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Abstract. This paper proposes a simple, set-theoretic framework pro-
viding expressive typing, higher-order functions and initial models at
the same time. Building upon Russell’s ramified theory of types, we de-
velop the theory of Rn-logics, which are axiomatisable by an order-sorted
equational Horn logic with a membership predicate, and of Gn-logics,
that provide in addition partial functions. The latter are therefore more
adapted to the use in the program specification domain, while sharing in-
teresting properties, like existence of an initial model, withRn-logics. Op-
erational semantics of Rn-/Gn-logics presentations is obtained through
order-sorted conditional rewriting.

1 Motivations

The general goal of this work is to give a simple, set-theoretic framework provid-
ing expressive typing, higher-order functions and initial models at the same time.
The decision to use set-theoretic interpretations is taken mainly because of their
simplicity, and their intuitive appeal for formal software specification. Higher-
order functions and highly expressive types including polymorphism, dependent
and higher-order types are frequently used concepts that we want to handle in a
uniform way. We also want to provide a concise and sufficiently simple deduction
system, easily implemented by rewriting.

Algebraic specification techniques model types as sets and subtypes as sub-
sets, called sorts and subsorts, respectively. However, in conventional algebraic
frameworks, sort expressions are generally restricted to constants, functions are
first-order and sort assertions are static and unconditional. From the algebraic
approach, we want to keep the initial semantics which provides a unique model
up to isomorphism for classes of models, and rewrite techniques for operational
semantics.

Defining function graphs as sets of argument/value pairs for each function is
a classical set-theoretic technique to give semantics to functions. This is the case
in Russell’s ramified theory of types from which we started our work. However,
self-applicable functions, as in the untyped λ-calculus, are not possible in that



theory; our approach will include references to sets (i.e. names) in order to cope
with this problem.

2 Introduction to Rn-Logics and Gn-logics

An Rn-logic is an equational Horn logic with membership predicate ∈. The
parameter n, which is a natural number ≥ 0, gives a bound on the nesting depth
of the sets used in interpretations. Analogous to Whitehead and Russell [37],
we assign orders i ∈ [0..n] to variables and terms, so that a term of order 0
is interpreted as an individual value and a term of order 1 or greater as a set.
Moreover formulas are restricted to stratified ones, i.e. t ∈ t′ is a valid formula
only if t is of one order lower than t′ and t = t′ is an admissible equation only if
all its instances are order-preserving, i.e. left and right hand side are of the same
order. This prevents Russell’s paradox. Furthermore, the syntax of terms does
not include the empty set as a predefined constant, in order to avoid negation
in the considered Horn clause fragment. Instead we have the restriction that all
sets represented by terms are non-empty.

The difference from Russell’s ramified theory of types [37] is the considera-
tion of non-term-generated models. Our choice of models avoids Gödel’s second
theorem which proves the incompleteness of deduction systems like the one in
Principia Mathematica [37]. We get a complete deduction system by using non-
standard axioms of choice and extensionality. This goes along with an extension
of the signature by choice functions, which are deterministic in our framework.
The essential use of choices here is the possibility to express that there may be
other objects than those represented by terms in a particular model. Hence, given
a set of individuals, we define sets together with choices as follows: a choice of
order 0 is a term representing a (possibly non-standard) individual. A set of or-
der 1 is a set of choices of order 0 and individuals. A choice of order k ∈ [1..n−1]
is a term representing a set of order k. A set of order k ∈ [2..n] is a set of choices
and sets of order k − 1.

Therefore, the underlying idea for the sort structure is to start with Russell’s
ramified theory of types up to order n, which is basically many-sorted. Assume
{s0, . . . , sn} is the set of sorts. Then s0 is the sort of individuals represented by
terms and for i ∈ [1..n], si is the sort of terms representing sets of sets of . . . (i
times) of individuals. Therefore, sets in si are called sets of order i. Now, we
add supersorts s′0, . . . , s

′
n for s0 . . . , sn, respectively, such that s′0 is the sort of

all individuals not necessarily represented by a term, s′i, i ∈ [1..n], is the sort of
all sets of sets of . . . (i times) of individuals, also not necessarily represented by
a term. This allows us for example to reason about real numbers as individuals
although it is impossible to represent all of them as terms. Choice functions are
thus defined from si to s′i−1, i ∈ [1..n]. Let us call this intermediate theory simple
Rn-logic. The interpretation of the sort structure for Rn-logic is illustrated in
Figure 1.

