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A Compositional Proof of a Real–Time Mutual Exclusion
Protocol

K̊are J. Kristoffersen1 Francois Laroussinie3 Kim G. Larsen1

Paul Pettersson2 Wang Yi2

1 BRICS† , Aalborg University, DENMARK
2 Department of Computer Systems, Uppsala University, SWEDEN

3 LIFAC – ENS de Cachan, FRANCE

Abstract. In this paper, we apply a
compositional proof technique to an au-
tomatic verification of the correctness of
Fischer’s mutual exclusion protocol. It
is demonstrated that the technique may
avoid the state–explosion problem. Our
compositional technique has recently been
implemented in a tool CMC5, which gives
experimental evidence that the size of
the verification effort required of the tech-
nique only grows polynomially in the
size of the number of processes in the
protocol. In particular, CMC verifies the
protocol for 50 processes within 172.3
seconds and using only 32MB main mem-
ory. In contrast all existing verification
tools for timed systems will suffer from
the state–explosion problem, and no tool
has to our knowledge succeeded in veri-
fying the protocol for more than 11 pro-
cesses.

1 Introduction

It is well–known that the major problem in apply-
ing automatic verification techniques to analyze
finite–state concurrent systems is the potential
combinatorial explosion of the state space arising
from parallel composition. In the last few years,
there has been a number of automatic verification
tools for real–time systems [4, 12, 8]. Experiences
with these tools show that the state–explosion

† Basic Research in Computer Science, Centre of the
Danish National Research Foundation.

5 CMC: Compositional Model Checking

problem is even more serious in verifying timed
systems. As such a system must satisfy certain
timing constraints on its behaviour, a model–chec-
ker must keep track of not only the part of state–
space explored, but also timing information asso-
ciated with each state (i.e. possible clock values),
which is both time and space–consuming. This
has been evidenced by experiments performed on
various automatic verification tools for timed sys-
tems [4, 12, 8]. To our knowledge, none of the ex-
isting tools has succeeded in verifying the mutual
exclusion property of Fischer’s protocol (which
is a well–known benchmark example) with more
than 11 processes regardless of which machine the
tools have been installed on.

During the last decade, various techniques have
been developed to avoid the state–explosion prob-
lem in verifying finite–state systems, either by sym-
bolic representation of the states space using BDDs
[5], by application of partial order methods [10,
18] which suppresses unnecessary interleavings of
transitions, or by application of abstractions and
symmetries [6, 7, 9]. These techniques have been
further extended to deal with timed systems, e.g. [4,
12],[17], [8]. However, when applying these tech-
niques to parallel systems such as Fischer’s pro-
tocol, a potential explosion in the global state–
space remains. In [2], a compositional verification
technique is developed by Andersen [2] for finite–
state systems. In [13, 15], the technique has been
further extended to deal with real–time systems
modelled as networks of timed automata, which
allows components of a real–time system to be
gradually moved from the system description into
the specification, thus avoiding any global state–



space construction and even examination. Essen-
tial to the technique is that intermediate specifi-
cations are kept small using efficient minimization
heuristics.

The main ingredient in the compositional verifica-
tion technique is the so–called quotient construc-
tion, which allows components of a network to be
moved into the specification. For example, con-
sider the following typical model-checking prob-
lem (

A1 | . . . |An
)
|= ϕ

where the Ai’s are timed automata. We want to
verify that the parallel composition of these satis-
fies the formula ϕ without having to construct the
complete control-node space of (A1 | . . . |An). We
will avoid this complete construction by remov-
ing the components Ai one by one while simul-
taneously transforming the formula accordingly.
Thus, when removing the component An we will
transform the formula ϕ into the quotient formula
ϕ/An such that(

A1 | . . . |An
)
|= ϕ iff (1)(

A1 | . . . |An−1

)
|= ϕ/An

Now clearly, if the quotient is not much larger
than the original formula we have succeeded in
simplifying the problem. Repeated application of
quotienting yields(

A1 | . . . |An
)
|= ϕ iff (2)

1 |= ϕ/An /An−1 / . . . /A1

where 1 is the unit with respect to parallel com-
position. However, these ideas alone are clearly
not enough as the explosion may now occur in
the size of the final formula instead. The crucial
observation by Andersen was that each quotient-
ing should be followed by a minimization of the
formula based on a small collection of efficiently
implementable strategies. The ideal case is that
an intermediate quotient formula is simplified to
true; then we have proven that the original net-

work of automata, i.e.
(
A1 | . . . |An

)
satisfies the

original formula ϕ.

In this paper, we apply this technique to give a
compositional proof for Fischer’s mutual exclu-
sion protocol. In particular, it is shown that state–
explosion is avoided in the verification of the pro-
tocol: the size of the correctness proof we offer
only grows polynomially in the size of the number
of processes in the protocol. The compositional
technique has recently been implemented using
C++ in a tool called CMC, Compositional Model
Checking. This tool gives further experimental ev-
idence of the potential of the technique: using only
172.3 seconds and 32MB main memory CMC au-
tomatically verifies the mutual exclusion property
for Fischer’s protocol with 50 processes.

