€5-96-Sd SOldd

SONUBWSS UONIY JO 99110eld pue A1oay] :S8SSON 'd ‘d

BRICS

Basic Research in Computer Science

Theory and Practice of
Action Semantics

Peter D. Mosses

BRICS Report Series

RS-96-53

ISSN 0909-0878

December 1996

Copyright (© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540

DK - 8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/
ftp://ftp.brics.dk/
This document in subdirectoryRS/96/53/

Theory and Practice of Action Semantics

Peter D. Mosses*

BRICS;* Dept. of Computer Science, University of Aarhus,
Ny Munkegade bldg. 540, DK-8000 Aarhus C, Denmark

Abstract. Action Semantics is a framework for the formal description
of programming languages. Its main advantage over other frameworks
is pragmatic: action-semantic descriptions (ASDs) scale up smoothly to
realistic programming languages. This is due to the inherent extensibil-
ity and modifiability of ASDs, ensuring that extensions and changes to
the described language require only proportionate changes in its descrip-
tion. (In denotational or operational semantics, adding an unforeseen
construct to a language may require a reformulation of the entire de-
scription.)

After sketching the background for the development of action semantics,
we summarize the main ideas of the framework, and provide a simple
illustrative example of an ASD. We identify which features of ASDs
are crucial for good pragmatics. Then we explain the foundations of
action semantics, and survey recent advances in its theory and practical
applications. Finally, we assess the prospects for further development
and use of action semantics.

The action semantics framework was initially developed at the Univer-
sity of Aarhus by the present author, in collaboration with David Watt
(University of Glasgow). Groups and individuals scattered around five
continents have since contributed to its theory and practice.

1 Background

Readers of this paper are presumably familiar with the main ideas of denota-
tional, operational, and axiomatic semantics. Action semantics was developed in
response to problems with application of these frameworks—especially denota-
tional semantics—to practical programming languages.

1.1 Some Problems with Denotational Semantics

First, a bit about my own background: I was fortunate to be studying at the
University of Oxford when Scott and Strachey started their collaboration on
the development of denotational semantics in 1969. I became an enthusiastic

* E-mail address: pdmosses@brics.dk, WWW URL: http://www.brics.dk/~pdm
** Centre for Basic Research in Computer Science, Danish National Research
Foundation.

follower of the approach, and the first paper I ever wrote provided a fairly com-
plete denotational description of Algol60 [28]. My thesis work was on the use of
denotational-semantic descriptions in compiler generation [29, 30], and I carried
on to develop a prototype semantics implementation system called SIS [32].

SIS, which is now obsolete, took denotational descriptions as input. It trans-
formed a denotational description into a A-expression which, when applied to
the abstract syntax of a program, reduced to a A-expression that represented
the semantics of the program in the form of an input-output function. This ex-
pression could be regarded as the ‘object code’ of the program for the A-reduction
machine that SIS provided. By applying this code to some input, and reducing
again, one could get the output of the program according to the semantics.

The intended use of SIS was two-fold: ‘debugging’ semantic descriptions, by
empirical testing of whether they gave the intended input-output behaviour for
programs; and automatic generation of correct (prototype) implementations of
programming languages from their semantic descriptions.

In the mid 1970’s, denotational semantics was generally regarded as the most
promising framework for semantic description. Adequate techniques had been
developed for representing the semantics of all common (and many uncommon)
constructs of programming languages. It was expected that before long, every
major programming language would have a complete denotational description,
which could then be given as input to SIS to provide (inefficient but) correct
implementations. However, this expectation was not fulfilled—far from it.

It turned out that, despite the elegant and powerful theory of denotational
semantics, there are severe pragmatic problems with applying it to languages
of the scale of Pascal, C, etc. These problems can be observed already in the
descriptions of small illustrative languages given in pedagogical texts on de-
notational semantics [40, 61, 64]: when changes or extensions to the described
language require changes to the definitions of the semantic domains, the original
semantic equations may need to be completely reformulated.

This is admittedly only a minor annoyance when dealing with small exam-
ples, but it becomes a serious hindrance when developing descriptions of larger
languages: making extensions and changes to large denotational descriptions is
simply too tedious and error-prone. It also prevents reuse of parts of a denota-
tional description when describing a related language. Better modifiability and
reusability are essential, especially if formal semantics is to be usable during the
process of language design.

Another purely pragmatic problem is the difficulty of recovering fundamental
concepts, such as order of execution or scopes for bindings, from their denota-
tional description. The writer of the description may have a clear conceptual
understanding of a programming language, but it gets obscured by the repre-
sentation of the concepts directly in terms of higher-order functions on domains.
In particular, implementors of programming languages are unlikely to refer to
semantic descriptions unless the latter provide clear specification of the intended
operational properties of language constructs.

The main causes of these pragmatic problems appear to be as follows:

1. The definitions of semantic domains are globally visible throughout a de-
notational description. (Denotational semantics was developed before the
use of information-hiding modules and abstract data types became accepted
practice for coping with problems of scale in software engineering.) Changes
in domain definitions are often required when extending the described lan-
guage with further constructs—e.g., a change from the direct style to the
continuation style when adding jumps, or to power domains when adding
nondeterminism. If we could anticipate all such changes, we could start with
the more complex domains, but that would be unreasonable, as well as no-
tationally burdensome.

2. The way A-notation is used for specifying semantic entities depends strongly
on the details of domain definitions. The classic example of this problem
is provided by the semantics of statement sequences: with domains defined
for the direct style of semantics, the denotations of the statements have
to be composed normally; with the continuation style, the composition has
essentially to be reversed. Also, the notation used for constructing elements
of sum domains Dy +- - -+ D,, from the summands, and for case selection on
such elements, is sensitive to the positions of the D; in the sum: inserting a
new summand in the middle can involve major changes throughout, just to
preserve well-formedness of the notation.

3. All programming concepts have to be reduced to pure functions. This corre-
sponds to translating arbitrary programs into a (lazy) functional program-
ming language, and the amount of encoding required can be large. E.g., as-
signing values to variables is represented by composing functions that map
stores to stores; the fact that the store remains ‘single-threaded’ is thor-
oughly obscured by the encoding.

What is needed to remedy the problems listed above?

To alleviate problem 1, one might think it would be sufficient to introduce
explicit modular structure into denotational descriptions. This, however, doesn’t
help if all the module bodies still depend on the details of the domain defini-
tions. It is essential for the modules to be specified in the style of abstract data
types, providing notation for the required operations on elements of domains
independently of their internal structure. Once this has been done, the explicit
modular structure serves mainly as a reminder of the independence that has
been obtained.

Regarding problem 2, one seems forced to introduce notation for combining
denotations of program phrases without exploiting knowledge of their domain
structure. Then only the definition of this notation, not its use, needs changing
when the domains of denotations are changed. E.g., one might introduce notation
for sequencing statement executions (as with monads [25, 27]), the use of this
notation being independent of whether direct or continuation style domains are
used. The pragmatic problems with positional notation for sums of domains
could be addressed by using labelled sums (although there are still problems
concerning sensitivity to nesting levels of summands).

Finally, to remedy problem 3, it appears necessary to introduce notation not

just for sequencing but for all the fundamental computational concepts found in
programming languages: scopes of bindings, storage of values, communication
between concurrent processes, nondeterminism, etc. The use of such notation in
semantic equations allows the conceptual analysis of constructs to be expressed
directly, and its ‘coding’ in A-notation is hidden in the definition of the notation.

1.2 Abstract Semantic Algebras

The above considerations of the pragmatic problems with denotational semantics
led to the gradual development of the action semantics framework. At first [31]
the idea was to keep as close as possible to denotational semantics, merely avoid-
ing dependence on the structure of domains by introducing a few combinators
for sequencing and data flow and defining them as auxiliary notation.

