
B
R

IC
S

R
S

-96-7
D

am
g̊ard

&
C

ram
er:

LinearZ
ero-K

now
ledegde

BRICS
Basic Research in Computer Science

Linear Zero-Knowledegde - A Note on
Efficient Zero-Knowledge Proofs and
Arguments

Ivan Damgård
Ronald Cramer

BRICS Report Series RS-96-7

ISSN 0909-0878 April 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Linear Zero-Knowledge - A Note on Efficient
Zero-Knowledge Proofs and Arguments

Ivan Damg̊ard, Aarhus University, BRICS∗and
Ronald Cramer, CWI

Mar. 12, 1996

Abstract
We present a zero-knowledge proof system [19] for any NP language L, which

allows showing that x ∈ L with error probability less than 2−k using communication
corresponding to O(|x|c) + k bit commitments, where c is a constant depending only
on L. The proof can be based on any bit commitment scheme with a particular set
of properties. We suggest an efficient implementation based on factoring.

We also present a 4-move perfect zero-knowledge interactive argument for any NP-
language L. On input x ∈ L, the communication complexity is O(|x|c) · max(k, l)
bits, where l is the security parameter for the prover 1. Again, the protocol can be
based on any bit commitment scheme with a particular set of properties. We suggest
efficient implementations based on discrete logarithms or factoring.

We present an application of our techniques to multiparty computations, allowing
for example t committed oblivious transfers with error probability 2−k to be done
simultaneously using O(t+k) commitments. Results for general computations follow
from this.

As a function of the security parameters, our protocols have the smallest known
asymptotic communication complexity among general proofs or arguments for NP.
Moreover, the constants involved are small enough for the protocols to be practical in
a realistic situation: both protocols are based on a Boolean formula Φ containing and-
, or- and not-operators which verifies an NP-witness of membership in L. Let n be
the number of times this formula reads an input variable. Then the communication
complexity of the protocols when using our concrete commitment schemes can be
more precisely stated as at most 4n + k + 1 commitments for the interactive proof
and at most 5nl+ 5l bits for the argument (assuming k ≤ l). Thus, if we use k = n,
the number of commitments required for the proof is linear in n.

Both protocols are also proofs of knowledge of an NP-witness of membership in
the language involved.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1The meaning of l is that if the prover is unable to solve an instance of a hard problem of size l before
the protocol is finished, he can cheat with probability at most 2−k

1

1 Introduction

Most known zero-knowledge interactive proofs or arguments for a general NP language
(such as [12] and [3]) are built from a basic step allowing the prover to cheat with some
constant probability, e.g. 1/2. In order to achieve a smaller error probability, the obvious
method is to iterate this basic step k times to get error probability at most 2−k. If one
adopts the often used convention of setting k equal to the size of the input, such a method
would require Ω(n2) commitments to show e.g. satisfiability of a Boolean circuit of size n.

Several methods have been suggested for achieving the security amplification more
efficiently than by the naive method. Boyar et al.[1] was the first to find a ”sub-quadratic”
zero-knowledge protocol for circuit satisfiability, and their results were later extended by
Killian [15]. Killian obtained, using the probabilistically checkable proofs (PCP) of [4], a
zero-knowledge interactive proof that x is in NP language L using O(|x|c1) +O(logc2(|x|)k
ideal bit commitments and having error probability 2−k.

Results were also given on interactive arguments, that used a similar technique, plus a
collision intractable hash function. This result was further improved in [16], resulting in an
interactive argument with communication complexity O(l log(l)k) bits. Here, and in the
following, l is the security parameter for the prover, i.e. in order to cheat with probability
larger than 2−k, the prover must solve an instance of size l of a hard computational problem,
such as finding a discrete logarithm modulo an l-bit prime2.

In this work, we show that these communication complexities can be further improved,
if one uses bit commitments with particular properties. Of course, any bit commitment
scheme must commit the prover, unconditionally or not, to a particular bit, and it must
be impossible for the verifier, unconditionally or not, to find the bit committed to from a
commitment. The additional properties we need can be informally described as follows:

• Given any commitment C containing the bit b, the verifier can (on his own) compute
a commitment C ′ that contains the bit 1− b.

• Given a commitment C that contains a 1-bit, the prover must be able to convince the
verifier that this is the case, using an honest verifier zero-knowledge protocol. This
protocol must be a 3-move Arthur-Merlin game, it must have exponentially small
error pobability, and have communication complexity corresponding to a constant
number of commitments.

As detailed later, these conditions can be met by commitments based on the factoring
problem, or the discrete logarithm problem in a group of prime order.

The second property may seem unnecessary: if the prover wants to demonstrate that
C contains a 1, why not just open the commitment? However, since the above involves a
zero-knowledge protocol, it can allow simulation of a ”proof” that C contains a 1, even if it
actually contains a 0. This technicality will be of crucial importance later (more precisely,
in the proof of Theorem 3.1).

2More precisely, one can show that if a prover can argue a false statement with success probability
ε > 2−k, then he can solve the hard problem in time O(1/(ε− 2−k))

2

We do not use PCP’s to build our protocols, in stead we use a new proof technique
that may be of independent interest: We start from any Boolean formula Φ for checking
an NP-witness for the language in question, and reduce the problem of showing that Φ is
satisfiable to showing that a monotone formula constructed from Φ is satisfied by inputs
contained in a given set of commitments. We then apply a technique derived from the
”proofs of partial knowledge” introduced by Cramer et al. [7] (and independently in [18]).