The paper is organized as follows: In the next sec-
tion we briefly introduce our modelling and spec-
ification languages for real–time systems, and the
formal description of Fischer’s mutual exclusion
protocol. Section 3 describes the compositional quo-
tienting method and simplification techniques for
logical formulas. In section 4, we present the proof
for the mutual exclusion property of Fischer’s pro-
tocol. In section 5 we report on the experimental
results obtained using the CMC tool and com-
pare the performance with that of our existing
tool–suite [3]. Finally, in section 6 we give some
concluding remarks and illustrate future work.

2 Real–Time Systems

In this section, we briefly introduce our modelling
and specification languages for real–time systems,
that have been studied previously in the litera-
ture, e.g. [19, 13, 15, 16]. For details, we refer
to [15].

2.1 Models

Timed Transition System: We use timed tran-
sition systems as a basic semantic model for real-
time systems. A timed transition system is a la-
belled transition system with two types of labels:
atomic actions and delay actions (i.e. positive re-
als), representing discrete and continuous changes
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of real-time systems. Assume a finite set of ac-
tions Act ranged over by a, b etc, and a finite set
of atomic propositions P ranged over by p, q etc.
We use R to stand for the set of non-negative real
numbers, ∆ for the set of delay actions {ε(d) | d ∈
R}, and L for the union Act ∪∆.

Definition 1. A timed transition system overAct
and P is a tuple, S = 〈S, s0,−→, V 〉, where S is a
set of states, s0 is the initial state, −→⊆ S×L×S
is a transition relation, and V : S → 2P is a propo-
sition assignment function that for each state s ∈
S assigns a set of atomic propositions V (s) that
hold in s. ut

We use synchronization functions to describe con-
currency and synchronizations between timed tran-
sition systems. A synchronization function f is
a partial function (Act ∪ {0}) × (Act ∪ {0}) ↪→
Act, where 0 denotes a distinguished no-action
symbol6. Now, let Si = 〈Si, si,0,−→i, Vi〉, i =
1, 2, be two timed transition systems and let f
be a synchronization function. Then the parallel
composition S1 |f S2 is the timed transition sys-
tem 〈S, s0,−→, V 〉, where s1 |f s2 ∈ S whenever
s1 ∈ S1 and s2 ∈ S2, s0 = s1,0 |f s2,0, −→ is in-
ductively defined as follows:

– s1 |f s2
c−→ s′1 |f s′2 if s1

a−→1 s
′
1, s2

b−→2 s
′
2

and f(a, b) = c

– s1 |f s2
ε(d)−→ s′1 |f s′2 if s1

ε(d)−→1 s
′
1 and s2

ε(d)−→2

s′2

and finally, the proposition assignment function
V is defined by V (s1 |f s2) = V1(s1) ∪ V2(s2).

Networks of Timed Automata: The type of
systems we are studying is a particular class of
timed transition systems that are syntactically de-
scribed by networks of timed automata [19, 13, 15,
16]. A timed automaton [1] is a standard finite-
state automaton extended with a finite collection
of real-valued clocks. Let C be a finite set of real-
valued clocks ranged over by x, y etc. We use B(C)

6 We extend the transition relation of a timed tran-
sition system such that s

0−→ s′ iff s = s′.

ranged over by g (and latter D), to stand for the
set of formulas that can be an atomic constraint
of the form: x ∼ n or x − y ∼ n for x, y ∈ C,
∼∈ {≤,≥, <,>} and n being a natural number,
or a conjunction of such formulas. B(C) are called
clock constraints or clock constraint systems over
C.

Definition 2. A timed automaton A over actions
Act, atomic propositions P and clocks C is a tuple
〈N, l0, E, V 〉. N is a finite set of nodes (control-
nodes), l0 is the initial node, E ⊆ N×B(C)×Act×
2C×N corresponds to the set of edges, and finally,
V : N → 2P is a proposition assignment function.

In the case, 〈l, g, a, r, l′〉 ∈ E it is written, l
g,a,r−→ l′.

ut

The semantics of a timed automaton is given in
terms of clock assignments. A clock assignment u
for C is a function from C to R. Let RC denote
the set of clock assignments for C. For u ∈ RC ,
x ∈ C and d ∈ R, u+ d denotes the time assign-
ment which maps each clock x in C to the value
u(x) + d. For C′ ⊆ C, [C′ 7→ 0]u denotes the as-
signment for C which maps each clock in C′ to
the value 0 and agrees with u over C\C′. A se-
mantical state of an automaton A is a pair (l, u)
where l is a node of A and u a clock assignment
for C. The initial state of A is (l0, u0) where u0 is
the initial clock assignment mapping all clocks in
C to 0. The semantics of A is given by the timed
transition system SA = 〈S, σ0,−→, V 〉, where S is
the set of states of A, σ0 is the initial state (l0, u0),
−→ is the transition relation defined as follows:

– (l, u)
a−→(l′, u′) if there exist r, g such that l

g,a,r−→
l′, g(u) and u′ = [r → 0]u

– (l, u)
ε(d)−→(l′, u′) if (l = l′), u′ = u+ d

and V is extended to S simply by V (l, u) = V (l).