It soon became clear, however, that the combinators formed an interesting
algebraic structure. The sequencing combinator was of course reminiscent of the
composition of a category. Some of other combinators could be given familiar
categorical interpretations, e.g., as source and target tupling; but it was not clear
how best to accommodate further compositions, such as sequencing combined
with dataflow, i.e., strict functional composition. So a pure categorical formu-
lation was rejected in favour of a more general notion of semantic algebra—
analogous to a data type, but with operations being combinators and primitives
corresponding somehow to fundamental concepts of programming languages.

A series of papers on semantic algebras [33, 34, 35, 36] presented various sets
of combinators, together with algebraic laws that they were supposed to obey,
giving so-called abstract semantic algebras. The elements of abstract semantic
algebras were always intended to have a clear operational interpretation; they
were referred to as actions starting from around 1985 [11, 12, 49, 62, 70]. The
combinators and primitives of the action notation have been rather stable since
then—although the symbols used to denote them didn’t stabilize until 1991
[42, 47, 63, 71].

1.3 Structural Operational Semantics

How should the intended interpretation of action notation be defined? Through-
out the development of action semantics, much emphasis has been placed on the
algebraic laws that are to be satisfied by the action combinators and primitives.
It is however problematic to take such a set of laws as a definition: they might
be inconsistent® or incomplete. Even if a consistent and complete set of laws
could be found, it might well be difficult to see that they ensured the intended
operational interpretation of action notation. Note that algebraic laws are also
used in action semantics for specifying the data processed by actions, but there
the problems of consistency and completeness are much less severe.

Instead, the current definition of action notation [42] is given using Structural
Operational Semantics [60]. The required laws are then supposed to hold for a

3 Inconsistent in the sense of having only trivial models.

derived testing equivalence (although in practice most of them can be verified
using bisimulation).

Note that it would be difficult to provide a satisfactory denotational seman-
tics for the full action notation: not only is it doubtful that a denotational model
satisfying all the laws could be constructed using standard domains (one would
need something close to a fully abstract model) but also action notation in-
volves unbounded nondeterministic choice, which poses problems for ordinary
continuity. To cite Abramsky (arguing for an intensional semantics based on
games): “...once languages with features beyond the purely functional are con-
sidered, the appropriateness of modelling programs by functions is increasingly
open to question. Neither concurrency nor ‘advanced’ imperative features have
been captured denotationally in a fully convincing fashion.” [1] Some of the
action combinators and primitives are however quite easy to define as auxiliary
notation in denotational semantics [25, 41].

It should be apparent from the above sketch of the development of action
semantics that, formally, this framework is just a mixture of techniques from
denotational and operational semantics, together with algebraic laws. The only
real originality of action semantics lies in the design of the action notation.

In the next sections, we shall consider the concepts of action semantics more
closely, give a simple illustration, and explain how the design of action notation
ensures the desired pragmatic benefits.

2 Action Semantics

As indicated in Section 1, the starting point for the development of action se-
mantics was denotational semantics. Action semantics has retained two of the
main features of denotational semantics: the use of context-free grammars to
define abstract-syntax trees; and the use of semantic equations to give inductive
definitions of compositional semantic functions mapping such trees to semantic
entities. (Action semantics may also be viewed as initial-algebra semantics [13].)

The essential deviation from conventional denotational semantics concerns
the universe of semantic entities, and the notation used to specify individual
entities.

Semantic entities are used to represent the implementation-independent be-
haviour of programs, as well as the contributions that parts of programs make
to overall behaviour. There are actually three kinds of semantic entity used in
action semantics: actions, data, and yielders. The main kind is actions; data
and yielders are subsidiary. The notation used for specifying actions and the
subsidiary semantic entities is called, unsurprisingly, action notation.

Actions are essentially dynamic, computational entities. The performance of
an action directly represents information processing behaviour and reflects the
gradual, step-wise nature of computation: each step of an action performance
may access and /or change the current information. Yielders occurring in actions
may access, but not change, the current information. The evaluation of a yielder

always results in a data entity (including a special entity used to represent unde-
finedness). For example, a yielder might always evaluate to the datum currently
stored in a particular cell, which could change during the performance of an
action, and become undefined when the cell is freed.

2.1 Actions

A performance of an action, which may be part of an enclosing action, either:
completes, corresponding to normal termination; or escapes, corresponding to
exceptional termination; or fails, corresponding to abandoning an alternative;
or diverges. Actions can be used to represent the semantics of programs: action
performances correspond to possible program behaviours. Furthermore, actions
can represent the (perhaps indirect) contribution that parts of programs, such
as statements and expressions, make to the semantics of entire programs.

An action may be nondeterministic, having different possible performances
for the same initial information. Nondeterminism represents implementation-
dependence, where the behaviour of a program (or the contribution of a part
of it) may vary between different implementations—or even between different
instants of time on the same implementation.

The information processed by action performance may be classified as follows:

transient: tuples of data, corresponding to intermediate results;

— scoped: bindings of tokens to data, corresponding to symbol tables;

stable: data stored in cells, corresponding to the values assigned to variables;
— permanent: data communicated between distributed actions.

Transient information is made available to an action for immediate use. Scoped
information, in contrast, may generally be referred to throughout an entire ac-
tion, although it may also be hidden locally in a sub-action. Stable information
can be changed, but not hidden, in the action, and it persists until explicitly
destroyed. Permanent information cannot even be changed, merely augmented.

When an action is performed, transient information is given only on com-
pletion or escape, and scoped information is produced only on completion. In
contrast, changes to stable information and extensions to permanent information
are made during action performance.

The different kinds of information give rise to so-called facets of actions,
focusing on the processing of at most one kind of information at a time:

— the basic facet, processing independently of information (control flows);

— the functional facet, processing transient information (actions are given and
give data);

— the declarative facet, processing scoped information (actions receive and pro-
duce bindings);

— the imperative facet, processing stable information (actions reserve and un-
reserve cells of storage, and change the data stored in cells); and

— the communicative facet, processing permanent information (actions send
messages, receive messages in buffers, and offer contracts to agents).

These facets of actions are independent. For instance, changing the data stored
in a cell—or even unreserving the cell—does not affect bindings involving that
cell.

The standard notation for specifying actions consists of primitive actions and
action combinators. Each primitive action is single-faceted, affecting information
in only one facet—although any yielders that it contains may refer to several
kinds of information.

An action combinator determines control and information flow for each facet
of the combined actions, allowing the expression of multi-faceted actions, such
as an action that both (imperatively) reserves a cell of storage and then (func-
tionally) gives the identity of the reserved cell. For instance, one combinator de-
termines left-to-right sequencing together with left-to-right transient data flow,
letting received bindings flow to its sub-actions; another combinator differs from
that only regarding data flow: it concatenates any transients that the sub-actions
give when completing, not passing transients between the actions at all. Some se-
lections of control and information flow are disallowed, e.g., interleaving together
with transient data flow between the interleaved sub-actions. In particular, the
combination of imperative and communicative facets always follows the flow of
control.

Note that actions with only a functional facet correspond quite closely to
pure partial mathematical functions, the difference being that performance of a
functional action may escape or fail, as well as completing or diverging.

2.2 Data

The information processed by actions consists of items of data, organized in
structures that give access to the individual items. Data can include various fa-
miliar mathematical entities, such as truth values, numbers, characters, strings,
lists, sets, and maps. It can also include entities with purely computational us-
age, such as tokens, cells, and agents—all used for accessing data from the cur-
rent information—and some compound entities with data components, such as
messages and contracts. Actions themselves are not data, but they can be incor-
porated in so-called abstractions, which are data, and subsequently enacted back
into actions. (Abstraction and enaction are a special case of so-called reification
and reflection.) New sorts of data can be introduced ad hoc, for representing
special pieces of information.

2.3 Yielders

Yielders are entities that can be evaluated to yield data during action perfor-
mance. The data yielded may depend on the current information, i.e., the given
transients, the received bindings, and the current state of the storage and mes-
sage buffer. Evaluation cannot affect the current information. Compound yielders
can be formed by the application of data operations to yielders.