This results in zero-knowledge interactive proofs for NP with error probability 2−k and
communication complexity corresponding to O(|x|c) + k commitments; and in interactive
arguments for NP with communication complexity O(|x|c) ·max(k, l) bits (we count com-
mitments for the proof and bits for the argument to facilitate comparison with [15, 16]).

Comparing this to [15], [16] which were the best results so far, we see that for interactive
proofs, the term depending on k has been reduced from O(logc |x|)k to k. For arguments,
our result is inferior to [16] when viewed as a function of |x|, but superior as a function
of the security parameters k and l. Note that our interactive argument has no need for a
collision-intractable hash function, we only need commitments with the right properties.
Hence our cryptographic assumption is potentially weaker than the ones needed in [16] 3.

The constants involved in our communication complexities are small enough for the
protocols to be practical in a realistic situation: let n be the number of times the formula
Φ reads an input variable. Then the communication complexity of the protocols when
using our concrete commitment schemes can be more precisely stated as at most 4n+k+1
commitments for the interactive proof and at most 5nl+5l bits for the argument (assuming
k ≤ l). By contrast, the PCP-based methods of [15], [16] hardly have any practical
relevance because of the elaborate reductions needed to build a PCP.

Given a circuitC of sizem, one can easily build a formula of size O(m) that is satisfiable
precisely if C is. Hence our result implies an interactive proof that proves satisfiability of a
circuit of size m with error probability 2−m using O(m) commitments, adopting again the
convention of setting the security parameter equal to the input size. Even if an extremely
small PCP would exist, the protocol in [15] would use Ω(m logcm) commitments to solve
the same problem. To the best of our knowledge, our protocol is the first to acheive ”linear
zero-knowledge” in this sense. For arguments, we get O(m2) bits using l = k = m, where
[16] would be O(m2 logm).

As a further application of our techniques, we show a connection to multiparty com-
putations, allowing for example t committed oblivious transfers with error probability 2−k

to be done simultaneously using O(t+ k) commitments. Improved results for the commu-
nication complexity of general computations follow from this.

3although no example is currently known that would support our needs, and not simultaneously imply
a collision intractable hash function

3

Remark

For the case of interactive proofs, we have, like [15], ignored in the statement of results
the communication needed to set up the commitment scheme 4. This is reasonable, as
the same commitment scheme can be reused in many proofs. For arguments, however, an
attractive point is that cheating is only possible if the intractability assumption used is
broken while the protocol is running 5. This, however, is only true if a new instance of the
commitment scheme is chosen in every run of the protocol. Our communication complexity
for arguments therefore includes communication for setting up the commitment scheme.

We also remark that in all our protocols, the verifier only sends random bits, so they
can be made non-interactive using the Fiat-Shamir heuristic.

2 Some Notation and Properties for Bit Commit-
ment Schemes

This section introduces some notation for bit commitments and states a little more precisely
the properties we need. For definitions of interactive poof systems and zero-knowledge,
please refer to [19].

We will think of a bit commitment scheme as defined by a probabilistic polynomial time
algorithm G called a key generator. It takes as input 1l, where l is a security parameter.
It produces a description of two functions c : {0, 1}lr × {0, 1} → {0, 1}l and v : {0, 1}l ×
{0, 1}lr ×{0, 1} → {accept, reject}. Here, lr polynomially bounded in l. We refer to these
functions as the public key of the commitment scheme.

To commit to a bit b, the prover (P) chooses r at random and sends c(r, b) to the
verifier (V). To open a commitment, P sends r, b to V , who computes v(c(r, b), r, b) and
accepts or rejects the opening, depending on the outcome.

This is certainly not the most general description possible of a commitment scheme,
but it will cover all the cases we consider here.

For interactive proofs, we will need commitments that are unconditionally binding: b is
uniquely determined from c(r, b); and computationally hiding: the distributions of c(r, 1)
and of c(r, 0), where r is random, are computationally indistinguishable (refer to [19] for
details). For such a commitment, P will run G, send the result to V , and possibly convince
V that the result was computed correctly.

For interactive arguments we need the dual poperties, namely that commitments are
unconditionally hiding: the distributions of c(r, 1) and of c(r, 0), where r is random, are
equal; and computationally binding: consider any probabilistic polynomial time algorithm
that receives c, v as generated by G on input 1l and produces x, r0, r1 as output. Then the
probability that v(x, r0, 0) = v(x, r1, 1) = accept is superpolynomially small in l. For such

4In any real implementation, the verifier needs to receive some public parameters of the commitment
scheme, and possibly a zero-knowledge proof that they were chosen correctly

5in contrast to the situation for proofs, where breaking the assumption at any later time can cause
problems

4

a commitment, V will run G, send the result to P , and possibly convince P that the result
was computed correctly.

Unconditionally hiding commitment may in addition be trapdoor, or chameleon [3].
For a trapdoor commitment, the generator G outputs in addition a string T called the
trapdoor information. Given the trapdoor, one can cheat the commitment scheme, i.e.
there is a polynomial time algorithm that on input T will produce pairs r0, r1 such that
c(r0, 0) = c(r1, 1) = C, v(C, r0, 0) = v(C, r1, 1) = accept, and the distribution of C is the
same as that of c(r, b) for random r. We will assume that, on the other hand, given C and
any pair r0, r1 such that v(C, r0, 0) = v(C, r1, 1) = accept, it is easy to compute T .

