
B
R

IC
S

R
S

-96-62
T

hiagarajan
&

W
alukiew

icz:
Linear

T
im

e
Tem

poralLogic
for

M
azurkiew

icz
Traces

BRICS
Basic Research in Computer Science

An Expressively Complete
Linear Time Temporal Logic for
Mazurkiewicz Traces

P. S. Thiagarajan
Igor Walukiewicz

BRICS Report Series RS-96-62

ISSN 0909-0878 December 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/

This document in subdirectoryRS/96/62/

An Expressively Complete Linear Time Temporal Logic

for Mazurkiewicz Traces1

P. S. Thiagarajan
SPIC Mathematical Institute

92 G.N.Chetty Road Madras 600017
India

pst@smi.ernet.in

I. Walukiewicz2

Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warsaw

Poland
igw@mimuw.edu.pl

Abstract

A basic result concerning LTL, the propositional temporal logic of linear time, is that it is
expressively complete; it is equal in expressive power to the first order theory of sequences. We
present here a smooth extension of this result to the class of partial orders known as Mazurkiewicz
traces. These partial orders arise in a variety of contexts in concurrency theory and they provide
the conceptual basis for many of the partial order reduction methods that have been developed in
connection with LTL-specifications.

We show that LTrL, our linear time temporal logic, is equal in expressive power to the first order
theory of traces when interpreted over (finite and) infinite traces. This result fills a prominent gap
in the existing logical theory of infinite traces. LTrL also provides a syntactic characterisation of
the so called trace consistent (robust) LTL-specifications. These are specifications expressed as
LTL formulas that do not distinguish between different linearisations of the same trace and hence
are amenable to partial order reduction methods.

1 Introduction

A basic result concerning LTL, the propositional temporal logic of linear time, is that it is
expressively complete; it is equal in expressive power to the first order theory of sequences [10,
6, 23]. Here we present a natural extension of this result to the class of labelled partial orders
known as Mazurkiewicz traces.

To motivate this extension, we first note that as suggested by Pnueli [16], LTL is often inter-
preted over the runs of a distributed system. It is well known that these runs can be grouped

1This work was done at BRICS, Basic Research in Computer Science, Centre of the Danish National Research
Foundation, Computer Science Department, Aarhus University, Denmark.

2The author was partially supported by Polish KBN grant
No. 8 T11C 002 11.

1

together into equivalence classes using the causal independence of actions performed by different
agents at separate locations; two runs are equated just in case they constitute two different lineari-
sations of the same partially ordered stretch of behaviour. Thus each equivalence class corresponds
to – all possible – linearisations of a partial order. In many settings, the partial orders that arise
in this fashion are Mazurkiewicz traces. It is also often the case that the property expressed by
an LTL formula is insensitive to the choice of linearisations in the sense that either all members
of an equivalence class of runs satisfy the formula or none do. For verifying such properties it
suffices to check that it holds for just one member of each equivalence class. The resulting savings
in the verification process can be often substantial. This is the insight that underlies many of the
so-called partial order reduction techniques [9, 14, 22].

There is an alternative way to exploit the non-sequential nature of the behaviour of distributed
systems and the resulting partial order based reduction methods. It consists of developing tem-
poral logics that can be directly interpreted over partial orders corresponding to the equivalence
classes of runs of a distributed system. This is one of the main motivations for studying linear time
temporal logics that are interpreted over traces. Yet another motivation is that traces are inti-
mately related to basic objects in concurrency theory such as Petri nets and event structures [13].

Starting with [18] a number of such logics have been proposed in the literature [1, 3, 12, 17].
The study of these logics has so far left open two important expressiveness issues, one theoretical
and the other pragmatic. From a theoretical standpoint, it has not been possible so far to exhibit
a temporal logic patterned after LTL that has the same expressive power as the first order theory
of infinite traces. This has been been an annoying gap in an otherwise smooth generalisation of
the theory of ω-sequences to the theory of infinite traces [8, 4]. From a pragmatic standpoint, the
“local” nature of the semantics of the logics that have been proposed so far makes it impossible
to express arbitrary global liveness and safety properties. (More material on these issues can be
found in [11].)

The temporal logic that we propose here, denoted LTrL, fulfils both these criteria. It is
expressively complete for both finite and infinite traces. And we can transparently formulate
within LTrL, global liveness and safety properties of all kinds. The existence of such a temporal
logic is not guaranteed in advance since the class of partial orders as a whole does not admit an
expressively complete temporal logic [7]. The only comparable previous result concerning traces is
due to Ebinger [3]. His logic, denoted TLPO, has both previous state and Since modalities. These
past modalities are used extensively in the proof of the fact that TLPO is expressively complete
when interpreted over finite traces. This proof does not extend to infinite traces. In contrast,
LTrL uses just a very restricted past state modality and as stated already, it is expressively
complete over the domain of infinite traces.

One consequence of our main result is that LTrL captures exactly the so called trace consistent
(robust) LTL-definable properties [19, 15]. These are properties that are naturally amenable to
partial order reduction methods. A second consequence is that the satisfiability problem for LTrL
is decidable. The decision procedure we obtain is non-elementary.

At present, we do not have an elementary decision procedure for LTrL and this is a limitation
shared by TLPO. Proving the existence of such a procedure seems to be a challenging problem
and its outcome will strongly influence the applicability of our logic as a specification formalism.

In the next section we introduce traces. The first order theory of traces as well as the syntax
and semantics of LTrL are presented in section 3. This leads to the formulation of the main result

2

and its corollaries. The major ingredients of the proof of the main result are: An observation
in [4] that makes crucial use of [6], a decomposition result for infinite traces, an easy version of
the Feferman-Vaught theorem for generalised products [5] and a new normal form linearisation of
traces. Indeed, it is the use of the Feferman-Vaught result and the new normal form that takes
us past the key technical hurdles. The proof is presented in section 4.

2 Traces

A (Mazurkiewicz) trace alphabet is a pair (Σ, I) where Σ is a finite set of actions and I ⊆ Σ×Σ
is an irreflexive and symmetric independence relation. D = (Σ×Σ)− I is called the dependency
relation. Through the rest of the paper we fix a trace alphabet (Σ, I) and we will often refer to it
implicitly. We let a, b range over Σ.

We shall view (Mazurkiewicz) trace as a restricted Σ-labelled poset. Let (E,≤, λ) be a Σ-
labelled poset. In other words, (E,≤) is a poset and λ : E → Σ is a labelling function. For
Y ⊆ E we define ↓Y = {x | ∃y ∈ Y. x ≤ y} and ↑Y = {x | ∃y ∈ Y. y ≤ x}. In case Y = {y} is a
singleton we shall write ↓y (↑y) instead of ↓{y} (↑{y}). We also let l be the relation: xl y iff
x < y and ∀z ∈ E. x ≤ z ≤ y implies x = z or z = y.

A trace (over (Σ, I)) is a Σ-labelled poset T = (E,≤, λ) satisfying:

(T1) ∀e ∈ E. ↓e is a finite set
(T2) ∀e, e′ ∈ E. el e′ ⇒ λ(e)Dλ(e′).
(T3) ∀e, e′ ∈ E. λ(e)Dλ(e′)⇒ e ≤ e′ or e′ ≤ e.

We shall refer to members of E as events. The trace T = (E,≤, λ) is said to be finite if E is
a finite set. Otherwise it is an infinite trace. Note that E is always a countable set. T is said to
be non-empty in case E 6= ∅. We let TRfin(Σ, I) be the set of finite traces and TRinf(Σ, I) be the
set of infinite traces over (Σ, I) and set TR(Σ, I) = TRfin(Σ, I) ∪ TRinf(Σ, I). Often we will write
TRfin instead of TRfin(Σ, I) etc.