2.4 Action Notation

The standard symbols used in action notation are ordinary English words. In fact
action notation mimics natural language: terms standing for actions form imper-
ative verb phrases involving conjunctions and adverbs, e.g., check it and then
escape, whereas terms standing for data and yielders form noun phrases, e.g.,
the items of the given list. Definite and indefinite articles can be exploited
for readability, e.g., choose a cell then reserve the given cell (formally, ‘a’
and ‘the’ denote the identity function).

These simple principles for choice of symbols provide a surprisingly grammat-
ical fragment of English, allowing specifications of actions to be made fluently
readable—without sacrificing formality at all. To specify grouping unambigu-
ously, parentheses may be used.*

Compared to other formalisms, such as A-notation, action notation may ap-
pear to lack conciseness: each symbol generally consists of several letters, rather
than a single sign. But the comparison should also take into account that each
action combinator usually corresponds to a complex pattern of applications and
abstractions in A-notation. For instance, (under the simplifying assumption of
determinism) the action term ‘A1 then A2’ might correspond to something like
A1 Ap k. Are1p(Aea.Az2eapk). In any case, the increased length of each symbol
seems to be far outweighed by its increased perspicuity.

For some applications, however, such as formal reasoning about program
equivalence on the basis of their action semantics, optimal conciseness may be
highly desirable, and it would be appropriate to use abbreviations for our verbose
symbols. The choice of abbreviations is left to the discretion of the user. Such
changes of symbols do not affect the essence of action notation, which lies in
the standard primitives and combinators, rather than in the verboseness of the
standard symbols.

The informal appearance and suggestive words of action notation should
encourage programmers to read it, at first, rather casually, in the same way that
they might read reference manuals. Having thus gained a broad impression of the
intended actions, they may go on to read the specification more carefully, paying
attention to the details. A more cryptic notation might discourage programmers
from reading it altogether.

The intended interpretation of the standard notation for actions has been
specified operationally, once and for all [42]. All that one has to do before us-
ing action notation is to specify the information that is to be processed by
actions—it may vary significantly according to the programming language being
described. This specification may involve extending data notation with further
sorts of data, and specializing standard sorts, using sort equations. Furthermore,
it may be convenient to introduce formal abbreviations for commonly-occurring,
conceptually significant patterns of notation. Extensions, specializations, and
abbreviations are all specified algebraically. The specification in Section 3 illus-
trates the use of sort equations to specialize some standard sorts of data, and to

4 To avoid a plethora of parentheses in larger examples, typographic devices such as
indentation and vertical lines may be used instead.

specify two nonstandard sorts of data for use in the semantic equations, namely
value and number.

3 Illustrative Example

The example of an action-semantic description provided in this section is a very
simple one. It serves merely as an illustration of the use of the main combinators
of action notation. Some more interesting and realistic examples of ASDs are
referenced in Section 7.

The example is divided into three modules, specifying abstract syntax, se-
mantic functions, and semantic entities. The modules are written in the ASCII-
format accepted by the ASD Tools [68], which were used to check their well-
formedness.

module: Abstract Syntax. grammar:

(*) Stmt = [[Id ":=" Exprl]
| [["if" Expr "then" Stmts "else" Stmts]]
I

[["while" Expr "do" Stmts]].

(*) Stmts = <Stmt <";" Stmt>*>.

(*) Expr = Num | Id | [[Expr Op Exprl].
() Op ="+ | /=",
(*) Num = [[digit+]].
(*) 1Id = [[letter (letterldigit)*]1].

endgrammar. closed. endmodule: Abstract Syntax.

Table 1. The SIMPL Illustrative Language

The grammar shown in Table 1 specifies several sorts of abstract-syntax trees,
using a variant of BNF grammar allowing regular expressions. The details are not
so important, but note that the double brackets [[...]1] indicate node construc-
tion (in denotational semantics, they are used only to delimit syntactic phrases
in semantic equations). The angle brackets <. ..> group components (thus Stmts
is the sort of sequences of the form <S1 ";"...";" Sn>).

The semantic equations in Table 2 define semantic functions mapping
abstract-syntax trees to semantic entities. Note the explicit specification of the
dependence of this module on the other two (indicated by needs:).

module: Semantic Functions. needs: Abstract Syntax, Semantic Entities.

introduces: execute_, evaluate_, the result of_.

variables: 1I:Id; N:Num; E,E1,E2:Expr; 0:0p; S:Stmt; S1,S2:Stmts.

()

[1:]

[2:]

[3:]

[4:]

[5:]

[6:1]

[7:]

()

[8:]

[9:]

execute_ :: Stmts -> action[completing|divergingl|storing].

execute [[I ":=" E]] =

evaluate E then store the given number in the cell bound to I.

execute [["if" E "then" S1 "else" S2]] =
evaluate E then

((check the given truth-value and then execute S1) or

(check not the given truth-value and th

execute [["while" E "do" S1]] =
unfolding
(evaluate E then
((check the given truth-value and then
execute S1 and then unfold) or
(check not the given truth-value))

en execute S2)).

).

execute <S ";" S2> = execute S and then execute S2.

evaluate_ :: Expr -> action[giving a value].
evaluate N = give decimal N.

evaluate I = give the number bound to I or
give the number stored in the c

evaluate [[E1l 0 E2]] =
(evaluate E1 and evaluate E2) then give

the result of_ :: Op -> yielder[of a value]
[using given

the result of "+" = the number yielded by
the sum of (the given number#1, the given

the result of "/=" = not (the given value#l

endmodule: Semantic Functions.

ell bound to I.

the result of 0.

(value,value)].

number#2) .

is the given value#2).

Table 2. SIMPL Action Semantics

10

The symbols introduced in ASDs may be prefix, postfix, infix, or more gen-
erally, ‘mixfix’. There is a uniform precedence rule to allow omission of grouping
parentheses: infixes have the weakest precedence (and associate to the left), then
come prefixes, and finally postfixes. The place-holder ‘> shows where the argu-
ments go when operations are applied. Semantic functions, of course, take only
one argument, and are conventionally denoted by prefix symbols.

The symbol action denotes the sort of all actions; a term action[0] denotes
a subsort, including only those actions whose possible outcomes are contained
in 0. Similarly, a term of the form yielder[of D] [using I] denotes the subsort
of yielder that includes those yielders whose evaluation always returns a data
item of sort D, referring at most to the current information indicated by I.

In equation 1, the functional action combination A1 then A2 represents or-
dinary functional composition of A1 and A2: the transients given by A1 on com-
pletion are given only to A2. Regarding control flow, A1 then A2 specifies normal
left-to-right sequencing.

The yielder given D yields all the data given to its evaluation, provided that
this is of the data sort D. For instance the given number (where ‘the’ is optional)
yields a single individual of sort number, if such is given. (Otherwise it yields the
special entity nothing, which represents undefinedness, and similarly in other
cases below.) The yielder the D bound to T refers to the current binding of sort
D for the token T.

The primitive action store Y1 in Y2 requires Y1 to yield a storable value,
and Y2 to yield a cell.

In equation 2, the action check Y requires Y to yield a truth value; it com-
pletes when the value is true, otherwise it fails. The action A1 or A2 represents
implementation-dependent choice between alternative actions. If the alternative
currently being performed fails, it is abandoned and, if possible, some other al-
ternative is performed instead, i.e., back-tracking. Here, A1 and A2 are guarded
by complementary checks, so the choice is deterministic.

The basic action combination A1 and then A2 combines the actions A1 and A2
into a compound action that represents their normal, left-to-right sequencing,
performing A2 only when A1 completes.

Equation 3 shows how iteration is specified in action semantics. The action
combination unfolding A performs A, but whenever it reaches the dummy action
unfold, it performs A instead.

Note that the semantics of a statement sequence is well-defined by equation 4,
because the restriction on the sort of S ensures that the argument on the left-
hand side of the equation can only match a statement sequence in one way.

In equation 5, the primitive action give Y completes, giving the data yielded
by evaluating the yielder Y. The operation decimal is a standard data operation
on strings.®

The two alternatives in equation 6 correspond to the cases that I is a constant
or a variable identifier. The disjointness of the sorts number and cell ensures that

® An abstract-syntax tree whose direct components are all single characters is identified
with the string of those characters.