2.1 Special Properties Needed

We now explain three extra properties that we will need our bit commitment to possess
(two of them suffice for unconditionally binding commitments).

Definition 2.1 Let a bit commitment scheme be given. We say that commitments can be
negated if, when given a commitment C = c(r, b), V can (on his own) compute efficiently
a commitment C ′, such that there is an r′ for which C ′ = c(r′, 1 − b); moreover P can
efficiently compute r′ from r, and vice versa. ut

The second special property we need is that the scheme has an efficient proof of contents,
i.e. a protocol of a special form, that P can use to convince V that a commitment contains
a 1.

Definition 2.2 A bit commitment scheme has an efficient proof of contents if there is a
pair of probabilistic polynomial time interactive Turing machines (A,B), that receive a
commitment C as common input and have the following properties:

• (A,B) is a 3-move Arthur-Merlin game, i.e. conversations have the form (a, e, z),
where a, z are generated by A, and e is chosen by B at random in {0, 1}t, for some
t depending on l. At the end of the protocol, B evaluates a predicate φ on input
C, a, e, z and accepts if and only if φ(C, a, e, z) = 1. B always accepts if A know to
open C as a 1.

• Some technical conditions are needed for our main results: The communication com-
plexity of (A,B) is O(l) bits and t must be linear in l; for unconditionally binding
schemes we will always choose l such that t ≥ k, where 2−k is the error probability
we want for the interactive proof in which the scheme will be used.

• Given two accepting conversations of form (a, e, z), (a, e′, z′) (where e 6= e′), one
can efficiently compute r, such that v(C, r, 1) = accept. That is, (A,B) is a proof
of knowledge that A knows how to open C as a 1 (satisfying a particularly strong
version of knowledge soundness).

5

• (A,B) is honest verifier perfect zero-knowledge, with a simulator that on input C, e
produces a conversation (a, e, z) such that φ(C, a, e, z) = 1. We assume for simplicity
that the simulator will always produce an accepting conversation, even on input a
commitment containing a 0 (this is true of our concrete examples) 6.

ut

Finally, for an unconditionally hiding trapdoor commmitment scheme, we will need that
the the scheme has an efficient proof of knowledge of the trapdoor, i.e. there is a constant
round witness hiding proof of knowledge (see [10]), with communication complexity linear
in l, that V can use to demonstrate that he knows the trapdoor of the commitment scheme.
This will be necessary to prove that our argument is perfect zero-knowledge.

Examples of commitments that have these properties, based on either factoring or the
discrete log problem can be found in Section 6.

3 A General Framework

In this section, we give a general method for demonstrating that a word x is in a language
L ∈ NP . The same high level method works for both proofs and arguments, the only
difference being the type of bit commitment scheme used.

The resulting protocol will only be honest verifier zero-knowledge. Then in the following
two sections, we show how to obtain zero-knowledge in general for interactive proof, resp.
arguments.

We assume in this section that a bit commitment scheme satisfying Definitions 2.1 and
2.2 is already set up, so that we have functions c, v for committing and verifying. By
Cook’s theorem, there exists a Boolean formula Φ of size polynomial in |x| that can verify
an NP-witness of membership of x in L. In fact, any formula that does the verification will
do - and usually a formula constructed ad hoc can be much smaller than one constructed
through the machinery of Cook’s theorem. Without loss of generality, assume that Φ
contains only and-, or- and not operators, and that all negations occur at the inputs.

Let m be the number of different input variables to Φ, and n be the number of times Φ
reads an input variable. Thus m ≤ n. Let Φ′ denote the monotone formula obtained from
Φ by removing all the negations and renaming the input variables, so that all n references
to the input refer to different variables. For example, if Φ = (a ∧ b) ∨ (¬a ∧ ¬b), then we
would have Φ′ = (a ∧ b) ∨ (c ∧ d).

Let Ψ be a monotone formula on n input variables, and let a set of commitments
D1, .., Dn be given. Then we say that the set of strings r1, ..., rn Ψ-opens D1, ..., Dn if
Ψ(γ1, ..., γn) = 1, where γi = 1 if and only if v(Di, ri, 1) = accept.

To describe the general method, we will need the following theorem:
6Note that since commitments containing 0’s are assumed to be indistinguishable from 1-commitments,

the simulator would in general, except with negligible probability, produce an accepting conversation on
input a random 0-commitment

6

Theorem 3.1 Suppose we are given a bit commitment scheme which has an efficient proof
of contents (A,B) according to Definition 2.2. Let commitments D1, ..., Dn and a monotone
Boolean formula Ψ on n inputs be given, where Ψ uses each input bit only once. Then
there exists a protocol (A′, B′) with the following properties: (A′, B′) is a 3-move Arthur-
Merlin game, is honest verifier perfect zero-knowledge, and has communication complexity
t bits plus n times that of (A,B). Furthermore, from 2 conversations of (A′, B′) of form
(a, e, z), (a, e′, z′), where e 6= e′ one can efficiently compute a set of strings that Ψ-opens
D1, ..., Dn.

Proof For the proof, we need a result of Benaloh and Leichter [5]. They showed how
to construct a perfect secret sharing scheme based on any monotone Boolean formula Ψ.
The scheme can be thought of as a probabilistic algorithm which we will call BL. It takes
as input any monotone formula and any bitstring s (the secret) of finite length, say t. It
outputs a set of bit strings, shares s1, ..., sn, where n is the number of variables in Ψ. In
our case, where Ψ reads every variable once, the length of each share is t.