Finally, for two timed automata A and B and a
synchronization function f , the parallel composi-
tion A |

f
B denotes the timed transition system

SA |f SB .
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2.2 Specifications

To specify safety and bounded liveness properties
of timed systems, we use the timed modal logic
Ls, studied in [14, 15, 16]. Let K be a finite set
of clocks, called formula clocks, and Id a set of
identifiers. The set of formulas of Ls over K, Id,
Act, and P is generated by the following syntax
with ϕ and ψ ranging over Ls:

ϕ ::= cp | cp∨ϕ | ϕ∧ψ | ∀∀ϕ | [a]ϕ | z inϕ | Z

where cp may be an atomic clock constraint c in
the form of x ∼ n or x − y ∼ n for x, y ∈ K
and natural number n, or an atomic proposition
p ∈ P , a ∈ Act (an action), z ∈ K and Z ∈ Id
(an identifier). The meaning of the identifiers is
specified by a declaration D assigning a formula
of Ls to each identifier. When D is understood we

write Z
def
= ϕ for D(Z) = ϕ.

Given a timed transition system S = 〈S, s0,−→
, V 〉 described by a network of timed automata,
the Ls formulas are interpreted in terms of an ex-
tended state 〈s, u〉 where s ∈ S is a state of a
timed transition system, and u is a clock assign-
ment for K.

Let D be a declaration. Formally, the satisfaction
relation |=D between extended states and formu-
las is defined as the largest relation satisfying the
implications of Table 1. For simplicity, we shall
omit the index D and write |= instead of |=D
whenever it is understood from the context.

Finally, a network of timed automata A satisfies a
formula ϕ written A |= ϕ when 〈(l0, u0), v0〉 |= ϕ
where l0 is the initial node of A, and u0 and v0 are
the assignments with u0(x) = 0 for all automaton
clocks x and v0(z) = 0 for all formula clocks z.
Note that (l0, u0) is the initial state of A.

2.3 Fischer’s Protocol Revisited

As an example of networks of timed automata,
we study Fischer’s mutual exclusion protocol. The

〈s, u〉 |= c⇒ c(u)
〈s, u〉 |= p ⇒ p ∈ V (s)

〈s, u〉 |= cp ∨ ϕ⇒ 〈s, u〉 |= cp or 〈s, u〉 |= ϕ

〈s, u〉 |= ϕ ∧ ψ ⇒ 〈s, u〉 |= ϕ and 〈s, u〉 |= ψ

〈s, u〉 |= ∀∀ϕ⇒ ∀d, s′ : s
ε(d)−→ s′ ⇒

〈s′, u+ d〉 |= ϕ

〈s, u〉 |= [a] ϕ⇒ ∀s′ : s
a−→ s′ ⇒ 〈s′, u〉 |= ϕ

〈s, u〉 |= x in ϕ⇒ 〈s, u′〉 |= ϕ where
u′ = [{x} → 0]u

〈s, u〉 |= Z ⇒ 〈s, u〉 |= D(Z)

Table 1. Definition of satisfiability.

reason for choosing this example is that it is well–
known and well–studied by researchers in the con-
text of real–time verification. More importantly,
the size of the example can be easily scaled up by
simply increasing the number of processes in the
protocol, thus increasing the number of control–
nodes — causing state–space explosion — and the
number of clocks — causing region–space explo-
sion. Thus it is particularly well–suited for our
technique.

The protocol is to guarantee mutual exclusion in a
concurrent system consisting of a number of pro-
cesses, using clock constraints and a shared vari-
able. We shall model each of the processes as a
timed automaton, and the protocol as a network
of timed automata. Each of the processes is as-
sumed to have a local clock. The idea behind the
protocol is that the timing constraints on the local
clocks are set so that all processes can change the
global variable to its own process number, then
read the global variable later and if the shared
variable is still equal to its own number, enter the
critical section. Each process Pi with i being its
identifier, has a clock xi. Let Ak = {:= i | i =
k + 1...n}, Tk = {= i | i = k + 1...n}, Fk = {6=
i | i = k+1...n}, and Sk = Ak∪Tk∪Fk. We model
the shared variable as a timed automaton V over
the set of atomic actions S0 ∪ {:= 0,= 0}, where
V = 〈N,h0, E, V 〉 with N = {V0...Vn}, h0 = V0,
E = {〈Vi, tt, := j, ∅, Vj〉 | i, j = 0...n} ∪ {〈Vi, tt,=
i, ∅, Vi〉 | i = 0...n} ∪ {〈Vi, tt, 6= j, ∅, Vi〉 | i 6= j},

4



CSiAi
tt {xi}

= 0
Bi

6= i

xi < 1 xi > 2

:= i = i
Ci

{xi} {}

:= 0

tt

tt

{}

{}

Fig. 1. Fischers Protocol for Mutual Exclusion.

and we simply assume V is defined by V (Vi) = ∅
for all i ≤ n.

The automaton for a typical process Pi is shown
in Fig 1.