11

the choice of an unfailing alternative is deterministic. When no binding for the
identifier I to a number or to a cell is received, the action fails.

The action A1 and A2 used in equation 7 represents implementation-dependent
order of performance of the indivisible sub-actions of A1, A2. When these sub-
actions cannot ‘interfere’ with each other, as here, it indicates that their order of
performance is simply irrelevant. Left-to-right order of evaluation can be speci-
fied by using the combinator A1 and then A2 instead of A1 and A2 above. In both
cases, the values given by the sub-actions get tupled.

In equation 8, the yielder the number yielded by Y is used to insist that Y
yields a value of sort number (the standard data operation sum might return an
integer not in the number subsort).

The yielder given Y#n used in equations 8 and 9 yields the n’th individual
component of a given tuple, provided that this component is of sort Y.

module: Semantic Entities.
includes: Action Notation.

introduces: value, number.

(x) token = string.
(*) bindable = cell | number.
(%) storable = number.

(x) value number | truth-value.
(¥) number =< integer.

endmodule: Semantic Entities.

Table 3. Specializing Action Notation for SIMPL Semantics

The illustrative example of an ASD is completed by the module in Table 3,
which specifies some sorts (token, bindable, storable) that are left open in the
standard specification of Action Notation. (The use of includes: rather than
needs: specifies that the imported notation is also exported.) The sorts value
and number are introduced just for use in this illustrative ASD, and have no
predetermined interpretation in Action Notation. Just as in Table 1, a vertical
bar expresses union of sorts. The sort inclusion number =< integer leaves open
whether number is bounded.

So much for the example, which should have given a rough impression of the
‘look and feel’ of action notation and action-semantic descriptions.

6 As there are no declarations at all in SIMPL, the semantics of a SIMPL statement
depends on received bindings for pre-declared identifiers.

12

4 Pragmatics

Let us now assess some of the pragmatic aspects of action-semantic descrip-
tions. In particular, how well may we expect ASDs to scale up from illustrative
examples (like the one given in the preceeding section) to practical programming
languages?

In marked contrast to the situation with denotational-semantic descriptions,
making extensions and changes to an ASD generally affects only those parts of
the description dealing directly with the constructs involved.

E.g., adding expressions that allow function or process activation would not
require any changes at all to the semantic equations given in Section 3. The en-
richment of the actions representing expression evaluation by, e.g., the potential
for side-effects or communication, does not invalidate the use of the combinator
A1 and A2 in equation 7, since it has a well-defined interpretation for actions with
arbitrary information-processing capabilities (it interleaves the atomic steps).

This very desirable pragmatic aspect of action semantics depends on two
crucial features of action notation:

— Each combinator is defined universally on actions. Contrast this with func-
tion composition in A-notation, which requires exact matching of types be-
tween the composed functions.

— There is no mention of the presence or absence of any particular kind of in-
formation processing, except where creation or inspection of this information
is required. For instance, stored information is referred to only in equations 1
and 6, whereas in a denotational semantics for the same language, every se-
mantic equation would have to cater for the fact that all denotations are
functions of the store.

It also depends on the fact that we may extend sorts of data (e.g., bindable) with
new values or subsorts without disturbing the notation for creating or matching
values. This is a feature of the algebraic specification framework used for the
foundations of action semantics (summarized in the next section): it provides
a genuine sort union operation, which behaves like set union, and avoids the
pragmatic problems of the notation for sums of domains used in denotational
semantics.

Since the above features ensure that ASDs have an inherent modularity, the
use of explicit modules is almost redundant. In fact it is usual in ASDs to let all
the semantic entities be visible throughout all the semantic equations, and this
does not cause any problems with modifiability, etc.

Action semantics provides a high degree of extensibility, modifiability, and
reusability, which is especially important when using semantic descriptions dur-
ing language design, and highly significant when developing larger ASDs in gen-
eral. An action-semantic description is also strongly suggestive of an operational
understanding of the described language, as required by implementors. More-
over, it has been found to be very well suited for generating compilers [5, 56, 58]
and interpreters [69].

Thus the pragmatic aspects of action semantics seem to be satisfactory.

13

5 Foundations

The foundations of action semantics are based on the framework of unified al-
gebras [37, 38, 39]: each part of an ASD is interpreted as a unified algebraic
specification.

The signature of a unified algebra is simply a ranked alphabet. The universe
of a unified algebra is a (distributive) lattice with a bottom value, together with
a distinguished subset of individuals. The operations of a unified algebra are
required to be monotone (total) functions on the lattice; they are not required
to be strict or additive, nor to preserve the property of individuality.

All the values of a unified algebra may be thought of as sorts, with the
individuals corresponding to singleton sorts. The partial order of the lattice
represents sort inclusion; join is sort union and meet is sort intersection. The
bottom value (denoted by nothing) is a vacuous sort, often used to represent the
lack of a result from applying an operation to unintended arguments. A special
case of a unified algebra is a power algebra, whose universe is a power set, with
the singletons as individuals.

The axioms of unified algebraic specifications are Horn clauses involving
equations T1=T2, inclusions T1=<T2, and individual inclusions T1:T2. An equa-
tion holds when the terms have identical values, an inclusion holds when the
values of the terms are in the partial order of the lattice, and an individual in-
clusion T1:T2 holds when the value of T1 is not only included in that of T2, but
also in the distinguished subset of individuals.

Unified algebraic specifications always have initial models, because they are
essentially just unsorted Horn clause logic (with equality) specifications, and the
lattice structure and monotonicity of operations can all be captured by Horn
clauses.

As illustrated in Section 3, an ASD consists of a grammar, some seman-
tic equations, and a specification of the required universe of semantic entities.
Thanks to the sort equations and inclusions allowed as axioms by unified alge-
bras, all these parts have a straightforward interpretation, as follows.

Regarding grammars, each nonterminal symbol is interpreted as a sort con-
stant, and the alternatives on the right-hand sides of productions as sort terms,
combined with sort union; productions themselves are simply regarded as equa-
tional axioms [45], in contrast to the more elaborate interpretation of grammars
as signatures usually taken in the literature [13].

The formal interpretation of a set of semantic equations is that the semantic
functions are ordinary equationally-specified operations (taking a single syntac-
tic argument and returning a semantic entity). The only use made here of the
special features of unified algebras is in specifying subsorts of actions and yield-
ers in the functionalities of the semantic functions. An alternative—but more
complicated—interpretation would be to take account of the intended compo-
sitionality and inductiveness of the definitions, by regarding the semantic func-
tions as the components of the unique homomorphism from the initial algebra
of abstract syntax to a target algebra derived from the semantic equations.

14

The specification of the semantic entities consists of the specialization of ac-
tion notation to particular sorts of data, together with the algebraic specification
of abstract data types. The former involves sort equations and inclusions; the
latter could be given in any decent algebraic specification framework. The oper-
ational semantics of the general action notation is fixed, and cannot be changed;
it has been specified [42] in the style of structural operational semantics [60]
(using an unorthodox presentation where the transition relation is a function
from individual configurations to sorts, exploiting here unified algebras again).
Notions of bisimulation and testing equivalence on actions are defined, complet-
ing the formalization of actions. The laws that action notation obeys are thus
consequences of the definitions, rather than axioms. The next section surveys
further work concerning the theory of actions.

6 Theory

After the experience with the development of denotational semantics, where
much effort was spent on theoretical aspects, and the problems of applying the
framework to practical languages were only realized after some time, I decided
to proceed differently with action semantics: the first priority was to check that
the pragmatic aspects of ASDs were satisfactory. Thus it is not surprising that a
decent theory for action semantics has been slow to emerge. (Of course founda-
tions of action semantics, such as those sketched in Section 5, were provided right
from the start, otherwise it could not have been regarded as a formal framework
at all.)