Let T = (E,≤, λ) be a trace. A configuration is a finite subset c ⊆ E such that c =↓ c. We
let CT be the set of configurations of T and let c, c′, c′′ range over CT . Note that ∅, the empty
set, is a configuration and ↓ e is a configuration for every e ∈ E. Finally, the transition relation
→T ⊆ CT × Σ× CT is given by: c

a→T c
′ iff there exists e ∈ E such that λ(e) = a and e /∈ c and

c′ = c ∪ {e}. It is easy to see that if c
a→T c

′ and c
a→T c

′′ then c′ = c′′.

3 The Main Result

The first order theory of traces is formulated by assuming a countable set of individual variables
V ar = {x, y, z, . . . }; a family of unary predicates {Ra}a∈Σ; a binary predicate ≤. Then FO(Σ, I),
the set of formulas in the first order theory of traces (over (Σ, I)), is given by the syntax:

FO(Σ, I) ::= Ra(x) | x ≤ y |∼ ϕ | ϕ ∨ ϕ′ | (∃x)ϕ

Thus the syntax does not explicitly involve I. However, it is reflected in ≤ that will be interpreted
as the partial order relation associated with a trace which does indeed respect the independence
relation I.

3

Given a trace T = (E,≤, λ) and an associated valuation V : Var →E, the relation T |=FO
V ϕ

will denote that T is a model of ϕ ∈ FO(Σ, I). This notion is defined in the expected manner.
In particular, T |=FO

V Ra(x) iff λ(V (x)) = a and T |=FO
V x ≤ y iff V (x) ≤ V (y). As usual, a

sentence is a formula with no free variables. Lϕ will denote the set of models of the sentence ϕ:
Lϕ = {T | T ∈ TR and T |=FO ϕ}

We will say that L ⊆ TR is FO-definable iff there exists a sentence ϕ ∈ FO(Σ, I) such that
L = Lϕ.

The set of formulas of our linear time temporal logic of traces (LTrL) is defined as follows:

LTrL(Σ, I) ::= tt |∼ α | α ∨ β | 〈a〉α | αUβ | 〈a−1〉tt

Thus the next state modality is indexed by actions. There is also a very restricted version of
the previous state modality. Indeed the number of past formulas is bounded by the size of Σ. For
achieving the present aims, there is no need for atomic propositions. It is worth mentioning that
if atomic propositions are to be introduced then the valuations must be required to respect the
independence relation in a suitable fashion. The logic will become undecidable otherwise [11]. In
the current framework, a model of LTrL is just a trace T = (E,≤, λ). The relation T, c |= α will
denote that α ∈ LTrL(Σ, I) is satisfied at the configuration c ∈ CT . This notion is defined via:

• T, c |= tt. Furthermore ∼ and ∨ are interpreted in the usual way.

• T, c |= 〈a〉α iff ∃c′ ∈ CT . c
a→T c

′ and T, c′ |= α.

• T, c |= αUβ iff ∃c′ ∈ CT . c ⊆ c′ and T, c′ |= β and ∀c′′ ∈ CT . c ⊆ c′′ ⊂ c′ implies T, c′′ |= α.

• T, c |= 〈a−1〉tt iff ∃c′ ∈ CT . c′
a→T c.

The derived “sometime” and “always” modalities have pleasant semantics. More precisely, with

3α
∆⇔ tt Uα and 2α

∆⇔∼ 3 ∼ α, we have: T, c |= 2α iff ∀c′ ∈ CT . c ⊆ c′ implies T, c′ |= α. Thus
arbitrary liveness and safety properties interpreted over the global states of a distributed system
can be formulated in LTrL. With each formula α ∈ LTrL(Σ, I), we can associate a set of traces
as follows: Lα = {T ∈ TR | T, ∅ � α}. We say that L ⊆ TR is LTrL-definable iff there exists a
formula α ∈ LTrL(Σ, I) such that L = Lα. Our main result can now be stated.

Theorem 1
Let L ⊆ TRinf. Then L is FO-definable iff L is LTrL-definable.

Indeed this result goes through in case L ⊆ TRfin or L ⊆ TR. We note that in case I = ∅,
Theorem 1 is just the expressiveness result of [6] in a different and slightly weakened (because of
the past modalities) form. As the first order theory of traces is decidable [4] and our translations
are constructive we immediately obtain:

Corollary 2 The satisfiability problem for LTrL is decidable.

To bring out one more consequence of Theorem 1, we shall define LTL(Σ), linear time temporal
logic interpreted over Σ-sequences. We will use Σ∗ and Σω to denote the set of finite and infinite
sequences over Σ respectively. We will use Σ∞ for Σ∗ ∪ Σω.

4

The syntax of LTL(Σ) is given by:

LTL(Σ) ::= tt |∼ α̂ | α̂ ∨ β̂ | 〈a〉α̂ | α̂ U β̂.

For σ ∈ Σ∞, let prf(σ) denote the set of finite prefixes of σ and let τ v τ ′ denote that τ is a
prefix of τ ′. Then σ, τ |= α̂ will stand for α̂ being satisfied at the prefix τ of σ. This notion is
defined in the usual way.

• σ, τ |= tt. The connectives ∼ and ∨ are interpreted in the standard fashion.

• σ, τ |= 〈a〉α̂ iff τa ∈ prf(σ) and σ, τa |= α̂.

• σ, τ |= α̂U β̂ iff ∃τ ′ ∈ prf(σ) such that τ v τ ′ and σ, τ ′ |= β̂. Moreover for every τ ′′ ∈ prf(σ),
if τ v τ ′′ @ τ ′ then σ, τ ′′ |= α̂.

Next, let T = (E,≤, λ) ∈ TR. Then σ ∈ Σ∞ is a linearisation of T iff there exists a map
ρ : prf(σ)→CT , such that, the following conditions are met:

(i) ρ(ε) = ∅ (ε is the null string)

(ii) ∀τa ∈ prf(σ) with τ ∈ Σ∗, ρ(τ)
a→T ρ(τa)

(iii) ∀e ∈ E ∃τ ∈ prf(σ). e ∈ ρ(τ).

The function ρ will be called a run map of the linearisation σ. Note that the run map of a
linearisation is unique. In what follows we shall let lin(T) to be the set of linearisations of the
trace T . The notion of linearisation induces the well-known equivalence relation ≈I⊆ Σ∞ × Σ∞

via: σ ≈I σ′ iff there exists a trace T , such that, σ, σ′ ∈ lin(T). A formula α̂ is said to be trace
consistent if σ, ε � α̂ and σ ≈I σ′ implies σ′, ε � α̂; for every σ, σ′ ∈ Σ∞. As mentioned earlier,
specifications that are formulated as trace consistent formulas can be often verified efficiently
using partial order reduction techniques. LTrL provides a characterisation of trace consistent
LTL formulas in the following sense.

Corollary 3 For every formula α ∈ LTrL(Σ, I) there is a trace consistent formula α̂ ∈ LTL(Σ),
s.t.

⋃
{lin(T)|T, ∅ � α} = {σ|σ, ε � α̂}. For every trace consistent LTL(Σ) formula α̂ there is a

LTrL(Σ, I) formula α such that {σ|σ, ε � α̂} =
⋃
{lin(T)| T, ∅ � α}.

4 The Proof

The structure of the proof of Theorem 1 can be brought out by breaking it up into the following
steps.

Lemma 4 Let α ∈ LTrL(Σ, I). Then there exists ϕ ∈ FO(Σ, I) such that for every T ∈ TRinf:
T, ∅ |= α iff T |=FO ϕ.

5

Proof
The key observation underlying the proof is that a configuration can be described in FO(Σ, I) in
terms of its maximal elements. There can be no more than |Σ|maximal elements in a configuration.

In FO(Σ, I) the variables range over events, but we can use a finite set of variables to represent
a configuration. Intuitively a set of variables X represents in a given valuation V : Var → E the
configuration cXV = {e | ∃z ∈ X. e ≤ V (z)}.

