RS-96-7 Ivan Damg̊ard and Ronald Cramer. Linear Zero-
Knowledegde - A Note on Efficient Zero-Knowledge Proofs
and Arguments. April 1996. 17 pp.

RS-96-6 Mayer Goldberg.An Adequate Left-Associated Binary Nu-
meral System in theλ-Calculus (Revised Version). March
1996. 19 pp. Accepted forInformation Processing Letters.
This report is a revision of the BRICS Report RS-95-38.

RS-96-5 Mayer Goldberg.Gödelisation in theλ-Calculus (Extended
Version). March 1996. 10 pp.

RS-96-4 Jørgen H. Andersen, Ed Harcourt, and K. V. S. Prasad.A
Machine Verified Distributed Sorting Algorithm. February
1996. 21 pp. Abstract appeared in7th Nordic Workshop on
Programming Theory, NWPT '7 Proceedings, 1995.

RS-96-3 Jaap van Oosten.The Modified Realizability Topos. Febru-
ary 1996. 17 pp.

RS-96-2 Allan Cheng and Mogens Nielsen.Open Maps, Behavioural
Equivalences, and Congruences. January 1996. 25 pp. A
short version of this paper is to appear in the proceedings
of CAAP '96.

RS-96-1 Gerth Stølting Brodal and Thore Husfeldt. A Commu-
nication Complexity Proof that Symmetric Functions have
Logarithmic Depth. January 1996. 3 pp.