The theory of action semantics still has not been developed to the extent of,
say, domain theory for denotational semantics. There may be many reasons for
this: action notation may appear too large or unwieldy for theoretical analysis; or
perhaps the notation conventionally used in ASDs is too verbose and informal-
looking.

Nevertheless, significant work on several aspects of the theory of action se-
mantics has already been done. The descriptions of it below are mostly adapted
from the abstracts of the cited papers.

Note that the aim of this theoretical development is not only to investi-
gate the properties of action notation per se, but also to allow reasoning about
programs and programming languages by means of their action-semantic de-
scriptions. For instance, algebraic laws established for action notation may be
used to reason about program equivalence. (The situation is similar with regard
to practical applications: flow analysis and code generation for action notation
allow efficient compilation of programs according to their action semantics, as
reported in Section 7.) The possibility of lifting analyses from action notation to
programming languages depends on the compositionality of action semantics; its
usefulness depends crucially on the simplicity of the actions that represent pro-
gram constructs—and of course on the existence of action-semantic descriptions
for programming languages of practical interest.

15

6.1 Type Inference

In papers in TCS and at the ESOP conference in 1990, Even and Schmidt [11, 12]
formulated a model for action semantics based on Reynolds’s category-sorted
algebra. In the model, actions are natural transformations, and the composition
operators are compositions in a ‘category of actions’. They use the model to
prove semantic soundness and completeness of a unification-based, decidable
type-inference algorithm for action semantics expressions.

In a paper at ESOP’92, Doh and Schmidt [8] described a method that auto-
matically extracts a type checking semantics, encoded as a set of type inference
rules, from a category sorted algebra-based action-semantics definition of a pro-
gramming language. The type inference rules are guaranteed to enforce strong
typing, since they are based on an underlying meta-semantics for action seman-
tics, which uses typing functions and natural transformations to give meaning.
They use the type checking semantics to extract a dynamic semantics definition
from the original action-semantics definition.

A distinguishing characteristic of action semantics is its facet system, which
defines the variety on information flows in a language definition. The facet sys-
tem can be analysed to validate the well-formedness of a language definition, and
to calculate the operational semantics. At the Workshop on Action Semantics
in 1994 [44] Doh and Schmidt [10] presented a single framework for doing all of
this. The framework exploits the internal subsorting structure of the facets so
that sort checking, static analysis, and operational semantics are related, sound
instances of the same underlying analysis. The framework also suggests that ac-
tion semantics’ extensibility can be understood as a kind of ‘weakening rule’ in
a ‘logic’ of actions. In the cited paper, the framework is used to perform type
inference on specific programs, to justify meaning-preserving code transforma-
tions, and to ‘stage’ an ASD of a programming language into a static semantics
stage and a dynamic semantics stage.

6.2 Provably-Correct Compiler Generation

As reported in his PhD thesis [58] and papers [57, 59] at ESOP and ICCL in 1992,
Palsberg has designed, implemented, and proved the correctness of a compiler
generator that accepts action-semantic descriptions of imperative programming
languages. He has used it to generate compilers for both a toy language and
a non-trivial subset of Ada. The generated compilers emit absolute code for
an abstract RISC machine language that is assembled into code for the SPARC
and the HP Precision Architecture. The generated code is an order of magnitude
better than that produced by compilers generated by classical semantics-based
compiler generators. His machine language needs no runtime type-checking and
is thus more realistic than those considered in previous compiler proofs. He uses
solely algebraic specifications; proofs are given in the initial model. The use of
action semantics makes the processable language specification easy to read and
pleasant to work with. His compiler generator may be seen as the first step
towards user-friendly and automatic generation of realistic and provably correct
compilers.

16

6.3 Action Analysis and Compiler Generation

The Actress system [5] accepts the action-semantic description of a source lan-
guage, and from it generates a compiler. The generated compiler translates its
source program to an action, performs sort inference on this action, (optionally)
simplifies it by transformations, and finally translates it to object code. The sort
inference provides valuable information for the subsequent transformation and
code generation phases; Brown and Watt [4] reported their studies of the problem
of sort inference for actions at the Workshop on Action Semantics. Transforma-
tions of the intermediate action greatly improve the efficiency of the object code;
Moura’s PhD thesis from 1993 [51] is concerned with these transformations, as
reported at CC’94 [52].

Also at CC’94, Orbak [56] presented several analyses of actions. These allow
his compiler generator (called OASIS) to generate efficient, optimizing compilers
for procedural and functional languages with higher order recursive functions.

6.4 Action Equivalence

Lassen’s PhD thesis work is devoted to developing a tractable theory for action
equivalence. In a recent technical report [24] he has developed the foundations for
a richer action theory, by bringing together concepts and techniques from pro-
cess theory and from work on operational reasoning about functional programs.
Semantic pre-orders and equivalences in the action semantics setting are stud-
ied and useful operational techniques for establishing contextual equivalences are
presented. These techniques are applied to establish equational and inequational
action laws and an induction rule for the basic facet of action notation.

Even more recently [23] Lassen has extended this theory to the functional
and declarative facets, covering a substantial fragment of action notation in-
volving transient and scoped information flow and higher-order, (unbounded)
nondeterministic, and interleaving computation. Based on a reduction seman-
tics for actions, operational reasoning techniques have been developed and used
to establish an inequational theory for action notation. The potential of this
theory is illustrated by proofs of various functional program equivalences via an
action-semantic description of a functional language. He is currently extending
the theory to the imperative facet in order to reason about practical, imperative
programming languages.

7 Practice

The development of action semantics has so far involved rather modest resources,
and there is still some way to go before a completely satisfactory set of examples
and tools becomes available. The proceedings of the first International Workshop
on Action Semantics [44] give a good impression of the level of activity in the
area. This section lists some of the major applications so far.

17

7.1 ASDs of Programming Languages

Apart from the published ASDs mentioned below, various Master’s theses at the
University of Aarhus have covered large parts of various programming languages,
e.g., ML, Amber, Joyce, Modula-3, and occam. Unfortunately, most of them were
written in older versions of action notation, and are now out of print.

Pascal: The Pascal Action Semantics by Watt and the present author, available
by FTP since 1993 [50], provides an almost complete formal specification of the
dynamic semantics of Standard Pascal (Level 0). It is intended primarily as a
‘showcase’ example of the use of action semantics, rather than as a contribution
to the understanding of Pascal. The current version is for readers who are already
familiar with the action semantics framework. More work is needed before it
is ready for a more general readership, including completion of an automated
checking of the internal consistency and completeness of the specification, which
is being done using the ASD Tools.

Standard ML: At the MFPS conference in 1988, Watt [70] reported on an ASD
of the Standard ML ‘bare’ language in an early version of action notation. This
has now been converted to use the current version of action notation, but not
yet published. When ready—and extended to the whole of Standard ML—it
will make an interesting basis for comparison between action semantics and

structural operational semantics, as the latter approach was used for defining
Standard ML [26].

The ANDF-FS: ANDF is an Architecture- and Language-Neutral Distribution
Format developed by the Open Software Foundation (OSF) and other collab-
orators around the world. It is based on the TDF technology provided by the
Defence Research Agency of the United Kingdom Ministry of Defence. It is a
medium-level intermediate language, used as the target language of compilers
for ordinary high-level languages. The production of the ANDF-FS, a formal
specification of ANDF, was one of the tasks of the ESPRIT project OMI/GLUE
[15].

In a technical report from 1993 [66], Toft assessed the feasibility of using
various frameworks for the ANDF-FS: a hybrid of denotational and algebraic se-
mantics; structural operational semantics, expressed as an algebraic specification
in RSL; and action semantics, where the definition of action notation may either
be expressed as higher-order functions or in terms of an operational semantics.
His main conclusion was that “action semantics with an underlying structural
operational semantics is the most qualified candidate for the ANDF-FS”.

Unfortunately, at the time there was no mature tool support for action se-
mantics. A compromise was found: the RAISE Specification Language RSL [65)
is a general-purpose specification language with good tool support; by giving
a structural operational semantics of the required subset of action notation in
RSL, the RSL tools could be used for action semantics.