For every set of variables X and every formula α of LTrL we will construct a formula ϕXα of
FO(Σ, I) with free variables in the set X. This formula will have the property that for every
valuation V : Var → E:

T �FOV ϕXα iff T, cXV � α (1)

In particular taking X = ∅ we will obtain the thesis of the lemma.
The construction proceeds by induction on α. If α = tt then for every X we put ϕXα = ∀ z. (z ≤

z). The cases for disjunction and negation are also obvious.
Suppose α = 〈a〉β. Let X = {x1, . . . , xk} (this set may be empty). We let ϕXα to be:

∃y. Ra(y) ∧ ϕX∪{y}β ∧
(∧
i=1,...,k

y 6≤ xi

)
∧
(
∀z. z < y ⇒

∨
i=1,...,k

z ≤ xi

)
Suppose α = βUγ. First, for two sets of variables Y, Z we define the formulas

Below(Y, Z) =
∧
y∈Y

∨
z∈Z

y ≤ z

SBelow(Y, Z) = Below(Y, Z) ∧ ¬Below(Z, Y)

Intuitively formula Below(X, Y) says that all the events in the configuration represented by Y
belong to a configuration represented by Z. The formula SBelow(X, Y) says the same plus the
fact that the configurations are not equal. With the help of this formula we define ϕXα for X 6= ∅
by:

∃Z. Below(X,Z) ∧ ϕZγ ∧
∀Y. (Below(X, Y) ∧ SBelow(Y, Z))⇒ ϕYβ

The quantifier ∃Z is an abbreviation of ∃z1, . . . , ∃z|Σ|. Similarly for ∀Y . We let ϕ∅α to be:

ϕ∅γ ∨ ∃Z. ϕZγ ∧ ϕ∅β ∧ ∀Y. SBelow(Y, Z)⇒ ϕYβ

Finally, if α = 〈a−1〉tt then the formula ϕXα is∨
x∈X

(
Ra(x) ∧

∧
x′∈X

x 6= x′ ⇒ x 6≤ x′
)

By induction on α one can show that the condition (1) is satisfied. �
The other direction is much more difficult. Our goal is:

6

Lemma 5 Let ϕ ∈ FO(Σ, I). Then there exists α ∈ LTrL(Σ, I) such that for every T ∈ TRinf :
T |=FO ϕ iff T, ∅ |= α.

The line of the proof is as follows. First we will define a decomposition of traces into traces with
special properties. Next we will show the above lemma for each of these special traces. Finally
we will put the obtained formulas together using properties of our decomposition.

4.1 Decomposition of traces

Our decomposition is done in two steps. First a trace is split into finite and infinite part. Then
the infinite part turns out to be a disjoint union of infinite traces and we separate the components
of this part.

Let T = (E,≤, λ) be a trace. Then alph(T) = {λ(e) | e ∈ E}. Denote Σfin

T = {a | λ−1(a) is a finite set}.
The trace T is called perpetual if it is non-empty and Σfin

T = ∅. Hence every perpetual trace is infi-
nite but converse is not always true. The trace T is called directed iff every two events e1, e2 ∈ E
have an upper bound under ≤, i.e., there exists e, such that, e1 ≤ e and e2 ≤ e.

We now define the Σ-labelled posets fin(T) and inf(T) via:

fin(T) = (Efin,≤fin, λfin) and inf(T) = (Einf,≤inf, λinf)

where Efin = {e | ∃e′. e ≤ e′ and λ(e′) ∈ Σfin

T } and Einf = E − Efin. Furthermore, ≤fin (≤inf) is
≤ restricted to Efin × Efin (Einf × Einf) and λfin (λinf) is λ restricted to Efin (Einf). The following
observation follows easily from the definitions.

Proposition 6 For every trace T , fin(T) is a finite trace. Further, inf(T) is a perpetual trace iff
T is an infinite trace.

Next we decompose inf(T).

Proposition 7 Let T = (E,≤, λ) be a perpetual trace. Then there exists a unique family of
traces {Ti = (Ei,≤i, λi)}mi=1 with m ≤ |Σ| such that the following conditions are satisfied:

(i) Each Ti is a perpetual directed trace.

(ii) For each i, j ∈ {1, . . . ,m}, if i 6= j then Ei ∩ Ej = ∅ and alph(Ti)× alph(Tj) ⊆ I.

(iii) E = ∪mi=1 Ei, ≤= ∪mi=1 ≤i and λ = ∪mi=1 λi.

Proof
Let T = (E,≤ λ) be a perpetual trace and let DT = (alph(T) × alph(T)) ∩D. Define a binary
relation ↔⊆ E × E via:

e↔ e′ iff ∃e′′. e ≤ e′′ and e′ ≤ e′′. (2)

We wish to show that ↔ is an equivalence relation. For this we will need three observations.

Observation 7.1 Suppose (a, b) ∈ DT and e ∈ E with λ(e) = a. Then there exists e′ ≥ e with
λ(e′) = b.

7

To see this, note that as T is perpetual, there must exist infinitely many events labelled by b.
For each such event eb we have eb ≤ e or e ≤ eb by condition T3 in the definition of a trace.

It cannot be the case that all these events are ≤-smaller than e; this would contradict the
condition (T1) of the definition of a trace. Hence there is an event e′ labelled by b that is not
≤-smaller than e. By the condition (T3) we have: e ≤ e′.

Observation 7.2 Let e, e′ ∈ E with e < e′. Then (λ(e), λ(e′)) ∈ D∗T .

As might be expected, D∗T is the (reflexive and) transitive closure of the relation DT . Let us
prove Observation 7.2. Call a path from e to e′ in T a sequence e = e0le1l · · ·len = e′. Clearly
such a path must exist because e < e′. This follows from T1 in the definition of a trace. Again,
by condition T2 in the definition of a trace, we have (λ(ei), λ(ei+1)) ∈ DT for 0 ≤ i < n.

Observation 7.3 For every e, e′ ∈ E we have: e↔ e′ iff (λ(e), λ(e′)) ∈ D∗T
If this observation holds then ↔ is an equivalence relation because D∗T is an equivalence relation.
To establish the observation first assume that e′′ ∈ E with e ≤ e′′ and e′ ≤ e′′ so that e↔ e′. From
Observation 7.2 and the fact that D∗T is an equivalence relation, we at once have (λ(e), λ(e′)) ∈ D∗T .
So next assume that (λ(e), λ(e′)) ∈ D∗T with λ(e) = a and λ(e′) = b. If a = b then e↔ e′ follows
at once from condition T3 in the definition of a trace. So assume a 6= b. Let a0, a1, . . . , an be a
sequence such that a = a0, an = b and (ai, ai+1) ∈ DT for 0 ≤ i < n. By repeated applications of
Observation 7.1 we can find a sequence of events e0, e1, . . . , en in E such that e = e0, λ(ei) = ai
and ei ≤ ei+1 for 0 ≤ i < n. Since λ(en) = b = λ(e′) we must have e′ ≤ en or en ≤ e′. In either
case, e↔ e′ as required.

To finish the proof of the proposition, let {eq1, eq2, . . . , eqm} be the set of D∗T - equivalence
classes of alph(T). Define Ti = (T |eqi,≤ |eqi, λ|eqi) where |eqi denotes the restriction to the events
labelled with the letters in eqi. Conditions (i) and (ii) follow from Observation 7.3. Condition
(iii) follows directly from the definition of the traces Ti. �

Definition 8 (Shape) The shape of a perpetual trace T is the family {alph(Ti)}mi=1 where {Ti}mi=1

is the decomposition described above. (In other words the shape of T is the D∗T - equivalence classes
of alph(T))

A family {Σi}mi=1 is a shape in an alphabet (Σ, I) if it is the shape of some perpetual trace over
this alphabet.

4.2 Decomposing formulas in FO

Here we show a couple of composition lemmas which will allow us to reason about the properties
of the whole trace in terms of the properties of its components. Before doing this, let us recall,
for the sake of completeness, an easy case of composition theorem of Feferman and Vaught [5].
The reader familiar with this topic can proceed directly to Lemma 10.