We assume that the proposition assignment func-
tion is defined in such a way that at(l′) ∈ V (l) if
l′ = l and ¬at(l′) ∈ V (l) if l′ 6= l for all nodes
l and l′. Now, the whole protocol is described as
the following network:

FISCHERn ≡ (P1|f1(P2|f2(P3|f3 ...|fn−1Pn)...)|gV
where |fi and |g are the interleaving and full syn-
chronization operators, induced by synchroniza-
tion functions fi and g respectively, defined by
fi(a, 0) = awhen a ∈ {:= i,= i, 6= i} and fi(0, a) =
a when a ∈ Si, and g(a, a) = a. Note that in
Pi|fi(Pfi+1 ...), Pi is allowed to perform {:= i,=
i, 6= i} and the righthand side is allowed to per-
form all actions with indices higher than i that is,
Si.

Intuitively, the protocol behaves as follows: The
constraints on the shared variable V ensure that
a process must reach B–node before any process
reachesC–node; otherwise, it will never move from
A–node to B–node. The timing constraints on the
clocks ensure that all processes in C–nodes must
wait until all processes inB–nodes reachC–nodes.
The last process that reaches C–node and sets V
to its own identifier gets the right to enter its crit-
ical section.

We need to verify that there will never be more
than one process in its critical section. An instance

of this general requirement can be formalized as
an invariant property:

M12 ≡ (¬at(CS1)∨ ¬at(CS2)) ∧∧
a∈S0

[a]M12 ∧ ∀∀M12

So we need to prove the theorem

FISCHERn |= M12

3 Compositional Model–Checking

Model–checking of real–time systems may be car-
ried out in a symbolic fashion e.g. [11, 19]. How-
ever, when applying these techniques to parallel
networks such as FISCHERn a potential explosions
in the global symbolic state–space may seriously
hamper the technique.

In [13, 15] we presented a compositional verifica-
tion technique, which allows components of a real–
time system to be gradually moved from the sys-
tem description into the specification, thus avoid-
ing any global state–space construction and even
examination. Essential to the technique is that in-
termediate specifications are kept small using effi-
cient minimization heuristics. Our technique may
be seen as a real–time extension of the compo-
sitional technique presented and experimentally
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applied by Andersen [2] for ordinary finite–state
systems.

In this section we give a brief review of the tech-
nique in [13, 15].

3.1 Quotient Construction

The main ingredient in our compositional verifica-
tion technique is the so–called quotient construc-
tion, which allows components of a network to be
moved into the specification. More precisely, given
a formula ϕ, and two timed automata A and B
we may construct a formula (called the quotient)
ϕ
/
f
B such that

A |
f
B |= ϕ if and only if A |= ϕ

/
f
B (3)

The bi–implication indicates that we are mov-
ing parts of the parallel system into the formula.
Clearly, if the quotient is not much larger than
the original formula, we have simplified the task
of model–checking, as the (symbolic) semantics
of A is significantly smaller than that of A |

f
B.

More precisely, whenever ϕ is a formula over K,
B is a timed automaton over C and l is a node
of B, we define the quotient formula ϕ

/
f
l over

C ∪K in Table 2 on the structure of ϕ 7 8. Note
that the quotient construction for identifiers in-
troduces new identifiers of the form Xl. The new
identifiers and their definitions are collected in the
(quotient) declaration DB.

We recall from [15] the following important theo-
rem, which justifies the construction:

Theorem 3. LetA andB be two timed automata
and let l0 be the initial node of B. Then

A |
f
B |=D ϕ if and only if A |=DB

(
ϕ
/
f
l0

)
7 For g = c1∧. . . cn a clock constraint we write g ⇒ ϕ

as an abbreviation for the formula ¬c1 ∨ . . .∨¬cn ∨
ϕ. This is an Ls–formula as atomic constraint are
closed under negation.

8 In the rule for [a]ϕ, we assume that all nodes l of a

timed automaton are extended with a 0–edge l
tt,0,∅−→

l.

c
/
f
l = c

p
/
f
l =

{
tt ; p ∈ V (l)
p ; p 6∈ V (l)

(ϕ1 ∧ ϕ2)
/
f
l = (ϕ1

/
f
l) ∧ (ϕ2

/
f
l)

(∀∀ϕ)
/
f
l = ∀∀

(
ϕ
/
f
l
)

(x in ϕ)
/
f
l = x in (ϕ

/
f
l)

(c ∨ ϕ)
/
f
l = (c

/
f
l) ∨ (ϕ

/
f
l)

(p ∨ ϕ)
/
f
l = (p

/
f
l) ∨ (ϕ

/
f
l)

([a]ϕ)
/
f
l =

∧
l
g,c,r−→ l′ ∧ f(b, c) = a

(
g ⇒ [b](r in ϕ

/
f
l′)
)

X
/
f
l = Xl where Xl

def
= D(X)

/
f
l

Table 2. Definition of Quotient ϕ
/
f
l

3.2 Minimizations

It is obvious that repeated quotienting leads to an
explosion in the formula (in particular in the num-
ber of identifiers). The crucial observation made
by Andersen in the (untimed) finite–state case is
that simple and effective transformations of the
formulas in practice may lead to significant re-
ductions.

In presence of real–time we need, in addition to
the minimization strategies of Andersen, heuris-
tics for propagating and eliminating constraints
on clocks in formulas and declarations. Below we
describe the transformations considered:

Reachability: When considering an initial quo-
tient formula ϕ

/
f
l0 not all identifiers in DB may

be reachable. Application of an “on-the-fly” tech-
nique will insure that only the reachable part of
DB is generated.