SimpleGn-logics are defined analogously, except that functions are not neces-
sarily total. When f is declared as a function e.g. from individuals to individuals
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Fig. 1. Interpretation of sorts in Rn-logic
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in Gn-logics, this does not imply that f is completely defined over all individu-
als; however, if f(t) is defined for some individual term t, then f(t) has to be an
individual. Gn-logics seem to be more natural for program specifications than
Rn-logics. However, they are also a bit more complex since we have to handle
definedness of a term t using an additional predicate Ex t.

The difference between simple and full Rn-/Gn-logics is that the latter in-
clude references to sets, which are individuals. As the last step of the construc-
tion, we add sorts for references to objects (i.e. to individuals, sets of individuals,
etc.) represented by terms in one of the sorts s0, . . . , sn. The intuition for ref-
erences is that they are names for the objects they refer to. References in our
framework are mainly useful for the construction of function graphs: it is pos-
sible to define a graph of a higher-order function as a set of individual pairs of
references to arguments and results.

The basic result in this paper is the existence of a sound and complete de-
duction system for full Rn-/Gn-logics. This is not in contradiction to the general
incompleteness of higher-order predicate logics, since we use a particular non-
standard model notion, similar to Henkin models [9]. Furthermore, this category
of models together with standard order-sorted homomorphisms contains an ini-
tial object for each presentation, since we use a Horn clause fragment and all
operations are deterministic.

3 Illustration of Rn-and Gn-logics

Let us give some examples of specifications in Rn- and Gn-logics, before pro-
ceeding to the formal definitions. To start with, the example of polymorphic
ordered lists illustrates the expressiveness of Rn- and Gn-logics, as it involves
types depending on functions.

Recall that s0, s1 and s2 are the sorts of individuals, sets of individuals,
and sets of such sets, respectively. Let the signature contain the operators lists
(ordered lists), nil, cons (ordered list constructors), insert (element insertion),
orders (orders over elements) and pair with the following declarations of domains
and co-domains:

lists : s1, s1 → s1 nil : s1 → s0
cons : s0, s0 → s0 orders : s1 → s2
insert : s0, s0 → s0 pair : s0, s0 → s0.

Let additionally x, y, l be variables of sort s0, and i, o be variables of sort s1.
Let φ be the conjunction o ∈ orders(i) ∧ x ∈ i ∧ y ∈ i ∧ l ∈ lists(i, o) and φ′ be
φ ∧ cons(y, l) ∈ lists(i, o). The axioms are:

o ∈ orders(i) ⇒ nil(o) ∈ lists(i, o)
o ∈ orders(i) ∧ x ∈ i⇒ cons(x, nil(o)) ∈ lists(i, o)
pair(x, y) ∈ o ∧ φ′ ⇒ cons(x, cons(y, l)) ∈ lists(i, o)

φ⇒ insert(x, l) ∈ lists(i, o)
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pair(x, y) ∈ o ∧ φ′ ⇒ insert(x, cons(y, l)) = cons(x, cons(y, l))
pair(y, x) ∈ o ∧ φ⇒ insert(x, cons(y, l)) = cons(y, insert(x, l)).

The reader should not be alarmed by the amount of detail in the above axioms:
here, for simplicity, we are using the bare Rn-logic specifications, without intro-
ducing any of the syntactic sugar that would be needed for large-scale use in
practical applications.

Some simple consequences of the above specification in Rn-logic, taking the
set of natural numbers N for i and assuming leq = {pair(m, n) | m ≤ n} ∈
orders(N), include:

cons(1, cons(3, nil(leq))) ∈ lists(N, leq)
insert(2, cons(1, cons(3, nil(leq)))) = cons(1, cons(2, cons(3, nil(leq))))

whereas cons(3, cons(1, nil(leq))) ∈ lists(N, leq) is not a consequence.
In Rn-logics functions are total, so all well-sorted terms are required to

have values. One may however restrict ones attention to those terms whose
values belong to some particular sets. For example, above we may be inter-
ested only in those terms whose values belong to lists(N, leq); we may regard
cons(3, cons(1, nil(leq))) as an error term.

In Gn-logics, however, functions may be partial, and the values of error terms
may be left undefined. This provides a canonical way of distinguishing errors: we
do not have to identify some particular sets of interest. Taking the specification
above in Gn-logics, we get that cons(3, cons(1, nil(leq))) is undefined (in the
standard model of the specification, at least).

Rn-/Gn-logics offer the possibility to express and manipulate functions via
their graphs. Suppose f : si → sj . Then we may specify the graph g :→ s1 of f
by:

pair(ref(x), ref(y)) ∈ g ⇐⇒ f(x) = y

where ref : sk → s′0 is the function that maps each value in sk to the corre-
sponding reference, and pair : s′0, s′0 → s0.