Let us fix some finite relational signature Sig = {R1, . . . , Rl}. Given two structures

A = 〈A,RA1 , . . . , RAl 〉 B = 〈B,RB1 , . . . , RBl 〉

8

of this signature we define their disjoint union as the structureA⊕B of the signature Sig∪{in1, in2}:

A⊕ B =

〈A⊕B,RA1 ⊕RB1 , . . . , RAl ⊕RBl , inA⊕B1 , inA⊕B2 〉

here A ⊕ B and RAi ⊕ RBi stand for disjoint sums of the appropriate sets and inA⊕B1 (a) holds if
a ∈ A. Similarly inA⊕B2 (b) holds if b ∈ B.

Theorem 9 (Composition thm. for disjoint sum)
Let Sig be a finite relational signature. Let ϕ be a sentence of FO(Sig∪{in1, in2}). There exists
a finite collection of pairs (ψ1, ψ

′
1), . . . , (ψk, ψ

′
k) of FO(Sig) sentences, such that, for every two

structures A, B of the signature Sig we have:

A⊕B � ϕ iff there exists i ∈ {1, 2, . . . , k} with A � ψi and B � ψ′i.

Proof
The proof is a standard application of Ehrenfeucht-Fräıssé games. For description of the games
see for example [2]. We denote the n-move game on structures A and B by Gn(A,B). Let us
denote by qd(θ) the quantifier depth of the sentence θ. We define an n-theory of a structure C as
the set of sentences Thn(C) = {θ : qd(θ) ≤ n and C � θ}. We have the following characterisation
of n-theories in terms of Ehrenfeucht-Fräıssé games

Observation 9.1 Two structures A, B have the same n-theories iff Duplicator has a winning
strategy in the n-move Ehrenfeucht-Fräıssé game. Every n-theory is equivalent to a single sentence,
i.e., for every n-theory Γ there exist a sentence θΓ such that for every structure A: Thn(A) = Γ
iff A � θΓ.

The proof of this observation relies on the fact that the signatures are finite and relational.
The next observation is that the n-theory of A⊕ B is determined by the n-theories of A and
B. Indeed suppose that Thn(A) = Thn(A′) and Thn(B) = Thn(B′). By Observation 9.1 it is
enough to show that Duplicator has a winning strategy in the n-move game Gn(A⊕B,A′ ⊕B′).
By assumption Duplicator has winning strategies in the games Gn(A,A′) and Gn(B,B′). The
strategy in Gn(A⊕B,A′⊕B′) is to copy moves of Spoiler in this game to Gn(A,A′) or Gn(B,B′)
and consult the strategies there. For example if Spoiler puts a pebble on some element of the A
component of A ⊕ B then we put Spoilers pebble on the same element in the game Gn(A,A′).
The winning strategy of Duplicator in this game puts a pebble on some element of A′ and we copy
this move by putting a pebble on the same element of the A′ component of A′⊕B′. It should be
clear that such a strategy is winning for Duplicator.

After these preliminary remarks we are ready to prove the theorem. Let ϕ be a FO(Sig∪{in1, in2})
sentence. Let n be the quantifier depth of ϕ. Let (Γ1,Γ

′
1), . . . , (Γk,Γ

′
k) be all pairs of n-theories

such that:

if Thn(A) = Γi and Thn(B) = Γ′i then ϕ ∈ Thn(A⊕B)

The number of such pairs is finite because it can be proved by simple induction on n that there are
finitely many n-theories. From Observation 9.1 we know that for every Γi there exists a formula

9

ψi, such that, for every structure A: Thn(A) = Γi iff A � ψi. Similarly for every Γ′i we can find
ψ′i. We claim that (ψ1, ψ

′
1), . . . (ψk, ψ

′
k) satisfies the thesis of the theorem.

For left to right implication suppose that A⊕B � ϕ. Then ϕ ∈ Thn(A⊕B). Hence there exists
i, s.t. Thn(A) = Γi and Thn(B) = Γ′i. So A � ψi and B � ψ′i. The proof of the reverse implication
is similar. �

Let us now come back to decomposing traces. First we show that we can separate finite and
infinite part.

Lemma 10 Let ϕ ∈ FO(Σ, I). Then there exists a finite collection of pairs (ψ1, ψ
′
1), (ψ2, ψ

′
2), . . . , (ψk, ψ

′
k),

such that, ψi, ψ
′
i ∈ FO(Σ, I), for each i, and for every T ∈ TRinf: T |=FO ϕ iff there is

i ∈ {1, 2, . . . , k} with fin(T) |=FO ψi and inf(T) |=FO ψ′i.

Proof
Let ϕ ∈ FO(Σ, I) be given. We claim that there exists a formula ϕ′, such that, for every infinite
trace T :

T � ϕ iff fin(T)⊕ inf(T) � ϕ′ (3)

For this we show that in fin(T)⊕ inf(T) we can recover the ordering from T by means of a first
order formula. Recall that fin(T)⊕inf(T) is a structure of a signature {Ra}a∈Σ∪{≤, in1, in2}. The
carriers of T and fin(T)⊕ inf(T) are the same. Also the interpretations of the relations {Ra}a∈Σ

are the same. The interpretation of ≤ relation in fin(T) ⊕ inf(T) is the (disjoint) union of ≤fin

and ≤inf where fin(T) = (Efin,≤fin, λfin) and inf(T) = (Einf ,≤inf , λinf). Consider the formula:

θ(x, y) =
(
in1(x) ∧ in1(y) ∧ x ≤ y

)
∨
(
in2(x) ∧ in2(y) ∧ x ≤ y

)
∨
(
in1(x) ∧ in2(y) ∧ ∃z1∃z2. in1(z1)

∧ in2(z2) ∧D(z1, z2) ∧ x ≤ z1 ∧ z2 ≤ y
)

where D(z1, z2) is a formula stating that the labels of z1 and z2 are dependent. It is not difficult
to check that for all nodes x, y of T we have: T � x ≤ y iff fin(T)⊕ inf(T) � θ(x, y). Hence taking
ϕ and replacing all subformulas of the form x ≤ y by θ(x, y) we obtain a formula ϕ′ satisfying the
condition (3). The thesis of the lemma follows directly from Theorem 9. �

Next we further break up the assertions concerning inf(T) to mimic the decomposition described
in Proposition 7.

Lemma 11 Let ϕ ∈ FO(Σ, I) and sh = {Σi}mi=1 be a shape of (Σ, I). Then there exists a finite
array of formulas

(θ1
1, . . . , θ

1
m), (θ2

1, . . . , θ
2
m), . . . , (θn1 , . . . , θ

n
m)

such that the following conditions are satisfied:

10

(i) θji ∈ FO(Σi, I) for every i ∈ {1, 2, . . . ,m} and every j ∈ {1, 2, . . . , n}. (Observe that the
formulas with different subscripts have disjoint alphabets.)

(ii) Suppose T ∈ TRinf, and inf(T) is of shape sh. Let {Ti}mi=1 be a decomposition of inf(T) as in
Proposition 7. We have that inf(T) |=FO ϕ iff there exists j ∈ {1, 2, . . . , n}, s.t., Ti |=FO θji
for all i = 1, . . . ,m.

This lemma follows easily from Proposition 7 and another easy application of Theorem 9.

4.3 Translation for components

Here we present a translation of FO(Σ, I) formulas that works for finite traces as well as for
perpetual directed traces.

Lemma 12 Let ϕ ∈ FO(Σ, I). Then there exists a formula α ∈ LTrL(Σ, I) such that for every
finite or perpetual directed T ∈ TR we have: T |=FO ϕ iff T, ∅ |= α.

This lemma constitutes the heart of the proof of Theorem 1. The main ingredients involved
in establishing the lemma are an observation made in [4] and a new normal form linearisation of
traces. The first step is:

Lemma 13 Let ϕ ∈ FO(Σ, I). Then there exists a trace consistent α̂ ∈ LTL(Σ) such that for
every T ∈ TR, T |=FO ϕ iff σ, ε |= α̂ for some linearisation σ of T .