Boolean Simplification Formulas may be sim-

6



∅ ⇒ ϕ ≡ tt

D ⇒ c ≡ tt ; if D ⊆ c
D ⇒ ([a]ϕ) ≡ [a](D ⇒ ϕ)

D ⇒ (ϕ1 ∧ ϕ2) ≡ (D ⇒ ϕ1) ∧ (D⇒ ϕ2)

D ⇒ (x in ϕ) ≡ x in ({x}D⇒ ϕ)

D ⇒ (p ∨ ϕ) ≡ p ∨ (D⇒ ϕ)

D ⇒ (c ∨ ϕ) ≡ (D ∧ ¬c)⇒ ϕ

D⇒ (∀∀ϕ) ≡ ∀∀(D↑ ⇒ ϕ) ; if D↓ ⊆ D
D ⇒ X ≡ D ⇒ D(X)

Table 3. Constraint Propagation

plified using the following simple boolean equa-
tions and their duals: ff∧ϕ ≡ ff, tt∧ϕ ≡ ϕ, xinff ≡ ff.

Constraint Propagation: Constraints on for-
mula clocks may be propagated using various dis-
tribution laws (see Table 3). In some cases, propa-
gation will lead to trivial clock constraints, which
may be simplified to either tt or ff and hence made
applicable to Boolean Simplification. As can be
seen in Table 3 certain operations are to be per-
formed on constraints during propagation. These
operations include the following:

D↑ = {u+ d | u ∈ D and d ∈ R}
D↓ = {u |∃d ∈ R : u+ d ∈ D}

{r}D = {[r 7→ 0]u | u ∈ D}

It may be shown that the set of constraints B(K)
is closed under the above operations, and that
they together with inclusion– and emptyness–checking
may be computed efficiently (in cubic time in the
number of clocks) (see e.g. [15]).

Constant Propagation: Identifiers with identifier-
free definitions (i.e. constants such as tt or ff) may
be removed while substituting their definitions in
the declaration of all other identifiers.

Trivial Equation Elimination: Equations of

the form X
def
= [a]X are easily seen to have X = tt

as solution and may thus be removed. More gen-
erally, let S be the largest set of identifiers such

that whenever X ∈ S and X
def
= ϕ then ϕ[tt/S]

9 can be simplified to tt. Then all identifiers of
S can be removed provided the value tt is prop-
agated to all uses of identifiers from S (as under
Constant Propagation). The maximal set S may
be efficiently computed using standard fixed point
computation algorithms.

Equivalence Reduction: If two identifiers X
and Y are semantically equivalent (i.e. are satis-
fied by the same timed transition systems) we may
collapse them into a single identifier and thus ob-
tain reduction. However, semantical equivalence is
computationally very hard 10. To obtain a cost ef-
fective strategy we approximate semantical equiv-
alence of identifiers as follows: Let R be an equiv-
alence relation on identifiers. R may be extended
homomorphically to formulas in the obvious man-
ner: i.e. (ϕ1∧ϕ2)R(ϑ1∧ϑ2) if ϕ1Rϑ1 and ϕ2Rϑ2,
(x in ϕ)R(x in ϑ) and [a]ϕR[a]ϑ if ϕRϑ and so
on. Now let ∼= be the maximal equivalence rela-
tion on identifiers such that whenever X ∼= Y ,

X
def
= ϕ and Y

def
= ϑ then ϕ ∼= ϑ. Then ∼= provides

the desired cost effective approximation: when-
ever X ∼= Y then X and Y are indeed seman-
tically equivalent. Moreover, ∼= may be efficiently
computed using standard fixed point computation
algorithms.

4 Fischers Protocol

From section 2 we recall that the protocol FISCHERn
consists of n processes P1 . . . Pn competing for a
critical section by setting and testing a shared
variable V , and that the mutual exclusion prop-
erty we verify is that P1 and P2 cannot be in their

9 ϕ[tt/S] is the formula obtained by substituting all
occurrences of identifiers from S in ϕ with the for-
mula tt.

10 For the recursion–free, untimed part of the logic
semantical equivalence is already NP–complete.
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critical section at the same time, i.e:

M12 ≡ (¬at(CS1)∨ ¬at(CS2)) ∧∧
a∈Sn

[a]M12 ∧ ∀∀M12

In the remainder of this section we shall apply our
compositional model–checking technique to verify
the protocol. Our observation is that by first quo-
tienting away V, P1 and P2 the quotient hereby
obtained simplifies to tt under our minimization
heuristics. Thus no examination of the compo-
nents P3, . . . , Pn is required: regardless of their
behaviour the mutual exclusion property M12will
be satisfied. In other words, state–space explosion
is avoided as it is sufficient to explore only a fixed
part of the system to prove the desired property.

4.1 Constructing the Quotient

The order by which components of a network is
quotiented out may highly determine the success
of our method (this resembles the importance of
variable–ordering in the BDD technology). Here,
we choose to first quotient out the variable V fol-
lowed by the relevant processes P1 and P2, while
of course constantly minimizing the intermediate
equation systems as much as possible.

Step 1: In the first step we remove the variable
V from the network and transform M12 by quoti-
enting it with the locations V0, . . . , Vn. This will
result in an equation system containing n+1 iden-
tifiers X0, . . . , Xn where Xi denotes the quotient
M12/gVi.