Our logics also allow us to specify self-applicable functions with set theo-
retic semantics. Assume we want to define domain restrictions restrict(f, s) for
functions, often written f |s. Now, our type system does not prevent us writing
restrict(restrict, s), where s is a set of function graphs defined in the same logic,
since the graph of restrict may be defined as a simple set of individuals as shown
above.

Let us conclude these illustrations with another familiar example:maplist, an
operator that takes an operator and a list as arguments, and applies the operator
to each item in the list, making a list of the results. Here, having already specified
ordered lists, we consider only the case where the applied operator belongs to
monotones, the set of monotone increasing functions on the ordered items, so
that the resulting list is also ordered. The signature for ordered lists is extended
as follows:

maplist : s1, s0 → s0 monotones : s1, s1 → s2.
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We use the same variables as in the specification of ordered lists above, together
with m of sort s1. The axioms are:

o ∈ orders(i) ∧m ∈ monotones(i, o) ⇒ maplist(m, nil(o)) = nil(o)
o ∈ orders(i) ∧m ∈ monotones(i, o) ∧ x ∈ i ∧ l ∈ lists(i, o) ∧
cons(x, l) ∈ lists(i, o) ∧ pair(x, y) ∈ m⇒

maplist(m, cons(x, l)) = cons(y,maplist(m, l))

Notice that the domain of m and the set of list items i have to be the same. When
i is properly included in the domain of m, we may either increase i to match
(thereby increasing the set of lists) or make use of maplist(restrict(m, i), l).

4 Rn-Logics

Presentations in simple and full Rn-logics have a signature and Horn clause
axioms, including conditional membership formulas and conditional equalities,
which allow to express, among other things, polymorphic and dependent types.
Let us give their formal definition, using a fragment of conventional first-order
order-sorted logic [30]:

Definition1. An Rn-signature Σ is an order-sorted signature (S,≤S,F,R),
such that:

– S is a non-empty set of sorts, S = {s0, . . . , sn}∪{s0r , . . . , snr}∪{s′0, . . . , s′n},
– ≤S is an ordering relation on S defined by: for all i ∈ [0..n], si ≤S s′i and
sir ≤S s′0,

– F is a set of function symbols. Any f in F with an arity k has a set of ranks
f : s1, . . . , sk → s with s1, . . . , sk, s in S. If n > 0, F contains the following
functions:
• choose with ranks {(choose : si → s′i−1) | i ∈ [1..n]},
• ref with ranks {(ref : si → sir) | i ∈ [0..n]},
• deref with ranks {(deref : sir → si) | i ∈ [0..n]},

All other functions f have ranks of the form (f : s′′1 , . . . , s
′′
q → s′′), where

the sorts s′′, s′′i belong to {s0, . . . , sn, s0r, . . . , snr} for all i ∈ [1..q], so that
each well-sorted term has a unique least sort (Σ is called regular in this case).

– R is a set of relation symbols. Any p in R with an arity k has a set of ranks
p : s1, . . . , sk with s1, . . . , sk in S. If n > 0, R contains the relation ∈ with
ranks {(∈ : s′i−1 si) | i ∈ [1..n]}.
A Σ-term (or literal) is ground if it does not contain any variable.
An Rn-presentation P is a set of Σ-Horn clauses, written G ⇒ L, where G

is the premiss (or the body) and L is the conclusion (or the head). A clause
G ⇒ with an empty conclusion is called a goal clause by analogy with logic
programming. All variables of sorts s′0, . . . , s

′
n in P occur only on the left of a

membership relation ‘∈’, ‘choose’ only appears as top operator of a left argument
of ‘∈’ and all equalities occurring in clauses of P are sort preserving, which means
that, for each instance, the least sort of the left-hand side is the same as the least
sort of the right-hand side.
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The sort structure of Rn-signatures is illustrated in Figure 2.

r : ref
d : deref
c : choose

s0 s1
. . .

. . .

snr. . .s0r

s′0 s′1 s′n

sn

. . .

r r r
d d d

cc c

⊆ ⊆ ⊆⊆ ⊆

Fig. 2. The Sort Structure of Rn-signatures

First of all, remark the nature of the terms in the different sorts: the lower
sorts sm form in [0..n] should contain only terms without the symbol choose, the
ones in s′m−1 those of sm with one choose symbol on the top. In addition, smr
contains only terms of sm with ref additionally on its top, whenever m ∈ [0..n].
Regularity of the signature implies that for all i, j ∈ [0..n], i 6= j, there is no
ground term both of sort si and sj .