Proof
As observed in a slightly different setting in [4], this lemma follows easily from [6]. To see this, let
FO(Σ) be the first order theory whose syntax is exactly that of FO(Σ, I) but whose structures
are elements of Σ∞ with the usual semantics (see for instance [20]). In what follows, the semantic
relation of satisfiability associated with the sentences of FO(Σ) will be denoted |=f0 . A simple
but basic observation essentially due to Wolfgang Thomas [21] can be stated as:

Observation 13.1 For every sentence ϕ ∈ FO(Σ, I) there exists a sentence ϕ̂ ∈ FO(Σ) such
that for every trace T , T |=FO ϕ iff u |=fo ϕ̂ for every u ∈ lin(T).

Recall that lin(T) is the set of linearisations of T . Now let T = (E,≤, λ) be a trace, u ∈ lin(T)
and ρ : prf(u)→ CT the associated run map. Suppose that e ∈ E and λ(e) = a. Then there exists
a unique τa ∈ prf(u) such that e 6∈ ρ(τ) and e ∈ ρ(τa). Let us call this τa the occurrence of e in u.
It is not difficult to show that e < e′ in T with e, e′ ∈ E iff there exists τ0a0, τ1a1, . . . , τnan ∈ prf(u)
such that the following conditions are satisfied.

• τ0a0 is the occurrence of e and τnan is the occurrence e′ in u.

• τ0a0 v τ1a1 v . . . v τnan.

• 1 ≤ n ≤ |Σ| and ai D ai+1 for 0 ≤ i < n.

11

All these conditions can be expressed in FO(Σ) and this easily leads to Observation 13.1.
Now, by the expressiveness result of [6, 23], for each sentence ϕ̂ ∈ FO(Σ) there exists α̂ ∈

LTL(Σ) such that:
{u ∈ Σ∞ | u |=fo ϕ̂} = {u ∈ Σ∞ | u, ε |= α̂}.

The lemma now follows at once from the definition of trace consistent formulas. �
We now wish to exhibit a normal linearisation of traces that can be described withinLTrL(Σ, I).

As a result, we will be able to translate each LTL(Σ)-formula α̂ into LTrL(Σ, I)-formula α
with the property that a trace T satisfies α at a normal configuration iff α̂ is satisfied at the
corresponding prefix of the normal linearisation of T . Through the rest of the section we fix a
strict linear order ≺⊆ Σ× Σ. For ∅ 6= Σ′ ⊆ Σ, min(Σ′) will denote the least element of Σ′ under
≺.

Let T = (E,≤, λ) ∈ TR be a trace. Then the relation co ⊆ E×E is defined as: e co e′ iff e � e′

and e′ � e. Further, for e, e′ ∈ E we set Σee′ = λ(↑e−↑e′). (For X ⊆ E, λ(X) = {λ(x) | x ∈ X}.)

Definition 14 Let T = (E,≤, λ) be a trace. Then lexT ⊆ E×E is defined as: e lexT e
′ iff e < e′

or e co e′ and min(Σee′) ≺ min(Σe′e).

Suppose T = (E,≤, λ) is a trace and e, e′ ∈ E with e co e′. Then it is easy to show that
Σee′ ∩ Σe′e = ∅ and that both Σee′ and Σe′e are nonempty. Hence lexT is well-defined.

Lemma 15 Let T = (E,≤, λ) ∈ TR be a trace. Then (E, lexT) is a strict linear order.

Proof
Let e, e′ ∈ E with e 6= e′. It is straightforward to verify that e lexT e

′ or e′ lexT e but not both.
So what needs to be shown is that lexT is transitive.

Let e1, e2, e3 ∈ E with e1 lexT e2 and e2 lexT e3. To show e1 lexT e3, first note that e1, e2 and e3

must be pairwise distinct. For distinct i, j ∈ {1, 2, 3} we fix (if it exists) an event eij ∈ ↑ei − ↑ej
labelled with the ≺-smallest action among those occurring in ↑ei − ↑ej. We need to examine
several, quite easy, cases.

Suppose e1 < e2. Then ↑e2 − ↑e3 ⊆ ↑e1 − ↑e3 and ↑e3 − ↑e1 ⊆ ↑e3 − ↑e2. As lexT (e2, e3) we
get lexT (e1, e3).

The case when e2 ≤ e3 is done similarly. If e1 ≤ e3 then lexT (e1, e3) and we are done.
Suppose e1 co e2 and e2 co e3 and e1 6≤ e3. We claim that e1 co e3. If it were e3 ≤ e1 then
↑e1 − ↑e2 ⊆ ↑e3 − ↑e2 and ↑e2 − ↑e3 ⊆ ↑e2 − ↑e1. Hence λ(e32) � λ(e12) and λ(e21) � λ(e23).
We also know that λ(e12) ≺ λ(e21). This gives us λ(e32) ≺ λ(e23), a contradiction.

Hence we are left with the case when e1, e2, e3 are pairwise in co relation. From lexT (e1, e2)
and lexT (e2, e3) we get λ(e12) ≺ λ(e21) and λ(e23) ≺ λ(e32).

First we claim that:

λ(e13) � λ(e12). (4)

Suppose e12 6∈ ↑e3. Then e12 ∈ ↑e1 − ↑e3 and (4) follows. So assume that e12 ∈ ↑e3. Then
e12 ∈ ↑e3 − ↑e2. Since e2 lexT e3 we have:

λ(e23) ≺ λ(e32) � λ(e12). (5)

12

Now we must consider two cases. Suppose e23 ∈ ↑e1. Then e23 ∈ ↑e1 − ↑e3 and hence λ(e13) �
λ(e23) which then leads to (4). Suppose on the other hand e23 6∈ ↑e1. Then e23 ∈ ↑e2 − ↑e1

which leads to λ(e12) ≺ λ(e21) � λ(e23). But from (5) above we now have the contradiction:
λ(e12) ≺ λ(e12). Hence (4) must hold.

To finish the proof there are two cases to consider. Suppose e31 ∈ ↑e2. Then e31 ∈ ↑e2 − ↑e1

and from λ(e12) ≺ λ(e21) � λ(e31) and (4) we can deduce λ(e13) ≺ λ(e31). So suppose that
e31 6∈ ↑e2. Then e31 ∈ ↑e3 − ↑e2 and consequently λ(e23) ≺ λ(e32) � λ(e31). If e23 ∈ ↑e1 then
e23 ∈ ↑e1 − ↑e3 and hence λ(e13) � λ(e23) ≺ λ(e31) as desired. If on the other hand, e23 6∈ ↑e1

then e23 ∈ ↑e2 − ↑e1 and hence λ(e12) ≺ λ(e21) � λ(e23). This in turn leads to λ(e12) ≺ λ(e31).
From (4) we can again conclude that λ(e13) ≺ λ(e31).

�
We shall introduce the notion of normal configurations that in turn will enable us to define

normal linearisations of traces. Let T = (E,≤, λ) ∈ TR and c ∈ CT . Then c is a normal
configuration iff for every e ∈ c and every e′ ∈ E, if e′ lexT e then e′ ∈ c.

Now, let σ be a linearisation of T with ρ as the run map of σ (as defined in Section 3). Then
σ is a normal linearisation of T iff ρ(τ) is a normal configuration for every τ ∈ prf(σ). It is easy
to see that there can be at most one normal linearisation of a trace. Some traces do not have
normal linearisations. One of the reasons why we focus on directed perpetual traces is:

Lemma 16 If T is finite or a directed perpetual trace then there exists a unique normal lineari-
sation of T .

Proof
Let c be a configuration of a trace T = (E,≤, λ). We say that the event e ∈ E is enabled at c iff
e 6∈ c and c∪{e} is a configuration. (This notion plays an important role in the proof of the next
lemma too). It is easy to see that e is enabled at c iff e is a minimal element of E − c under ≤.
Next we note that if c is a normal configuration of the trace T and e is the least enabled event
at c under lexT (among all the enabled events at c), then c ∪ {e} is also a normal configuration.
From the fact that the empty configuration is always normal, it now follows that if T is a finite
trace then it admits a unique normal linearisation.