As the synchronization function g between V and
the rest of the system is defined as g(a, a) = a
for all possible action transitions a the quotient
will have exactly same conjuncts as M12. Further
as V does in all of its locations satisfies neither
¬at(CS1)nor ¬at(CS2)we get the following family
of formulae Xi, where i = 0, . . . , n:

Xi = (¬at(CS1)∨ ¬at(CS2)) ∧
[= i]Xi

∧
j

[:= j]Xj ∧
∧
j 6=i

[6= j]Xi ∧ ∀∀Xi.

This new equation system (i.e. the top identifier
X0) constitutes the requirement for the remain-
ing components P1, . . . , Pn. The identifier Xi ex-
presses the requirement to the remaining system
when the variable holds the value i. That is,
(¬at(CS1)∨ ¬at(CS2)) should still be satisfied, and
as long as the variable is only tested upon or as
long as time passesXi should still hold. If the vari-
able is set to another value j the formula defined
by Xj should hold instead.

Step 2: As (¬at(CS1)∨ ¬at(CS2))is required by
all identifiers and their definitions differ slightly
the equation system cannot be simplified any fur-
ther. Thus we proceed to transform the equation
system with respect to removal of P1 from the net-
work. The quotient operator used to do this will
be subscripted with the synchronization function
f1. In the following we will drop the synchroniza-
tion function as subscript to the quotient opera-
tor, as it is obvious which one is used.

As the equation system after step 1 contains n+1
equations and P1 has four control locations the
new equation system will contain 4 · (n+ 1) equa-
tions. For each j = 0, . . . , n we compute Xj/l,
where l ∈ {A1, B1, C1, CS1}. The three cases where
j = 0, 1, 2 are treated separately, while the re-
maining cases are treated together. When quoti-
enting any of the identifiers Xi with A1, B1 or C1

the requirement (¬at(CS1)∨ ¬at(CS2)) disappears
because ¬at(CS1) is satisfied in all three locations.
When quotienting any of the identifiers Xi with
CS1, (¬at(CS1)∨ ¬at(CS2)) remains in the defini-
tion of the new identifier as neither
¬at(CS1) nor ¬at(CS2) is a satisfied by CS1. Due
to lack of space we do not display this quotient,
instead we continue the quotienting with respect
to P2 and therefore calculate M12/V0/A1/A2.

Formula Graphs: The resulting quotient is a fairly
large equation system which is difficult to com-
prehend when written in normal syntax. To ease
this situation we introduce the notion of a for-
mula graph, as a convenient graphical notation
for equation systems. Formula graphs provide a
better overview of relations between identifiers,
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and especially cyclic dependencies are easily rec-
ognized. In addition to this, formula graphs sug-
gests directly an actual representation of equation
systems, and the various simplification strategies
are implementable as graph operations.

A formula graph is a labelled directed graph in
which each node is labelled with the name of a
formula identifier and a (possibly empty) set of
atomic propositions. Edges are labelled with clock
constraints, action modalities and sets of clocks to
be reset. In our application the quotienting pro-
cedure will in all cases produce formulae, like in
the following example:

Y0 = p ∧ [ c1 ⇒ [a1] (r1 in Y1) ∧
c2 ⇒ [a2] (r2 in Y2)] ∧ ∀∀Y0

The formula graph for Y0 is shown in Figure 2.
The proposition p is a conjunct in the definition
of Y0 and is therefore a property of Y0 itself and
thus it is placed inside the node of Y0. The con-
junct ∀∀Y0 appears naturally as a self loop in Y0.
The two other conjuncts appear as edges and are
labelled very much like edges in a timed automata.
All three kinds of labels on edges may be absent,
absence of clock constraints means tt, absence of
actions means τ and absence of a reset–set means
that there are no clocks to be reset.

p

r1

a1

c1

r2

a2

c2

Y0

Y1 Y2

∀∀Y0

Fig. 2. Formula Graph for Y0.

Step 3: The equation system of M12/V0/A1/A2

consists of 4 ·4 · (n+ 1) equations, namely the size

of the product automaton of V , P1 and P2. The
equations can be grouped as 16 equations result-
ing from X0/P1/P2, 16 equations resulting from
X1/P1/P2, 16 equations resulting from X2/P1/P2

and finally 16 · (n − 2) equations resulting from
Xj/P1/P2 where j = 3, . . . , n. For a fixed choice
of locations, l1 and l2 in P1 and P2 the set of iden-
tifiers Xj/l1/l2 for j = 3, . . . , n will describe very
similar properties.

All identifiers have a conjunct which refers to the
identifier itself through the ∀∀–modality. That is,
For all Y the definition is on the form Y = . . . ∧
∀∀Y ∧ . . .. In the formula graph this would appear
as self loops labelled with the ∀∀–modality in all
nodes, but in order to keep the graph simple we
have omitted these loops.

The quotient is symmetrical as P1 and P2 are
symmetrical up to names on locations and clocks,
therefore we only display half of the quotient as a
formula graph. The top identifier isM12/V0/A1/A2,
and a part of the graph is shown in Figure 3.