If I is a set of indices between 1 and n, we can define a bit string β1, . . . , βn in a natural
way by βi = 1 iff i ∈ I . Define Ψ(I) = Ψ(β1, . . . , βn). We can then describe the properties
of the output distribution of BL:

• Given {si| i ∈ I} where Ψ(I) = 1, it is easy to compute s.

• The distribution of any set {si| i ∈ I} where Ψ(I) = 0, is independent of s.

If Ψ(I) = 0, we let DI denote the distribution of {si| i ∈ I} (it can depend only on
I). It can easily be proved that given a secret s, a set of shares {si| i ∈ I}, distributed
according to DI , can always efficiently completed to a full set of shares consistent with s,
i.e. distributed according to the output distribution of DL on input Ψ, s.

In the following, let S denote the honest verifier simulator for the proof of contents.
Initially, the prover is given n commitments Di = c(ρi, βi) to bits βi, where ρi and βi are
private input to the prover. Furthermore, ρ1, . . . , ρn Ψ-opens D1, . . . , Dn. Let W be the
set of indices for which βi = 1, and let W ′ be the complement of W .

The following protocol has the properties claimed by the theorem.

1. A′ chooses a random bitstring s ∈ {0, 1}t and runs BL on input Ψ∗ and s 7. Let
s1, . . . , sn denote the resulting shares.

For i ∈W , A′ discards the share si (and also the string s. He now computes for each
Di a first message ai following the algorithm of A.

For i ∈W ′, A′ runs the simulator S on input of Di and si. This results in accepting
conversations ai, si, zi, i.e. φ(Di, ai, si, zi) = 1.

A′ sends all ai’s to B′.
7Ψ∗ denotes the dual of Ψ, which is a monotone Boolean formula as well. By definition, for x ∈ {0, 1}n,

Ψ∗(x) = 1 iff Ψ(x⊕ 1) = 0 and Ψ∗(x) = 0 otherwise.

7

2. The verifier sends a random challenge e ∈ {0, 1}t to the prover.

3. The prover interprets e as a secret in the sharing scheme and completes shares si
with i ∈ W ′ to a full set of shares s1, . . . , sn consistent with e. Next, for i ∈ W
he completes the conversation by computing zi such that φ(Di, ai, si, zi) = 1. Note
that here the shares si are now interpreted as challenges. Finally, the prover sends
s1, . . . , sn and z1, . . . , zn to the B′, who accepts iff the set of shares is consistent with
c and if all n conversations ai, si, zi are accepting, i.e., φ(Di, ai, si, zi) = 1.

Completeness:
Trivial by the assumptions on the proof of contents and by the properties of the secret
sharing scheme BL.
Soundness:
Suppose we are given two conversations {ai}, e, ({si}, {zi}) and {ai}, c′, ({s′i}, {z′i}) (i =
1 . . . n) with e 6= e′. Let S denote the set of i such that si 6= s′i, and S ′ the complement.
Then for i ∈ S we can compute ri such that v(Di, ri, 1) = accept. This follows from the
assumptions on (A,B) (Definition 2.2). By monotonicity of Ψ, it is now sufficient to prove
that Ψ(S) = 1. Note that if we had Ψ∗(S ′) = 1, then the {si} and the {s′i} would be
determine the same secret (challenge value), which contradicts e 6= e′ (recall that we are
working with a secret sharing scheme for Ψ∗). Therefore Ψ(S) = 1, by definition of the
dual.
Honest verifier zero-knowledge:
Given commitments D1, . . . , Dn, the simulator runs as follows.

1. Choose c at random from {0, 1}t and run BL on input Ψ∗ and c. Let s1, . . . , sn
denote the output.

2. For i = 1 . . . n, run the simulator S on input Di and si. Output the conversations
ai, si, zi.

First note that the si are distributed exactly as in the protocol. For i ∈W ′, we are following
exactly A′’s algorithm for generating the rest of the conversations ai, si, zi. For i ∈ W ,
note that we have assumed that the simulator S can sample perfectly conversations with
a given challenge value (Definition 2.2), and so also in this case the conversations ai, si, zi
are distributed exactly as in the protocol.
Communication Complexity:
By inspection of the protocol.

ut
Theorem 3.1 leads to the following protocol for showing that Φ is satisfiable, with error

probability at most 2−k :
Protocol (P, V)

1. Let b1, .., bm be a set of input bits that satisfy Φ. For i = 1..m, P now makes a
commitment Ci to bi, and sends them to V .

8

2. For i = 1...m, V computes from Ci a commitment C ′i containing 1− bi.

3. Number the positions in Φ where an input bit is used from 1 through n. For j = 1..n,
let Dj = Ci, if the bit bi is used at this position, and let Dj = C ′i if the bit 1− bi is
used.

4. Using the protocol (A′, B′) guaranteed by Theorem 3.1, P now convinces V that
D1, ..., Dn can be Φ′-opened, i.e. that the bits contained in D1, ..., Dn satisfy the
monotone formula Φ′. The protocol (A′, B′) is repeated w times in parallel, where w
is minimal so that wt ≥ k.