One can apply the same reasoning in case of directed perpetual traces but it may be not clear
that the obtained sequence contains all the events of the trace. To show that it is indeed the case
it is enough to show that for every event e the set {e′ | e′ lexT e} is finite.

Let {a1, . . . , ak} = alph(T) . Take an event e1 ≥ e labelled with a1. Such an event exists
because T is directed and perpetual. Then inductively for every i = 2, . . . , k take ei ≥ ei−1 labelled
by ai. We claim that if e′ lexT e then e′ ≤ ek. If e′ ≤ e then it is obvious. If e′ co e then let aj be
the label of e′. Clearly e′ ≤ ej . Hence e′ ≤ ek. We are done, as the set ↓ ek is finite. �

The crucial feature of lexT is that normal configurations are definable in LTrL.

Lemma 17 There exists an LTrL(Σ, I) formula NRC such that for every T ∈ TR and every
c ∈ CT : T, c |= NRC iff c is a normal configuration.

Proof
We will say that the event e is at the top of the configuration c iff c ∩ ↑e = {e}. In other words,
e is a maximal element of c under ≤. We let top(c) be the set of elements that are on the top of c.

13

Observation 17.1 Let T = (E,≤, λ) be a trace and c ∈ CT . Then c is not a normal configuration
iff there exist events e, e′ and e1 satisfying the following conditions:

(i) e ∈ top(c), e′ is enabled at c and e1 ∈ ↑e′ − ↑e,

(ii) ∀e2 ∈ E, if e2 ∈ ↑e− ↑e′ then λ(e1) ≺ λ(e2).

To see that this holds assume first that c is not a normal configuration. Then there exists
e3 ∈ c and e′3 6∈ c such that e′3 lexT e3. Let e ∈ top(c) such that e3 ≤ e and let e′ be enabled at
c such that e′ ≤ e′3. By the transitivity of lexT we now have e′ lexT e. Let x = min(Σe′e) and
e1 ∈ ↑e′ − ↑e such that λ(e1) = x. Now suppose e2 ∈ ↑e − ↑e′. By the definition of lexT , we
have x ≺ λ(e2).

Next suppose there exist e, e′ and e1 fulfilling the conditions specified by Observation 17.1. Let
e2 ∈ ↑e − ↑e′. Then λ(e1) ≺ λ(e2). Hence min(Σe′e) � λ(e1) ≺ min(Σee′). Thus e′ lexT e and c
is not normal.

We need to define an intermediate formula before getting to NRC. In what follows, for a, b, d ∈
Σ let Γdab = {S | S ⊆ Σ and a ∈ S but b, d 6∈ S}. We will use this notion only in contexts where
a 6= b and a 6= d.

For a, b, d ∈ Σ, define the formula µdab to be ∼ tt in case a = b or a = d. Otherwise,

µdab = 〈b−1〉tt ∧
∨
S∈Γdab

αS

where

αS =
(∧
x∈S
〈x−1〉tt

)
U
(
〈d−1〉tt ∧

∧
x∈S
〈x−1〉tt

∧
∧

y∈(Σ−S)−{d}

∼ 〈y−1〉tt
)
.

Observation 17.2 Let T = (E,≤, λ) be a trace and c ∈ CT . Then T, c |= µdab iff there exist
events e, e′, e1 such that the following conditions are satisfied:

(i) λ(e) = a, λ(e′) = b and λ(e1) = d.

(ii) e, e′ ∈ top(c) with e 6= e′ and e1 ∈ ↑e′ − ↑e.

To see that this must hold first suppose that T, c |= µdab. Then a 6= b and a 6= d. Let S ∈ Γdab
such that T, c |= 〈b−1〉tt ∧ αS. Then there exists c′ such that c ⊆ c′ and

T, c′ |= 〈d−1〉tt ∧
∧
x∈S
〈x−1〉tt ∧

∧
y∈(Σ−S)−{d}

∼< y−1 > tt. (1)

Furthermore, for every configuration c′′ such that c ⊆ c′′ ⊂ c′, we have

T, c′′ |=
∧
x∈S
〈x−1〉tt. (2)

14

Let e, e′ ∈ top(c) such that λ(e) = a and λ(e′) = b. Clearly, a 6= b implies e 6= e′.
Now suppose b = d. Then by setting e1 = e′, we at once get the desired conclusion. This follows

from the fact that a 6= b because b 6∈ S and hence λ(e) 6= λ(e′). But then e, e′ ∈ top(c) and thus
e′ ∈ ↑e′ − ↑e.

So assume that b 6= d. Then T, c′ |=∼ 〈b−1〉tt because b ∈ (Σ− S)− {d}.
Let e1 ∈ top(c′) such that λ(e1) = d. Such an e1 must exist because T, c′ |= 〈d−1〉tt. We now

wish to argue that e, e′ and e1 have the desired properties.
Let S = {a1, a2, . . . , ak}. Note that a ∈ S. Since T, c |=

∧
x∈S〈x−1〉tt, we can fix e1, e2, . . . ek ∈

top(c) such that λ(ej) = aj for each j ∈ {1, 2, . . . , k}. Clearly e ∈ {e1, . . . , ej}. We will first
argue that ej co e1 for every j which will lead to e co e1. So fix j ∈ {1, 2, . . . , k} and suppose
that ej co e1 does not hold. Since e1 ∈ top(c′) and c ⊆ c′ and ej ∈ top(c) we can rule out
e1 < ej . So it must be the case that ej < e1. But this implies that there exists a finite chain
ej = z0 l z1 l · · · l zn = e1. Since λ(e1) = d 6∈ S we have λ(ej) 6= d and n ≥ 1. Let i be the
least integer in {0, 1, . . . , n− 1} such that λ(zi) = aj and λ(zi+1) 6= aj . Let λ(zi+1) = â. Clearly
aj D â. Now consider the configuration ĉ = c ∪ ↓ zi+1. It is easy to check that c ⊆ ĉ ⊆ c′.
Hence T, ĉ |=

∧
x∈S〈x−1〉tt which then implies T, ĉ |= 〈(aj)−1〉tt. But zi+1 ∈ top(ĉ) and hence

T, ĉ |= 〈(â)−1〉tt. This is a contradiction because two distinct labels at the top of a configuration
can not be in the dependence relation. Thus ej co e1 and consequently e co e1.

Next we must show that e′ ≤ e1. Since T, c |= 〈b−1〉tt and T, c′ |=∼ 〈b−1〉tt (recall that we are
considering the case b 6= d) we know that e′ 6∈ top(c′). Hence there exists e′′ ∈ top(c′) such that
e′ < e′′. If e′′ = e1, we are done. Otherwise e′ < e′′ for some e′′ ∈ top(c′) with λ(e′′) = aj for some
aj ∈ S. We will now argue that this is impossible.

Suppose e′ < e′′ and λ(e′′) = aj ∈ S with e′′ ∈ top(c′). Then from ej ∈ top(c) and b 6∈ S, we get
aj I b. Consequently aj 6= b. Clearly there exists a non-null path e′ = z0 l z1 l · · ·l zn = e′′ .
Let i be the largest integer in {1, 2, . . . , n} such that zi = aj and zi−1 6= aj . Let λ(zi−1) = â and
ĉ = c ∪ ↓ zi−1. It is easy to check that c ⊆ ĉ ⊂ c′ and hence T, ĉ |= 〈(aj)−1〉tt. But zj−1 ∈ top(ĉ)
and hence T, ĉ |= 〈(â)−1〉tt. We now have a contradiction because â 6= aj and â D aj .