The ANDF-FS from 1994 [55], presented also at the Workshop on Action
Semantics [16], was the first example of ‘industrial’ interest in action semantics.

18

Somewhat surprisingly, action semantics was used not only for the dynamic se-
mantics of ANDF but also for its static semantics, exploiting action combinators
to express static evaluation, type-checking, scopes of bindings, etc.

Particularly encouraging is the fact that the ANDF-FS wasn’t put on the shelf
to gather dust after completion. It was used by a group at the OSF Research
Institute in Grenoble, for three purposes: to discuss refinement of the informal
ANDF specifications, as an aid to develop a validation suite for ANDF, and
as an aid to develop an interpreter. Despite little previous exposure to formal
semantics, this group confirms that they found the ANDF-FS quite accessible—
thanks at least partly to the verbosity of action notation.

Another significant aspect is that the project was conducted by persons who
had not been involved in the development of action semantics. Even though the
project took place in Denmark, my contact with it was limited to answering one
question about my book.

7.2 Concurrent Languages

An ASD for a non-trivial sublanguage of Ada (including tasks) was given by the
present author in his text book on action semantics [42]. He also reported the use
of action semantics to describe concurrent languages in a REX workshop paper
in 1992 [43]. His paper together with Krishnan at RTFT’92 [21] on specifying
asynchronous transfer of control led to a further paper by Krishnan [19)].
Musicante reported on an ASD for the Sun RPC protocol in 1992 [53]. With
the present author he investigated a minor potential extension of the commu-
nicative facet of action notation to provide shared storage [54]. Together they
presented an ASD of a small fragment of Standard ML at the FME’94 [48], and
showed that adding concurrency primitives to the described language requires
only extensions, not changes, to the description of the sequential constructs.

7.3 Tools

The ASD Tools have been developed since 1993 by van Deursen and the present
author, and demonstrated at various conferences, e.g., AMAST’96 [68]. They
provide a support environment for using action semantics, including facilities for
parsing, syntax-directed (and textual) editing, checking, and interpretation of
action-semantic descriptions. Such facilities significantly enhance accuracy and
productivity when writing and maintaining large specifications, and are also
particularly useful for those learning how to write ASDs. The notation supported
by the ASD Tools, illustrated in Section 3, is a direct ASCII representation of
the standard notation used for ASDs in the literature.

The ASD Tools are implemented using the ASF+SDF system [18], which
is itself based on the Centaur system (developed by INRIA, among others).
A licence for Centaur is required; this is available free of charge to academic
institutions, and the entire ASD Tools implementation can be obtained by FTP.
The ASD Tools were taken as a case study in the use of ASF4+SDF by van
Deursen in his PhD thesis [67].

19

The Actress system developed by Watt’s group at Glasgow provides proto-
type tools, reported at CC’92 [5] and CC’94 [52], for interpreting action notation
and for compiling it into C. The interpreter deals with most of the standard ac-
tion notation except for the communicative facet.

In his PhD thesis [6] in 1992, and later in a joint paper with Schmidt [9],
Doh presented a methodology for compiler synthesis based on action semantics.
Each symbol of action notation is assigned specific ‘analysis functions’, such
as a typing function and a binding-time function. When a language is given
an action semantics, the typing and binding-time functions for the individual
actions compose into typing and binding-time analyses for the language; these
are implemented as the type checker and static semantics processor, respectively,
in the synthesized compiler. Other analyses can be similarly formalized and
implemented.

Partial evaluation has been used extensively in connection with compiler
generation. In 1993, Bondorf and Palsberg [3] used the Similix system to obtain
an action compiler by partial evaluation of an action interpreter. In a paper at
PEPM’95, Doh proposed using partial evaluation for action transformation [7].

The compiler generator OASIS, presented by @rbaek at CC’94 [56], is capa-
ble of generating efficient, optimizing compilers for procedural and functional
languages with higher-order recursive functions. The automatically generated
compilers produce code that is comparable with code produced by handwrit-
ten compilers. This work is perhaps the most convincing evidence so far of the
practical applicability of action-semantics-based compiler generation.

8 Prospects

We have reviewed the current state of theory and practice of action semantics.
What prospects are there for the future development and use of this framework?

Regarding the theory of action semantics: despite recent progress with proof
techniques for action equivalence, much remains to be done in that direction. In
particular, it is urgent to develop a useful proof calculus for the communicative
facet of actions, which is based on asynchronous processes and message-passing;
the work of Agha, Mason, Smith, and Talcott [2] appears to be applicable here.

The ‘official’ notation for actions and data has remained the same for the
past five years. Some potential improvements have recently been suggested [22],
and this may be a good time to make a revised version, taking into account the
experience gained through using the present version in large ASDs. One of the
major issues here is whether it might be better to take ‘yielders’ merely as a sub-
sort of actions, their evaluation then being a special case of action performance.
More superficially, different vocabularies of symbols for action combinators and
primitives might be developed—perhaps even using graphics for visualization
[20].

It is unclear whether users of action semantics should be allowed to change
the operational semantics of action notation, or add new action combinators and
primitives, e.g. as required for letting agents share storage [54]. Such changes

20

would require re-proving all the laws of action notation. In any case, the current
structural operational semantics of action notation is not so easy to modify;
alternative forms of operational semantics, such as evolving-algebra semantics
[14], might be preferable in that respect.

The underlying algebraic specification language used in action semantics is
currently the somewhat unorthodox and lesser-known framework of ‘unified alge-
bras’, summarized in Section 5. It might be advisable to replace it by a framework
with a more direct set-theoretic basis [17] or by a sublanguage of the common al-
gebraic specification language that is currently being developed by the Common
Framework Initiative [46]. In either case, algebraic data-type definitions should
be included, as this would allow a significant reduction in the size of the modules
that specify auxiliary semantic entities.

To further encourage the practical use of action semantics, an integrated tool
set supporting the writing, editing, and testing of ASDs should be provided. In
particular, navigating and searching in larger ASDs needs to be made easier than
with the existing tools, e.g., by using hyper-text links and indexing.

Then there is the matter of completing the existing partial ASDs of a number
of practical programming languages, and of developing new ones, such as for the
Java language. The larger ASDs that have already been produced confirm that
action semantics has (much) better applicability than denotational semantics, so
it should be feasible to build up an on-line library of checked ASDs in the near
future. Large parts of these ASDs could then be reused in the descriptions of
further languages. Moreover, they would provide appropriate input for compiler
generators based on action semantics, avoiding a recurrence of the problems
experienced with exploiting SIS for denotational semantics some 20 years ago,
and perhaps stimulating further research and development of semantics-based
compiler generation.

Finally, it is important for the future of action semantics that it gets taught
in semantics courses at the undergraduate level. For this purpose, it may be best
to provide a cut-down version of action notation, including only those symbols
needed for describing familiar languages such as Pascal and Standard ML; the
operational semantics of such a subset would probably be significantly simpler
than that defining the full notation.

Up-to-date information about action semantics may be found via the Action
Semantics Home Page, URL: http://www.brics.dk/Projects/AS.

Acknowledgements

I would like to take this opportunity to thank all those who have contributed so
far to the development of action semantics, and to colleagues at the University
of Aarhus and elsewhere for their encouragement to continue with this work.
Thanks especially to Olivier Danvy, Christian Fabre, Sgren B. Lassen, Peter
@rbak, and David A. Watt, who all suggested significant improvements to earlier
versions of this paper.

I would also like to thank the organizers of MFCS’96 for inviting me to
present this paper, and for letting me have some extra pages.

21

My own part in the development of action semantics has been supported by:
the Department of Computer Science, University of Aarhus; the Danish Na-
tional Research Foundation Centre BRICS; the Danish Science Research Coun-
cil project DART (5.21.08.03); and ESPRIT Basic Research Working Group
COMPASS (3264 and 6112).