The Formula Graph for M12/V0/A1/A2: The over-
all structure of the formula graph for the resulting
quotient is shown in Figure 4. Six typical parts of
the quotient can be identified, these parts are la-
belled 1, 2, 3, 4, 5 and 6.

Part 1 of the quotient results from keeping P2

fixed in its initial location A2 and letting P1 and
the variable V vary as much as they can. Not sur-
prisingly this part of the quotient reduces to tt.
We will later argue formally why this is actually
the case.

Part 2 of the quotient corresponds to the behaviour
part where first P1 assigns the variable, then P2

assigns it, where after P2 enters the critical section
and hence P1 fails to observe the variable having
the value 1 and it returns to its initial state A1.
Part 3 of the quotient is where P1 and P2 are in
the critical section at the same time. The concrete
manifestation of this is that the formula identifiers
of this part requires (¬at(CS1)∨ ¬at(CS2)) to be
satisfied by the remaining components P3, . . . , Pn.
It is essential to the proof of the correctness that
this part of the quotient will not be required to

9
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X2/CS1/C2
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x2<1

{x2}

x2>2

Xj/CS1/B2 x2<1 {x2} X2/C1/CS2

x2>2

Xj/C1/C2

:=j

Xj/C1/CS2

:=j

:=j

Xj/CS1/C2

:=j

=j

:=j

Xj/CS1/CS2

:=j

:=j

:=j

=j

:=j

X0/C1/B2

{x2}

x2<1

{x2}

=j

=j

:=j

:=j

:=j

=j

:=j

(Xj/A1/CS2)

:=j

(X0/A1/CS2)

(X0/CS1/A2)

(X2/B1/C2)

at(CS2)      at(CS1)

at(CS2)      at(CS1)

Fig. 3. Formula (sub-)Graph for M12/X0/A1/A2.

hold for the network of processes P3, . . . , Pn. The
actual proof of this relies on the use of constraint
propagation: We show that from the initial clock
constraint (all clocks having value 0) this danger-
ous part of the quotient cannot be reached.

Part 4 is symmetrical to part 2 and part 5 is sym-
metrical to part 1. The last part of the quotient,
the one numbered 6, consists of the before men-
tioned identifiers Xj/l1/l2 where l1 is a location
in P1, l2 is a location in P2 and j = 3, . . . , n. This

part of the quotient is the requirement when V
takes a value different from 0, 1 and 2.

To obtain a compact representation in Figure 3
we have used the the following parameterized ab-
breviations. A grey node labelled Xj/l1/l2 where
l1, l2 are locations of P1 and P2 abbreviates the
whole family of nodesX3/l1/l2, . . . , Xn/l1/l2. Sim-
ilarly, edges labelled := j or = j really represents
a whole family of edges namely one edge for each
choice of j = 3, . . . , n. E.g. the := j labelled edge
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2 4

1 5

Fig. 4. Overall structure of Formula Graph

from X0/A1/A2 to Xj/A1/A2 in Figure 3 repre-

sents the family X0/A1/A2
:=3−→ X3/A1/A2,

. . . , X0/A1/A2
:=n−→ Xn/A1/A2.

4.2 Simplification

The quotient formula M12/V0/A1/A2 illustrated
in figure 3 is according to Theorem 3 the neces-
sary and sufficient property of the remaining com-
ponents P3, . . . , Pn in order that the overall sys-
tem FISCHERn satisfies M12. We may now apply
our simplification heuristics.

To our pleasant surprise we observe the quotient
formula M12/V0/A1/A2 calculated above simpli-
fies to tt when first applying Constraint Propa-
gation followed by Trivial Equation Elimination.
Therefore we do not have to perform quotient-
ing with respect to the remaining components in
the protocol, and hence we may conclude that an
increase in the number of components in the pro-
tocol only gives rise to a polynomial growth in the
size of the proof.

Constraint Propagation reveals the fact that none
of the identifiers Xj/CS1/CS2 where j = 1, . . . , n
can be reached from the initial constraint. As none
of the remaining nodes in the graph contains propo-
sitions or clock constraints Trivial Equation Elim-
ination will immediately reduce all identifiers and
especially the top identifier M12/V0/A1/A2 to tt.

Constraint Propagation can be implemented on
our formula graphs in the following manner: When-

ever X
g,τ,r−→ Y is an edge in the graph and we

consider an implication D ⇒ X , the constraint
D may be propagated using the rewrite rules of
Table 3 to a constraint on Y represented by the
following implication:

({r}(D ∧ g))
↑ ⇒ Y (4)

Thus constraint propagation in a general formula
graph, where a node can have multiple outgoing
edges will result in a conjunction of formulas of
the type in (4). What we intend to do here, how-
ever, is to direct the propagation of constraints
along a specific path in the formula graph to-
wards specific identifiers that we wish to prove
unreachable. To this specific purpose we introduce
the notion of guided Constraint Propagation. In
a guided Constraint Propagation we simply focus
on a specific path in the formula graph and disre-
gard all other edges.

In the following we perform such a guided con-
straint propagation towards part 3 of the quo-
tient by following a path through (X0/A1/A2),
(X0/A1/B2), (X0/B1/B2), (X1/C1/B2),
(X1/CS1/B2), (X2/CS1/C2), (X2/CS1/CS2), see
Figure 3, and discover that (X2/CS1/C2) is hit
by the empty constraint and thus its reference to
(X2/CS1/CS2) has no importance in practice.