To prove the right to left implication of Observation 17.2 assume that the event e, e′ and e1

exist which fulfil the properties specified in the observation. Let c′ = c ∪ ↓ e1. Then e1 ∈ top(c′)
and hence T, c′ |= 〈d−1〉tt. Let S = {λ(e′′) | e′′ ∈ top(c′) and e′′ 6= e1}. First we assert a ∈ S.
This is because e ∈ top(c) and e co e1. Hence e ∈ top(c′) as well because c′ = c ∪ ↓ e1. By the
definition of S we are assured that d 6∈ S. Hence a 6= d. Next suppose b ∈ S. Then there exists
e′′ ∈ top(c′) such that e′′ 6= e1 and λ(e′′) = b. But then e′′ ∈ c ∪ ↓ e1 and since e′′ 6= e1 implies
e′′ co e1, we must have e′′ ∈ c. In fact e′′ ∈ top(c) because e′′ ∈ top(c′) and c ⊆ c′. But this implies
e′′ = e′ which contradicts e′ ≤ e1. Thus b 6∈ S and consequently b 6= a.

Clearly, by the choice of S, we have

T, c′ |= 〈d−1〉tt ∧
∧
x∈S
〈x−1〉tt ∧

∧
y∈(Σ−S)−{d}

∼ 〈y−1〉tt.

It is also clear that T, c |= 〈b−1〉tt. So suppose c ⊆ c′′ ⊂ c′ and â ∈ S. Then there exists
e′′ ∈ top(c′) such that λ(e′′) = â. But then c′ = c ∪ ↓ e1 and d 6∈ S at once leads to â ∈ top(c′′) as
well. Hence T, c′′ |= 〈(â−1〉tt. We now have T, c |= µdab.

15

Now we define the desired formula NRC as:

NRC =∼
∨

(a,b)∈I

〈b〉
(∨
d∈Σ

(
µdab ∧

∧
d′≺d
∼ µd

′
ba

))
.

To see that NRC has the required property assume first that T = (E,≤, λ) is a trace and ĉ ∈ CT
is a configuration that is not normal. Then by Observation 17.1, there exist event e, e′ and e1 such
that e ∈ top(ĉ), e′ is enabled at ĉ and e1 ∈ ↑e′ − ↑e. Further, if e2 ∈ ↑e− ↑e′ then λ(e1) ≺ λ(e2).
Let λ(e) = a, λ(e′) = b and λ(e1) = d. If e ≤ e′ then this would lead to e ≤ e1 contradicting
e co e1. Hence e co e′ as well. Consequently a 6= b and a 6= d. Now consider the configuration
c = ĉ ∪ {e′}. Clearly c fulfils the requirements of Observation 17.2 and hence T, c |= µdab. Now
suppose T, c |= µd

′
ba for some d′ ≺ d. Then by the definition of the formula µd

′
ba we are assured that

b 6= d′. Further, we already have b 6= a. Now again by Observation 17.2, there exists e2 such that
e2 ∈ ↑e − ↑e′ with λ(e2) ≺ λ(e1). But this contradicts the criteria justifying the choice of e, e′

and e1. Hence T, ĉ |=∼ NRC.
Next suppose T, ĉ |=∼ NRC. Then there exists (a, b) ∈ I and d ∈ Σ such that T, ĉ |=
〈b〉
(
µdab ∧

∧
d′≺d ∼ µd

′
ba

)
. Clearly a 6= b and a 6= d. Hence there exists an event e ∈ top(ĉ) and an

event e′ which is enabled at ĉ such that λ(e) = a and λ(e′) = b. Moreover with c = ĉ ∪ {e′}, we
have T, c |= µdab∧

∧
d′≺d ∼ µd

′
ba. Because T, c |= µdab there exists an event e1 such that λ(e1) = d and

e1 ∈ ↑e′ − ↑e. This follows from Observation 17.2. Now suppose there exists e2 ∈ ↑e− ↑e′ such
that λ(e2) = d′ ≺ d. If d′ 6= b then, by Observation 17.2, we have T, c′ |= µd

′
ba; a contradiction.

Hence it must be the case that d′ = b so that µd
′
ba =∼ tt. But this is again a contradiction, because

λ(e2) = d′ = b implies that e′ ≤ e2 or e2 ≤ e′ whereas we are supposed to have e2 co e
′. Thus

min(Σe′e) � d ≺ min(Σee′). This leads to e′ lexT e, which then guarantees that ĉ is not a normal
configuration. �

Using NRC, we now define the map ‖.‖ : LTL(Σ)→LTrL(Σ, I) via:

‖tt‖ = tt ‖ ∼ α̂‖ =∼ ‖α̂‖ ‖α̂ ∨ β̂‖ = ‖α̂‖ ∨ ‖β̂‖
‖〈a〉α̂‖ = 〈a〉(NRC ∧ ‖α̂‖)
‖α̂ U β̂‖ = (NRC ⊃ ‖α̂‖) U (NRC ∧ ‖β̂‖)

Lemma 18 Let α̂ be a formula of LTL(Σ). For every finite or perpetual directed trace T and its
normal linearisation σ0 we have: σ0, ε |= α̂ iff T, ∅ |= ‖α̂‖.

The lemma can be obtained without much work by structural induction of α̂ using the property
of NRC.

We claim that Lemma 12 follows from Lemma 18 and the previous results. To see this, let
ϕ ∈ FO(Σ, I) and T be a finite or perpetual directed trace. Then by Lemma 13, there exists
α̂ ∈ LTL(Σ), such that, T |= ϕ iff σ0, ε |= α̂; where σ0 is the normal linearisation of T . By
Lemma 18: T |= ϕ iff T, ∅ |= ‖α̂‖. Thus with each ϕ ∈ FO(Σ, I) we can associate the formula
‖α̂‖.

4.4 Composing formulas inLTrL

Lemma 19 Let ϕ ∈ FO(Σ, I). Then there exists a formula α ∈ LTrL(Σ, I) such that for every
T ∈ TRinf, inf(T) |=FO ϕ iff inf(T), ∅ |= α.

16

Proof
Let us fix a FO(Σ, I) formula ϕ. First, for every shape sh = {Σi}mi=1 of (Σ, I) we will construct
a LTrL formula αsh with the property:

for every trace T with inf(T) of shape sh:

inf(T) �FO ϕ iff inf(T), ∅ � αsh (6)

Let us fix a shape sh = {Σi}mi=1. By Lemma 11, for the shape sh we have an array of FO(Σ, I)
formulas:

(θ1
1, . . . , θ

1
m), (θ2

1, . . . , θ
2
m), . . . , (θn1 , . . . , θ

n
m) (7)

such that for every trace T , if inf(T) is of the shape sh and {Ti}mi=1 is the decomposition of inf(T)
as in Proposition 7 then:

inf(T) �FO ϕ iff there is j ∈ {1, 2, . . . n} such that

for all i ∈ {1, 2, . . . ,m}, Ti, ∅ � θji

Moreover each θji is over the alphabet Σi.
By Lemma 12, for every θji we can find a LTrL formula αji such that for every perpetual directed

trace T ′ over the alphabet Σi we have: T ′ |=FO θji iff T ′, ∅ � αji . Hence, for a decomposition
{Ti = (Ei,≤i, λi)}mi=1 as above and for every j = 1, . . . , n we have: Ti �FO θji iff Ti, ∅ � αji . Now
Σi × Σj ⊆ I whenever i 6= j and i, j ∈ {1, 2, . . . ,m}. Hence, we are assured that c ⊆ E is a
configuration of inf(T) iff ci = c ∩ Ei is a configuration of Ti for each i. It is easy to establish by
structural induction that for every formula γi over Σi (i.e. γi mentioning at most the letters in
Σi) and for every configuration c of inf(T), we have inf(T), c |= γi iff Ti, ci |= γi. Since each αji is
over the alphabet Σi we have: inf(T), ∅ |= αj1 ∧ αj2 · · · ∧ αjm iff Ti |= αji for each i.

Let us denote αj1 ∧ · · · ∧ αjn by βj and let

αsh = β1 ∨ · · · ∨ βn

It should be clear that αsh satisfies the property (6). Next we observe that we can write a formula
νsh in LTrL such that inf(T), ∅ |= νsh iff inf(T) is of shape sh. Let sh = {Σi}mi=1 and

Σsh =
m⋃
i=1

Σi.

Then

νsh =

(∧
a∈Σsh

3〈a〉tt
)
∧
(∧
a6∈Σsh

2 ∼ 〈a〉tt
)
.