References

1. S. Abramsky. Semantics of interaction. In Trees in Algebra and Programming
— CAAP’96, Proc. 21st Int. Coll., Linképing, volume 1059 of Lecture Notes in
Computer Science, page 1. Springer-Verlag, 1996.

2. G. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. A foundation for actor
computation. To appear in Journal of Functional Programming, 1994.

3. A. Bondorf and J. Palsberg. Compiling actions by partial evaluation. In FPCA’93,
Proc. Sizth ACM Conf. on Functional Programming Languages and Computer Ar-
chitecture, Copenhagen, pages 308-317, 1993.

4. D. Brown and D. A. Watt. Sort inference in the Actress compiler generator. In
[44], pages 81-98, 1994.

5. D. F. Brown, H. Moura, and D. A. Watt. Actress: an action semantics directed
compiler generator. In CC’92, Proc. 4th Int. Conf. on Compiler Construction,
Paderborn, volume 641 of Lecture Notes in Computer Science, pages 95-109.
Springer-Verlag, 1992.

6. K.-G. Doh. Action Semantics-Directed Prototyping. PhD thesis, Kansas State
University, 1992.

7. K.-G. Doh. Action transformation by partial evaluation. In PEPM’95, Proc.
ACM/SIGPLAN Symposium on Partial Fvaluation and Semantics-based Program
Transformation, La Jolla, California, pages 230-240, 1995.

8. K.-G. Doh and D. A. Schmidt. Extraction of strong typing laws from action seman-
tics definitions. In ESOP’92, Proc. European Symposium on Programming, Rennes,
volume 582 of Lecture Notes in Computer Science, pages 151-166. Springer-Verlag,
1992.

9. K.-G. Doh and D. A. Schmidt. Action semantics-directed prototyping. Comput.
Lang., 19(4):213-233, 1993.

10. K.-G. Doh and D. A. Schmidt. The facets of action semantics: Some principles
and applications (extended abstract). In [44], pages 1-15, 1994.

11. S. Even and D. A. Schmidt. Category sorted algebra-based action semantics. The-
oretical Comput. Sci., 77:73-96, 1990.

12. S. Even and D. A. Schmidt. Type inference for action semantics. In ESOP’90,
Proc. European Symposium on Programming, Copenhagen, volume 432 of Lecture
Notes in Computer Science, pages 118-133. Springer-Verlag, 1990.

13. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. J. ACM, 24:68-95, 1977.

14. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Borger, editor, Specifica-
tion and Validation Methods. Oxford University Press, 1995.

15. B. S. Hansen and J. Bundgaard. The role of the ANDF formal specification. Tech-
nical Report 202104/RPT/5, issue 2, DDC International A/S, Lundtoftevej 1C,
DK-2800 Lyngby, Denmark, 1992.

16. B. S. Hansen and J. U. Toft. The formal specification of ANDF, an application of
action semantics. In [44], pages 3442, 1994.

22

17

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

C. Hintermeier, H. Kirchner, and P. D. Mosses. Combining algebraic and set-
theoretic specification. In Recent Trends in Data Type Specification, Proc. 11th
Workshop on Specification of Abstract Data Types, Oslo, 1995, Selected Papers, vol-
ume 1130 of Lecture Notes in Computer Science, pages 255—274. Springer-Verlag,
1996. To appear.

P. Klint. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering Methodology, 2(2):176-201, 1993.

P. Krishnan. Specification of systems with interrupts. J. Systems Software,
21:291-304, 1993.

P. Krishnan, B. McKenzie, and S. Hunt. Guile: Graphical user interface for linguis-
tic experiments. In Proceedings of the 17th Annual Computer Science Conference,
Australian Communications, pages 309320, 1994.

P. Krishnan and P. D. Mosses. Specifying asynchronous transfer of control. In
RTFT’92, Proc. Symp. on Formal Techniques in Real-Time and Fault-Tolerant
Systems, Delft, volume 571 of Lecture Notes in Computer Science. Springer-Verlag,
1992.

S. B. Lassen. Design and semantics of action notation. In [44], pages 34-42, 1994.
S. B. Lassen. Action semantics reasoning about functional programs. BRICS,
Dept. of Computer Science, Univ. of Aarhus, Dec. 1995.

S. B. Lassen. Basic action theory. Technical Report RS-95-25, BRICS, Dept. of
Computer Science, Univ. of Aarhus, 1995.

S. Liang and P. Hudak. Modular denotational semantics for compiler construc-
tion. In Programming Languages and Systems — ESOP’96, Proc. 6th European
Symposium on Programming, Linkoping, volume 1058 of Lecture Notes in Com-
puter Science, pages 219-234. Springer-Verlag, 1996.

R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. The MIT
Press, 1990.

E. Moggi. Computational lambda-calculus and monads. In LICS’89, Proc. jth
Ann. Symp. on Logic in Computer Science, pages 14-23. IEEE, 1989.

P. D. Mosses. The mathematical semantics of Algol60. Tech. Mono. PRG-12,
Programming Research Group, Univ. of Oxford, 1974.

P. D. Mosses. Mathematical Semantics and Compiler Generation. D.Phil. disser-
tation, University of Oxford, 1975.

P. D. Mosses. Compiler generation using denotational semantics. In MFCS’76,
Proc. Symp. on Math. Foundations of Computer Science, Gdarisk, volume 45 of
Lecture Notes in Computer Science. Springer-Verlag, 1976.

P. D. Mosses. Making denotational semantics less concrete. In Proc. Int. Workshop
on Semantics of Programming Languages, Bad Honnef, pages 102-109. Abteilung
Informatik, Universitdt Dortmund, 1977. Bericht nr. 41.

P. D. Mosses. SIS, Semantics Implementation System: Reference manual and user
guide. Tech. Mono. MD-30, Dept. of Computer Science, Univ. of Aarhus, 1979.
Out of print.

P. D. Mosses. A constructive approach to compiler correctness. In ICALP’80,
Proc. Int. Coll. on Automata, Languages, and Programming, Noordwijkerhout, vol-
ume 85 of Lecture Notes in Computer Science, pages 449-469. Springer-Verlag,
1980.

P. D. Mosses. A semantic algebra for binding constructs. In Proc. Int. Coll. on
Formalization of Programming Concepts, Peniscola, volume 107 of Lecture Notes
in Computer Science, pages 408-418. Springer-Verlag, 1981.

23

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

P. D. Mosses. Abstract semantic algebras! In Formal Description of Programming
Concepts II, Proc. IFIP TC2 Working Conference, Garmisch-Partenkirchen, 1982,
pages 45-71. North-Holland, 1983.

P. D. Mosses. A basic abstract semantic algebra. In Proc. Int. Symp. on Semantics
of Data Types, Sophia-Antipolis, volume 173 of Lecture Notes in Computer Science,
pages 87-107. Springer-Verlag, 1984.

P. D. Mosses. Unified algebras and action semantics. In STACS’89, Proc. Symp.
on Theoretical Aspects of Computer Science, Paderborn, volume 349 of Lecture
Notes in Computer Science. Springer-Verlag, 1989.

P. D. Mosses. Unified algebras and institutions. In LICS’89, Proc. 4th Ann. Symp.
on Logic in Computer Science, pages 304-312. IEEE, 1989.

P. D. Mosses. Unified algebras and modules. In POPL’89, Proc. 16th Ann. ACM
Symp. on Principles of Programming Languages, pages 329-343. ACM, 1989.

P. D. Mosses. Denotational semantics. In Handbook of Theoretical Computer Sci-
ence, volume B, chapter 11. Elsevier Science Publishers, Amsterdam; and MIT
Press, 1990.

P. D. Mosses. A practical introduction to denotational semantics. In Formal
Description of Programming Concepts, IFIP State-of-the-Art Report, pages 1-49.
Springer-Verlag, 1991.

P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1992.

P. D. Mosses. On the action semantics of concurrent programming languages.
In Semantics: Foundations and Applications, Proc. REX Workshop, Beekbergen,
1992, volume 666 of Lecture Notes in Computer Science, pages 398-424. Springer-
Verlag, 1993.