In the propagation we jump directly to the situa-
tion where the node (X0/B1/B2) has been reached
by letting time pass while resetting first the clock
x2 and then x1. In other words we consider the
implication

(x2 > x1)⇒ (X0/B1/B2).

Now using (4) we may propagate with respect to

the edge X0/B1/B2
x1<1,τ,{x1}−→ X1/C1/B2 yield-

ing
x2 > x1 ⇒ X1/C1/B2.

Now propagating this with respect to the edge

X1/C1/B2
x1>2,τ,∅−→ X2/CS1/B2 yields

(x2 > x2 ∧ x1 > 2)⇒ X2/CS1/B2.

11



Finally propagating this constraint with respect

to X2/CS1/B2
x2<1,τ,{x2}−→ X2/CS1/C2 we get

x2 in (x2 > x1 ∧ x1 > 2 ∧ x2 < 1)⇒ X2/CS1/C2.

Clearly the constraint (x2 > x1∧x1 > 2∧x2 < 1)
is empty and hence the whole propagation simpli-
fies to tt.

By performing this form of guided Constraint Prop-
agation we can prove that none of the formula
identifiers in the quotient requiring P1 or P2 not
to be in the critical section are reachable from the
initial time zone. Of course we can also propagate
constraints to all the other parts of the quotient,
but this will not reduce the quotient as all other
parts really are reachable.

Trivial Equation Elimination reduces all remain-
ing identifiers to tt as they are defined by right-
hand sides which after Constraint Propagation
are entirely built from the following connectives:
tt, g ⇒,∧, ∀∀.

5 Experiments

The quotient construction together with the sim-
plification techniques presented in the previous
section have been implemented with C++ in a
prototype tool called CMC (Compositional Model-
Checking)11. CMC enables us to compute the quo-
tient of an Ls formula with respect to a timed au-
tomaton and then to simplify the quotient using
our simplification. In fact, CMC enables quoti-
enting with respect to formulas of the richer logic
Lν [14] which allows general disjunction and exis-
tential modalities (∃∃, 〈a〉). All simplification tech-
niques of Ls can be applied (and have been imple-
mented in CMC) to Lν with the exception that no
constraint propagation has been given for general
disjunction and the existential modalities.

A few new simplification strategies, which are quite
useful in an actual verification, have been intro-
duced. One of these is reduction with respect to

11 In the near future CMC will be integrated in and
available through the tool suite Uppaal [3].

so–called hit–zones, which essentially is an ex-
haustive constraint propagation providing the au-
tomatic counterpart to the so–called guided con-
straint propagation used in the previous section.
The idea behind this simplification is to precom-
pute, for any variable, the domain (in terms of
clock constraints) in which the variable will be
considered during a given verification. Given these
domains, called hit–zones, it is possible in several
cases to simplify clock constraints to either ‘true’
or ‘false’ (and hence amenable to constant propa-
gation).

Another simplification which is performed by the
program is to replace any variable X with the
following form: X = . . . ∧ y < k ∧ ∀∀X by ‘false’.

5.1 Results

In our experimental investigation we have com-
pared the current version of the tool CMC with
the performances of both the backward and for-
ward reachability checker of Uppaal on an acyclic
version of Fischer’s protocol. During the experi-
ment both CMC and Uppaal was installed on
a machine running SunOS 5.5 with 32MB of pri-
mary memory and 128 of swap memory. Previ-
ously the backward reachability tool of Uppaal

has been demonstrated advantageous in a com-
parison with other verification tools [15] on this
version of Fischer’s protocol. However, as can be
seen by the outcome of the present experiment
in Figure 5, Uppaal is clearly outperformed by
CMC, which manages verification of 50 processes.

6 Conclusion

This paper has successfully demonstrated that the
compositional proof technique of [15] may avoid
the state–explosion problem. In particular, it has
been shown that state–explosion is avoided in the
verification of Fischer’s protocol: the size of the
correctness proof we offer grows only polynomi-
ally in the size of the number of processes in the
protocol. Furthermore, this claim has been given
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experimental evidence by the tool CMC, which
manages verification of 50 processes. In contrast
all exiting verification tools will suffer from state–
explosion, and no tools has succeeded in verifying
the protocol for more than 11 processes.

In the actual proof we have only established the
mutual exclusion property between two designated
processes (namely the first and the second). A
complete correctness proof would of course need
to verify mutual exclusion between all pairs of pro-

cesses. However, as there are only n·(n−1)
2 such

pairs, a complete verification remains polynomial
in n.

Immediate future work includes integration of the
CMC implementation in the verification tool Up-

paal which will require certain extensions as Up-

paal allows integer variables as well as clocks
with interval–bounded slopes. Also, the order in
which components are factored out as well as the
order by which the various minimization techniques

are applied highly determines the degree to which
state–explosion will be avoided. This resembles
the situation in BDDs, where the ordering of propo-
sitional variables strongly influences the size of
the BDD. Our ambition for future work is to get
a better understanding of when and how well our
technique will work.
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