The protocol is sound and complete
Completeness is trivial. For soundness, observe that if V accepts with probability > 2−k

then the prover must be able to answer at least two different challenges in some instance
of (A′, B′). By Theorem 3.1, this gives us a way to Φ′-open D1, ..., Dn. Let S be the
set of commitments we can open. Note that each Dj is either Ci or C ′i for some i. By
assumption on the commitment scheme, we can then open all the Ci’s for which Ci or C ′i
is in S. In fact, if Φ reads the same variable several times, we may have several values for
each bit in Ci and its complement. However, depending on the type of bit commitment,
inconsistencies are either impossible or allow breaking the intractability assumption. But
if there are no inconsistencies, we can make a string of bits b1, ..., bm that will satisfy Φ by
choosing bi to be the bit contained in Ci if Ci or C ′i is in S, and use an arbitrary value
otherwise. This works since by choice of the bi’s corresponding to elements in S, we have
ensured that Φ′ will receive enough 1 bits to be satisfied, and hence by monotonicity of Φ′,
the arbitrary choice of the rest of the bits does not affect the output.
The protocol is honest verifier zero-knowledge
To simulate, we construct the Ci’s as a set of all-0 commitments, and compute the C ′i’s from
this. We then invoke w times the honest verifier simulator of (A′, B′). This simulation is
perfect for unconditionally hiding commitments, and is computationally indistinguishable
for unconditionally binding commitments.

4 Interactive Proofs for NP

To make a zero-knowledge interactive proof from (P, V), we use an unconditionally binding
commitment scheme. The problem that (P, V) is only honest verifier zero-knowledge can
be solved using a method due to Okamoto [9], namely to let the verifier’s challenge be
determined by a two party coinflipping protocol:

1. The prover sends the first message of protocol (P, V).

2. For i = 1 to k do: the prover commits to a bit pi, the verifier chooses a random bit
vi, and the prover opens the commitment to pi.

3. The prover sends P ’s final message in protocol (P, V), taking the verifier’s challenge
to be p1 ⊕ v1, ..., pk ⊕ vk.

9

When the verifier is honest, the challenge is still uniformly chosen, so the error probability
is still 2−k. Moreover, the protocol can now be simulated against a general verifier since by
rewinding the verifier, the simulator can force the challenge to be a particular value of its
choice, and hence the honest verifier simulator we already had is enough to simulate the
rest of the conversation. The coinflipping step costs k commitments. Note also that we
have set up the bit commitments such that the parameter t is equal to k, and hence only
1 iteration of the protocol (A′, B′) is needed. Now by simple inspection of (P, V), we get

Theorem 4.1 Suppose there exists an unconditionally binding bit commitment scheme, in
which commitments can be negated, and which has an efficient proof of contents. Then
any L ∈ NP has a zero-knowledge interactive proof system that proves x ∈ L with error
probability at most 2−k using a total of O(|x|c) + k commitments, for some constant c
depending only on L.

5 Interactive Arguments for NP

To build a zero-knowledge interactive argument from (P, V), we use an unconditionally
hiding trapdoor bit commitment scheme:

1. The verifier runs the key generator G, sends the resulting public key for the commit-
ment scheme to the prover, and keeps the trapdoor private.

2. The verifier gives a witness hiding proof of knowledge of the trapdoor.

3. Protocol (P, V) is executed using the commitment scheme instance just generated.

The idea is taken from [11]. The protocol as shown here has 6 moves, but this can
be condensed to 4 moves in the same way as in [11]. The prover must compute the
trapdoor information in order to cheat the commitment scheme, and the verifier’s witness
hiding proof does not help him to do that. Hence the soundness of (P, V) is preserved.
Furthermore, the protocol is now zero-knowledge, since the simulator can use the knowledge
extractor for the verifier’s proof of knowledge to get the trapdoor information 8. Given the
trapdoor, simulation of the rest of the protocol is trivial. The witness hiding proof costs,
by assumption on the commitment scheme, a communication complexity that is O(l) bits.
We then get the following by inspection of (P, V):

Theorem 5.1 Suppose there exists an unconditionally hiding trapdoor bit commitment
scheme, in which commitments can be negated, and which has an efficient proof of contents
and an efficient witness hiding proof of knowledge of the trapdoor. Then any L ∈ NP has
a perfect zero-knowledge interactive argument that x ∈ L with communication complexity
O(|x|c) ·max(k, l) bits, where c is a constant depending only on L, and if the prover can

8Although this by itself may not produce the trapdoor with absolute certainty, the simulator can run an
exhaustive search for the trapdoor in parallel with the extractor. This will then produce the trapdoor in
those exponentially few cases where the extractor fails, while the expected running time remains polynomial

10

cheat with probability ε > 2−k, the prover can find the trapdoor of an instance of the
commitment scheme of size l in time O(1/(ε − 2−k)).

6 Practical Implementation and Optimizations

This section contains material related to practical implementation of our protocols. We
present examples of commitments with the properties we need and compute the concrete
communication complexities that result.

6.1 An Unconditionally Binding Bit Commitment Scheme

This scheme is based on the factoring problem, and is derived from the identification
scheme of Goulliou and Quisquater [14].