P. D. Mosses, editor. Proc. 1st Intl. Workshop on Action Semantics, Edinburgh,
1994, number NS-94-1 in BRICS Notes Series. BRICS, Dept. of Computer Science,
Univ. of Aarhus, 1994.

P. D. Mosses. Unified algebras and abstract syntax. In Recent Trends in Data Type
Specification, Proc. 9th Workshop on Specification of Abstract Data Types, Caldes
de Malavella, 1992, Selected Papers, volume 785 of Lecture Notes in Computer
Science, pages 280—-294. Springer-Verlag, 1994.

P. D. Mosses, editor. CoFI: Initiative for a Common Framework for Algebraic
Specification, URL: http://www.brics.dk/Projects/CoFI, 1996.

P. D. Mosses. A tutorial on action semantics. 50pp. Tutorial notes for FME’94
(Formal Methods Europe, Barcelona, 1994) and FME’96 (Formal Methods Europe,
Oxford, 1996), Mar. 1996.

P. D. Mosses and M. A. Musicante. An action semantics for ML concurrency
primitives. In FME’94, Proc. Formal Methods Furope: Symposium on Industrial
Benefit of Formal Methods, Barcelona, volume 873 of Lecture Notes in Computer
Science, pages 461-479. Springer-Verlag, 1994.

P. D. Mosses and D. A. Watt. The use of action semantics. In Formal Description
of Programming Concepts III, Proc. IFIP TC2 Working Conference, Gl. Avernes,
1986, pages 135-166. North-Holland, 1987.

P. D. Mosses and D. A. Watt. Pascal action semantics, version 0.6. URL:
ftp://ftp.brics.dk/pub/BRICS /Projects/AS/Papers/MossesWatt93DRAF T.ps.Z,

Mar. 1993.

H. Moura. Action Notation Transformations. PhD thesis, Dept. of Computing
Science, Univ. of Glasgow, 1993.

24

52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71

H. Moura and D. A. Watt. Action transformations in the Actress compiler genera-
tor. In CC’94, Proc. 5th Intl. Conf. on Compiler Construction, Edinburgh, volume
786 of Lecture Notes in Computer Science, pages 16-30. Springer-Verlag, 1994.
M. A. Musicante. The Sun RPC language semantics. In Proceedings of PANEL’92,
XVIII Latin-American Conference on Informatics. Universidad de Las Palmas de
Gran Canaria, 1992.

M. A. Musicante and P. D. Mosses. Communicative action notation with shared
storage. Tech. Mono. PB—452, Dept. of Computer Science, Univ. of Aarhus, 1993.
J. P. Nielsen and J. U. Toft. Formal specification of ANDF, existing subset. Tech-
nical Report 202104/RPT/19, issue 2, DDC International A/S, Lundtoftevej 1C,
DK-2800 Lyngby, Denmark, 1994.

P. @rbaek. OASIS: An optimizing action-based compiler generator. In CC’9/,
Proc. 5th Intl. Conf. on Compiler Construction, Edinburgh, volume 786 of Lecture
Notes in Computer Science, pages 1-15. Springer-Verlag, 1994.

J. Palsberg. An automatically generated and provably correct compiler for a sub-
set of Ada. In ICCL’92, Proc. Fourth IEEE Int. Conf. on Computer Languages,
Oakland, pages 117-126. IEEE, 1992.

J. Palsberg. Provably Correct Compiler Generation. PhD thesis, Dept. of Com-
puter Science, Univ. of Aarhus, 1992. xii+224 pages.

J. Palsberg. A provably correct compiler generator. In ESOP’92, Proc. European
Symposium on Programming, Rennes, volume 582 of Lecture Notes in Computer
Science, pages 418-434. Springer-Verlag, 1992.

G. D. Plotkin. A structural approach to operational semantics. Lecture Notes
DAIMI FN-19, Dept. of Computer Science, Univ. of Aarhus, 1981.

D. A. Schmidt. Denotational Semantics: A Methodology for Language Develop-
ment. Allyn & Bacon, 1986.

D. A. Schmidt. The Structure of Typed Programming Languages. The MIT Press,
1994.

K. Slonneger and B. L. Kurtz. Formal Syntax and Semantics of Programming
Languages: A Laboratory Based Approach. Addison-Wesley, 1995.

J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. The MIT Press, 1977.

The RAISE Language Group. The RAISE Specification Language. BCS Practi-
tioner Series. Prentice-Hall, 1992.

J. U. Toft. Feasibility of using RSL as the specification language for the ANDF for-
mal specification. Technical Report 202104/RPT/12, issue 2, DDC International
A/S, Lundtoftevej 1C, DK-2800 Lyngby, Denmark, 1993.

A. van Deursen. Executable Language Definitions: Case Studies and Origin Track-
ing Techniques. PhD thesis, Univ. of Amsterdam, 1994.

A. van Deursen and P. D. Mosses. ASD: The action semantic description tools. In
AMAST’96, Proc. 5th Intl. Conf. on Algebraic Methodology and Software Technol-
ogy, Munich, volume 1101 of Lecture Notes in Computer Science, pages 579-582.
Springer-Verlag, 1996.

D. A. Watt. Executable semantic descriptions. Software — Practice and Ezperi-
ence, 16:13-43, 1986.

D. A. Watt. An action semantics of Standard ML. In Proc. Third Workshop on
Math. Foundations of Programming Language Semantics, New Orleans, volume
298 of Lecture Notes in Computer Science, pages 572—598. Springer-Verlag, 1988.
D. A. Watt. Programming Language Syntar and Semantics. Prentice-Hall, 1991.

25

Addendum: This paper also appears in MFCS’96, Proc. 21st International Sym-
posium on Mathematical Foundations of Computer Science, Cracow, Poland,
September 1996, volume 1113 of Lecture Notes in Computer Science, pages 37—
61. Springer-Verlag, 1996.

26

Recent Publications in the BRICS Report Series

RS-96-53 Peter D. Mossed.heory and Practice of Action Semantics
December 1996. 26 pp. Appears in Penczek and Szalas,
editors, Mathematical Foundations of Computer Science:
21st International SymposiumMFCS '96 Proceedings,
LNCS 1113, 1996, pages 37-61.

RS-96-52 Claus Hintermeier, Helene Kirchner, and Peter D.
MossesCombining Algebraic and Set-Theoretic Specifica-
tions (Extended Version)December 1996. 26 pp. Appears
in Haveraaen, Owe and Dahl, editorsRecent Trends in
Data Type Specification: 11th Workshop on Specification
of Abstract Data Types, joint with 8th COMPASS Work-
shop Selected Papers, LNCS 1130, 1996, pages 255-274.

RS-96-51 Claus Hintermeier, Helene Kirchner, and Peter D.
Mosses. R"- and G"-Logics December 1996. 19 pp.
Appears in Gilles, Heering, Meinke and Mbller, edi-
tors, Higher-Order Algebra, Logic, and Term-Rewriting:
2nd International Workshop HOA '95 Proceedings,
LNCS 1074, 1996, pages 90-108.

RS-96-50 Aleksandar Peké Hypergraph Optimization Problems:
Why is the Objective Function Linear?December 1996.

10 pp.

RS-96-49 Dan S. Andersen, Lars H. Pedersen, Hanstuitel, and
Josva Kleist. Objects, Types and Modal Logic®ecember
1996. 20 pp. To be presented at thdth International
Workshop on the Foundations of Object-OrientedOOLA4,
1997.

RS-96-48 Aleksandar Peké. Scalingsin Linear Programming: Nec-
essary and Sufficient Conditions for Invariancéecember
1996. 28 pp.

RS-96-47 Aleksandar Peké. Meaningful and Meaningless Solu-
tions for CooperativelN -person Games December 1996.

28 pp.

RS-96-46 Alexander E. Andreev and Sergei Solovied Decision Al-
gorithm for Linear Isomorphism of Types with Complexity
Cn(log?(n)). November 1996. 16 pp.