Clearly (Σ, I) admits only finitely many shapes. Let SH be the set of all shapes. Then consider
the formula:

α =
∧

sh∈SH
(νsh ⊃ αsh).

It is not difficult to show now that α satisfies the property required by the lemma. �

17

Lemma 20 Let α0, α1 ∈ LTrL(Σ, I). Then there exists a formula α ∈ LTrL(Σ, I) such that for
every T ∈ TRinf, T, ∅ |= α iff fin(T), ∅ |= α0 and inf(T), ∅ |= α1.

Proof
First we define a LTrL formula Border that holds precisely in the configuration of T consisting
of all the events in fin(T):

Border = (
∧
a∈Σ

< a−1 > tt ⊃ 2 ∼< a > tt) ∧∧
b∈Σ

2(< b > tt ⊃< b > 3 < b > tt).

Next we define FIN to be the formula 3Border. We have that for every trace T : T, c � FIN
iff c ⊆ fin(T) and T, c � BORDER iff c = Efin; where Efin is the set of events of fin(T).

Now, with each formula α ∈ LTrL we associate the formula fin(α) inductively as follows.

fin(tt) = tt fin(∼ α) =∼ fin(α)

fin((α ∨ β)) =fin(α) ∨ fin(β)

fin(〈a〉α) =〈a〉(FIN ∧ fin(α))

fin(αUβ) =fin(α)U (FIN ∧ fin(β))

Also, with each formula β we associate the formula inf(β) given by: inf(β) = 3(Border ∧ β).
Now, let T = (E,≤, λ) ∈ TRinf and fin(T) = (Efin,≤fin, λfin) and inf(T) = (Einf ,≤inf , λinf).
It follows from the definitions that c ⊆ Efin is a configuration of fin(T) iff c is a configuration
of T . Hence using the properties of the translation map fin defined above we can establish by
structural induction on α that T, c |= fin(α) iff fin(T), c |= α for each configuration c of fin(T).

Next we note that c ⊆ Einf is a configuration of inf(T) iff Efin∪c is a configuration of T . Again,
by using the property of the map inf , we can show by structural induction, that

T,Efin ∪ c |= inf(β) iff inf(T), c |= β

for each configuration c of inf(T). It now follows at once that for every T ∈ TRinf, T, ∅ |=
fin(α0) ∧ inf(α1) iff fin(T), ∅ |= α0 and inf(T), ∅ |= α1.

�
Clearly Lemmas 10, 12, and 20 together yield Lemma 5 and we are done.
Using the intermediate lemmas that have been established to prove the main result, it is an

easy exercise to derive Corollary 3.

References

[1] R. Alur, D. Peled, and W. Penczek. Model-checking of causality properties. In LICS ’95, pages
90–100, 1995.

[2] H.-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer-Verlag, 1995.
[3] W. Ebinger. Charakterisierung von Sprachklassen unendlicher Spuren durch Logiken. PhD thesis,

Institut für Informatik, Universität Stuttgart, 1994.

18

[4] W. Ebinger and A. Muscholl. Logical definability on infinite traces. In ICALP ’93, volume 700,
pages 335–346, 1993.

[5] S. Feferman and R. Vaught. The first order properties of products of algebraic systems. Fundamenta
Mathematicae, 47:57–103, 1959.

[6] A. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness. In 7th Ann.
ACM Symp. on Principles of Programming Languages, pages 163–173, 1980.

[7] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic : Mathematical Foundations and
Computational Aspects, volume 1. Clarendon Press, Oxford, G.B., 1994.

[8] P. Gastin and A. Petit. Asynchronous cellurar automata for infinite traces. In ICALP ’92, volume
623 of LNCS, pages 583–594, 1992.

[9] P. Godefroid. Partial-order methods for the verification of concurrent systems, volume 1032 of
LNCS. Springer-Verlag, 1996.

[10] H. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of California, 1968.
[11] M. Mukund and P.S. Thiagarajan. Linear time temporal logics over traces. In MFCS’96, volume

1113 of LNCS, pages 62–92, 1996.
[12] P. Niebert. A ν-calculus with local views for sequential agents. In MFCS ’95, volume 969 of LNCS,

pages 563–573, 1995.
[13] M. Nielsen and G. Winskel. Trace structures and other models for concurrency. In V. Diekert and

G. Rozenberg, editors, The Book of Traces, pages 271–305. World Scientific, Singapore, 1995.
[14] D. Peled. Partial order reduction : model checking using representatives. In MFCS’9, volume 1113

of LNCS, pages 93–112, 1996.
[15] D. Peled, T. Wilke and P. Wolper. An Algorithmic Approach for Checking Closure Properties of

ω-Regular Languages. In CONCUR’96, volume 1119 of LNCS, Springer-Verlag, (1996) 596-610.
[16] A. Pnueli. The temporal logic of programs. In 18th Symposium on Foundations of Computer Science,

pages 46–57, 1977.
[17] R. Ramanujam. Locally linear time temporal logic. In LICS ’96, pages 118–128, 1996.
[18] P. S. Thiagarajan. A trace based extension of linear time temporal logic. In LICS ’94, pages

438–447, 1994.
[19] P. S. Thiagarajan. A trace consistent subset of PTL. In CONCUR ’95, volume 962 of LNCS,

Springer-Verlag, (1995) 438-452.
[20] W. Thomas. Automata on infinite objects. In J. van Leeuven, editor, Handbook of Theoretical

Computer Science Vol.B, pages 133–192. Elsevier, 1990.
[21] W. Thomas. On logical definability of trace languages. In V. Diekert, editor, Workshop of the

ESPRIT Basic Research Action No: 3166, volume Report TUM-19002, Technical University of
Munich,, pages 172–182, 1990.

[22] A. Valmari. A stubborn attack on state explosion. Formal Methods in System Design, 1:297–322,
1992.

[23] L. Zuck. Past temporal logic. PhD thesis, Weizmann Institute of Science, Israel, 1986.

19

Recent Publications in the BRICS Report Series

RS-96-62 P. S. Thiagarajan and Igor Walukiewicz.An Expressively
Complete Linear Time Temporal Logic for Mazurkiewicz
Traces. December 1996. 19 pp. To appear inTwelfth
Annual IEEE Symposium on Logic in Computer Science,
LICS ’97 Proceedings.

RS-96-61 Sergei Soloviev.Proof of a Conjecture of S. Mac Lane.
December 1996. 53 pp. Extended abstract appears in
Pitt, Rydeheard and Johnstone, editors,Category The-
ory and Computer Science: 6th International Conference,
CTCS ’95 Proceedings, LNCS 953, 1995, pages 59–80.

RS-96-60 Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal in 1995. December
1996. 5 pp. Appears in Margaria and Steffen, editors,
Tools and Algorithms for The Construction and Analysis
of Systems: 2nd International Workshop, TACAS ’96 Pro-
ceedings, LNCS 1055, 1996, pages 431–434.

RS-96-59 Kim G. Larsen, Paul Pettersson, and Wang Yi.Compo-
sitional and Symbolic Model-Checking of Real-Time Sys-
tems. December 1996. 12 pp. Appears in16th IEEE
Real-Time Systems Symposium, RTSS ’95 Proceedings,
1995.

RS-96-58 Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal — a Tool Suite for
Automatic Verification of Real–Time Systems. December
1996. 12 pp. Appears in Alur, Henzinger and Sontag,
editors,DIMACS Workshop on Verification and Control of
Hybrid Systems, HYBRID ’96 Proceedings, LNCS 1066,
1996, pages 232–243.

RS-96-57 Kim G. Larsen, Paul Pettersson, and Wang Yi.Diagnostic
Model-Checking for Real-Time Systems. December 1996.
12 pp. Appears in Alur, Henzinger and Sontag, editors,
DIMACS Workshop on Verification and Control of Hybrid
Systems, HYBRID ’96 Proceedings, LNCS 1066, 1996,
pages 575–586.