The key generator for this scheme chooses an l bit integer n as the product of two
primes p1, p2, such that there is an odd prime q that divides p1 − 1, but not p2 − 1 (easily
done by choosing q, p2 first and then looking for a prime of form 2jq+ 1 for some j). Then
a constant w is chosen as a random number in Z∗n which is not a q’th power modulo n.
The public key is now n, q, w. The functions c and v are defined by

c(r, b) = rqwδ(b) mod n

where r is random in Z∗n; and

v(C, r, b) = accept if and only if C = rqwδ(b) mod n,

where δ is defined as in the previous subsection.
Uisng the fact that 2 and q are relatively prime, it is not hard to show that we can

have wrq = w−1r′q mod n if and only if w is a q’th power, and the scheme is therefore
unconditionally binding. After choosing the public key, P should convince V in zero-
knowledge that w does not have a q’th root. This is easily done using a variant of the
protocol from [19] for quadratic non-residuosity - note that it is easy for P to test if a
number y has a q’th root by testing if yφ(n)/q mod n = 1. Finding the bit contained in
a commitment C is precisely the problem of distinguishing cosets of the subgroup of q’th
powers in Z∗n, a variant of the quadratic residuosity problem. This is a well-known problem,
believed to be hard, if factoring is hard.

Hence we conjecture that the scheme is computationally hiding under the q’th residu-
osity assumption: the distributions of rqw mod n and rqw−1 mod n are computationally
indistinguishable, when r is random in Z∗n and the length of q is linear in the length of n.

Commitments can be negated: if C = c(r, b), then anyone can easily compute C ′ =
C−1 mod n = c(r−1, 1− b).

Finally, the following protocol (A,B) is an efficient proof of contents:

1. Let y = C/w mod n, where C = wrq mod n is the input commitment. Now A chooses
f at random in Z∗n and sends a = f q mod n to B.

11

2. B chooses e ∈ {0, 1}t at random (where t is maximal, such that 2t < q) and sends it
to A.

3. A sends to B z = f · re mod n

4. B checks that zq = a · ye mod n

6.2 Two Unconditionally Hiding Bit Commitment Schemes

As a first example, we observe that the scheme from the previous section can trivially be
turned into an unconditionally hiding scheme, by letting in stead the verifier run the key
generator, but choose w to be a q’th power. Then any commitment is a random q’th power,
and the trapdoor is a q’th root of w.

The second example is based on the discrete logarithm problem in a group of prime
order q. For concreteness, we think here of this group as a subgroup of Z∗p , where p is a
prime, and q divides p − 1. But any group of order q would do, e.g. on an elliptic curve.
The scheme is derived from the identification scheme of Okamoto [17].

To generate the public key of the scheme, choose an l-bit prime p, such that the prime
q divides p− 1 (this is easily done by picking q first of length slightly smaller than l and
then searching for p). Also find two elements g1, g2 ∈ Z∗p of order q. Then choose s1, s2 at
random modulo q and let w = gs11 g

s2
2 mod p. The public information is now p, q, g1, g2, w.

Let the function δ be defined by δ(0) = −1 and δ(1) = 1. Then the functions c and v
are defined by

c((r1, r2), b) = gr11 g
r2
2 w

δ(b) mod p

where r1, r2 are random in Zq ; and

v(C, (r1, r2), b) = accept if and only if C = gr11 g
r2
2 w

δ(b) mod p.

This scheme is unconditionally hiding, since any commitment is a random element in
the group of order q, independently of b. It is computationally binding if discrete logs in
the subgroup of order q are hard to compute, since being able to open a commitment both
ways trivially implies that you can compute u1, u2 such that w = gu1

1 g
u2
2 mod p, and solving

this problem for given p, q, g1, g2, w is well known to be equivalent to finding discrete logs
in the group generated by gi.

It is also clearly a trapdoor scheme, where the trapdoor can be any pair u1, u2 such that
w = gu1

1 g
u2
2 mod p.

Commitments can be negated: given C = c((r1, r2), b), then C ′ = C−1 mod p =
c((−r1,−r2), 1− b) contains 1− b.

The scheme has the following efficient proof of contents (A,B):

1. Let y = C ·w−1, where C = gr11 g
r2
2 w mod p is the input commitment. Now A chooses

f1, f2 at random in Zq and sends a = gf1
1 g

f2
2 mod p to B.

2. B chooses e ∈ {0, 1}t at random (where t is maximal, such that 2t < q) and sends it
to A.

12

3. A sends to B: z1 = f1 + er1 mod q and z2 = f2 + er2 mod q

4. B checks that gz11 g
z2
2 = aye mod p

It is trivial to verify that this protocol has the required properties. Note that the
protocol is actually a proof of knowledge that A knows how to express y as a product
of powers of g1, g2. For this problem, there are many witnesses (i.e. pairs of exponents
for g1, g2), but it is easy to see that the protocol is witness indistinguishable. And since
computing from one witness any other one is as hard as computing the discrete log of g1

base g2, it follows from [10] that the protocol is witness hiding, if discrete log is hard.
The same protocol can therefore be used to prove knowledge of the trapdoor - as required
above, it is constant round and witness hiding.

6.3 Concrete Communication Complexities

Assume we use one of the two example commitment schemes shown above to implement
our protocols. To evaluate their practical potential, we compute the exact communication
complexities that result. In general we can say that in the worst case, the formula Φ
uses every input bit and its complement exactly once, so that no reuse of commitments is
possible. Hence, in the (A′, B′) protocol, for each input bit we use at most the commitment
containing the bit, and the proof of contents done w.r.t. this bit.

For both commitments schemes, we have to choose the parameter l such that either
factoring or discrete log is infeasible, which means that l should be 700−1000. To ensure a
chance of at most 1 in a billion of cheating it suffices that k = 30, so we reasonably assume
that k ≤ l in any practical situation.

From the description of the scheme from Section 6.1 based on factoring, we see that
the proof of contents requires communication equivalent to two commitments, plus a chal-
lenge value that will allways be of length at most 1 commitment (in fact usually much
shorter). One proof of contents therefore needs communication corresponding to at most
3 commitments.

From the description of the scheme from Section 6.2 based on discrete log, we see that
the proof of contents communicates numbers corresponding to at most 5l bits (3 numbers
plus 1 challenge).

For both the commitment schemes, it is clear that (P, V) will only need 1 iteration of
(A′, B′). Thus we have:

Proposition 6.1 Suppose the protocols from Theorem 4.1, resp. 5.1 are executed using
the commitment schemes from Section 6.1, resp. 6.2, then assuming that l ≥ k, the
communication complexities will be at most 4n + k + 1 commitments, resp. 5nl + 5l bits,
where n is the number of times a Boolean formula for verifying an NP witness for L reads
an input variable.

A simple computation shows that with for example about 3 Mbyte of communication,
and using k = 50, l = 768, n can be up to about 10.000. This might be enough to prove

13

e.g. that you know a DES key encrypting a given cleartext block to a given ciphertext
block.

In a similar case, the short discreet proofs of Boyar and Peralta [2] use significantly less
communication, about 0.3 Mbyte, but much more computation - a factor of very roughly
k/10 log n more than our protocol9. However, it is currently an open problem to prove
anything about the soundness and ”discreteness” of the proofs from [2], even assuming
hardness of factoring or discrete log. Thus the factor 10 in communication seems to be the
price we currently have to pay for provable security.

We note that in general, our protocol may be significantly optimized by building ad hoc
as small a formula Φ as possible for the problem. Furthermore it may be possible to find
a smaller monotone formula computing the same function as the one constructed directly
from Φ.

For the interactive proofs, k ”extra” commitments are needed to make the proof simu-
latable against a general verifier. Some of these can be saved by comitting to a logarithmic
number of bits in one commitment, thus doing the two-party coinflip on a logarithmic
number of bits simultaneously.

7 Applying our Technique to Multiparty Computa-
tions

Loosely speaking, the multiparty computation problem is defined by a function f with p
arguments and p participants such that the i’th participant owns a value xi of the i’th
argument to f . The goal is to design a protocol such that all participants learn the value
of f(x1, ..., xp), but no coalition of participants can - even by deviating from the protocol
- learn more about the inputs than what is implied by their own inputs and the result.

The classical protocols for solving this problem in the broadcast model (where only
broadcast and no private channels are available) can be found in [13, 20], with efficiency
improvements e.g. in [6]. A much more substantial improvement can be obtained by using
the commitment scheme from Section 6.1 to implement directly a fundamental primitive
for multiparty computation known as committed oblivious transfer. Committed oblivious
transfer is sufficient to implement general multiparty computations, a concrete reduction
can be found in [8]. We have the following:

Proposition 7.1 Under the q’th residuosity assumption, there is a protocol for executing t
committed oblivious transfers with error probability 2−k using communication corresponding
to O(t + k) commitments.

A committed oblivious transfer takes part between two parties A and B. Initially A
has made two commitments C0, C1 to bits a0, a1, and B has made a commitment D to bit

9This is due to the fact that many randomly generated commitments must be used for every gate.
These commitments can be generated from a short random seed, and do not have to be communicated.
They do have to be computed on by both parties, however.

14

b. The purpose of the protocol is that B should end up making a commitment T to ab.
This must be done under the conditions that A does not learn b, and that B does not learn
a1−b.

We sketch here only our protocol for a single transfer without any formal proof.

1. Let n be the modulus used in A’s commitments. Then B chooses s ∈ Z∗n and ε = +1
or −1 at random. Then sends S = Cε

bs
q mod n to A.

2. B proves in zero-knowledge the following statement: (D contains 0 AND B knows
a q’th root of C0S OR C0S−1) OR (D contains 1 AND B knows a q’th root of C1S
OR C1S−1). This can be done by a straightforward variant of the protocol (P, V)
presented earlier.

3. If the above proof was successful, A opens the commitment S to reveal the bit c.

4. B makes the commitment T = c(r, ab) using that if ε = 1, then c = ab, else c = 1−ab.
B proves in zero-knowledge that the formula ((b = 1)∧(ab = a1))∨((b = 0)∧(ab = a0))
holds, where a0, a1, b, ab refer to the bits contained in the commitments C0, C1, D, T .
Again, it is straigtforward to devise a protocol for this based on the (P, V)-protocol.

It is clear that if B plays honestly, the protocol conveys no information about b since
S is distributed independently from C0, C1; and B will never accept an incorrect value of
ab since commitments are unconditionally binding. On the other hand, if A plays honestly
then except with probability negligible in k, B learns the value of ab and nothing about
a1−b (by the proof in step 2) and T contains the correct value (by the proof in step 4).
The communication complexity amounts to O(1) commitments for the proofs themselves
and O(k) commitments to generate the challenges for the proofs mutually at random. But
several transfers done in parallel can all use the same challenge values, and the proposition
above follows.

If one demands that the probability that a protocol for multiparty computation pro-
duces an incorrect result be exponentially small in the parameter k, earlier solutions need
communication corresponding to Ω(np2k) commitments, where n is the size of a Boolean
circuit computing f . Using the method above together with e.g. the framework from [6],
we get

Proposition 7.2 Under the q’th residuosity assumption, there is a protocol for doing se-
cure p-party computation in a circuit of size n that requires communication corresponding
to O(np2) +O(pk) commitments.

In this result, the O(np2) contribution accounts for the total size of the proofs that must
be given, while the O(pk) contribution accounts for the commitments needed to generate
mutually random challenges for the interactive proofs.

15

References

[1] J.Boyar, G.Brassard and R.Peralta: Subquadratic Zero-Knowledge, Journal of the
ACM, November 1995.

[2] J.Boyar and R.Peralta: Short Discreet Proofs, Proc. of EuroCrypt 96.

[3] G.Brassard, D.Chaum and C.Crépeau: Minimum Disclosure Proofs of Knowledge,
JCSS, vol.37, 1988.

[4] L.Babai, L.Fortnow, L.Levin and M.Szegedi: Checking Computations in Poly-
logarithmic Time, Proc. of STOC 91.

[5] J. Benaloh and J. Leichter: Generalized Secret Sharing and Monotone Functions, Proc.
of Crypto 88, Springer Verlag LNCS series, 25–35.

[6] D.Chaum, I.Damg̊ard and J. van de Graaf: Multiparty Computations ensuring Privacy
of each Party’s Input and Correctness of the Result, Proc. of Crypto 87.

[7] R.Cramer, I.Damgaard, and B.Schoenmakers: Proofs of partial knowledge and simpli-
fied design of witness hiding protocols, proc. of Crypto 94.

[8] C.Crépeau, J. van de Graaf and A. Tapp: Committed Oblivious Transfer and Private
Multiparty Computation, Proc. of Crypto 95.

[9] I.Damg̊ard, O.Goldreich, T.Okamoto and A.Wigderson: Honest Verifier vs. Dishonest
Verifier in Public Coin Zero-Knowledge Proofs, Proc. of Crypto 95.

[10] U. Feige and A. Shamir: Witness Indistinguishable and Witness Hiding Protocols,
Proc. of STOC 90.

[11] U. Feige and A. Shamir: Zero-Knowledg Proofs of Knowledge in Two Rounds, Proc.
of Crypto 89.

[12] O.Goldreich, S.Micali and A.Wigderson: Proofs that yield Nothing but their Validity
and a Methodology of Cryptographic Protocol Design, Proc. of FOCS 86.

[13] O.Goldreich, S.Micali and A.Wigderson: How to play any mental game, Proc. of FOCS
87.

[14] L.Guillou and J.J.Quisquater: A Practical Zero-Knowledge Protocol Fitted to Security
Microprocessor Minimizing both Transmission and Memory, Proc. of EuroCrypt 88.

[15] J.Killian: A note on Efficient Proofs and Arguments, Proc. of STOC 92.

[16] J.Killian: Efficient Interactive Arguments, Proc. of Crypto 95.

16

[17] T.Okamoto: Provably Secure and Practical Identification Schemes and Corresponding
Signature Schemes, Proc. of Crypto 92.

[18] A.De Santis, G Di Crescenzo, G. Persiano and M.Yung: On Monotone Formula Clo-
sure of SKZ, Proc. of FOCS 94.

[19] S.Goldwasser, S.Micali and C.Rackoff: The Knowledge Complexity of Interactive Proof
Systems, SIAM J.Computing, Vol.18, pp.186-208, 1989.

[20] A. Yao: How to generate and exchange secrets, Proc. of FOCS 86.

17

Recent Publications in the BRICS Report Series

RS-96-7 Ivan Damg̊ard and Ronald Cramer. Linear Zero-
Knowledegde - A Note on Efficient Zero-Knowledge Proofs
and Arguments. April 1996. 17 pp.

RS-96-6 Mayer Goldberg. An Adequate Left-Associated Binary
Numeral System in theλ-Calculus (Revised Version).
March 1996. 19 pp. Accepted forInformation Processing
Letters. This report is a revision of the BRICS Report RS-
95-38.

RS-96-5 Mayer Goldberg. Gödelisation in theλ-Calculus (Ex-
tended Version). March 1996. 10 pp.

RS-96-4 Jørgen H. Andersen, Ed Harcourt, and K. V. S. Prasad.A
Machine Verified Distributed Sorting Algorithm. February
1996. 21 pp. Abstract appeared in7th Nordic Workshop
on Programming Theory, NWPT '7 Proceedings, 1995.

RS-96-3 Jaap van Oosten.The Modified Realizability Topos. Febru-
ary 1996. 17 pp.

RS-96-2 Allan Cheng and Mogens Nielsen. Open Maps, Be-
havioural Equivalences, and Congruences. January 1996.
25 pp. A short version of this paper is to appear in the
proceedings ofCAAP '96.

RS-96-1 Gerth Stølting Brodal and Thore Husfeldt. A Commu-
nication Complexity Proof that Symmetric Functions have
Logarithmic Depth. January 1996. 3 pp.

RS-95-60 Jørgen H. Andersen, Carsten H. Kristensen, and Arne
Skou. Specification and Automated Verification of Real-
Time Behaviour — A Case Study. December 1995. 24 pp.
Appears in3rd IFAC/IFIP workshop on Algoritms and Ar-
chitectures for Real-Time Control, AARTC '95 Proceed-
ings, 1995, pages 613–628.

RS-95-59 Luca Aceto and Anna Inǵolfsdóttir. On the Finitary
Bisimulation. November 1995. 29 pp.