The signature restrictions are relatively strong, because of the clear separa-
tion of sets of different order. In fact, the sort preservation of equalities results
in static typing like in many-sorted logics. The choice functions are introduced
in order to get a characteristic element for each set represented by a term. They
also play a role in constructing the initial model.

Some difficulty arises with the treatment of these choice functions, which
classically have a non-deterministic behaviour, but which we need to keep de-
terministic for technical reasons (Order-sorted equational Horn logic does not
handle non-deterministic functions!). However, the definition ofRn-presentations
does not allow us to define the result of a choice. Hence, the non-determinism
has to move to the model level. Remark that these choice functions correspond
with Hilbert’s ε symbol [10, 17] and with the ε operator of HOL (cf. [8]).

References are particularly useful when we regard functions as sets, since
their introduction allows for arbitrary arguments for functions in s′0. From a
set theoretic point of view, there may be objections to the use of references as
elements different from sets. However, similar to individuals, we regard them as
a priori given objects, just as terms are. The appropriate intuition is to think of
references as purely syntactic, finite objects (just like terms), although the set
they represent might be infinite.

Rn-models are a special case of first-order Σ-models defined for order-sorted
equational Horn logic with non-overloaded semantics [34].
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Definition2. Let Σ be an Rn-signature, X a set of S-sorted variables and P
an Rn-presentation. An Rn-model A of P is a Σ-model of P, where the carrier
CA contains a non-empty set of individuals s′0

A in the sense of [37], such that:

– s0 is interpreted as the set of individuals represented by a term,
– for i ∈ [1..n], sAi contains only non-empty sets of order i represented by a

term,
– for i ∈ [0..n], sAir is a set of symbolic, finite names contained in s′0

A,

– for i ∈ [1..n], s′i
A is the set of all sets of order i, plus all choices of order

i+ 1 whenever i < n,
– chooseA gives a unique element from any set in CA given as argument

(choice function),
– ref is a bijective function over sAi , i ∈ [0..n], taking a set of order i and

returning its unique name in sAir ,
– deref is its inverse function on sAir , and
– ∈ is interpreted as the membership relation on all sets in CA.

The notation (Σ,P,X) |=Rn φ means that the formula φ is true in all Rn-
models of P.

Figure 3 now shows the set of deduction rules necessary to perform deduction
in Rn-logics. Here, um, tm stand for terms of sorts sm, xk, xm, xkr for variables
of sorts sk, sm and skr , respectively. It is not difficult to prove their soundness:

Theorem3. Let P be an Rn-presentation. Assume that there exists at least one
ground term of sort sm for each m ∈ [0..n]. The deduction rules of Figure 3 are
sound with respect to deduction in Rn-models.

Figure 3 actually shows deduction rule schemes, which should be understood
for all m ∈ [1..n] and k ∈ [0..n]. Remark that Choice is the axiom of choice
and Ext is a non-standard version of the axiom of extensionality, which can
also be given as hereditary Harrop formula, although going out of the syntax of
Rn-logics:

ClassicExt (∀x′m−1
, x′

m−1 ∈ ym ⇒ x′
m−1 ∈ zm) ∧

(∀x′m−1
, x′

m−1 ∈ zm ⇒ x′
m−1 ∈ ym)⇒ (ym = zm)

The intuition behind Ext is the freeness of choose, the choice function, which we
keep without equational axioms by requiring that it does not occur in the conclu-
sion of a clause in an Rn-presentation. Remark that Ext cannot be formulated
as a Horn clause of the following form:

HornExt choose(ym) ∈ zm ∧ choose(zm) ∈ ym ⇒ ym = zm.

This is simply not a valid clause, i.e. satisfied by all Rn-logic models, since it
does not hold for any fixed interpretation of choose, as the following example
shows:

8



1. Rn-Deduction Rules from Order Sorted Equational Horn Logics:

Reflexivity x = x if x ∈ X

Axioms G⇒ L
if G⇒ L ∈ P

Substitutivity G⇒ L
σ(G)⇒ σ(L) if σ ∈ SubstΣ(X)

Cut G ∧ L′ ⇒ L G′ ⇒ L′

G ∧G′ ⇒ L

Paramodulation
G⇒ L[s] G′ ⇒ (s = t)

G ∧G′ ⇒ L[t]

2. Specific Deduction Rules of Rn-logics (for k ∈ [0..n] and m ∈ [1..n]):

Ref
ref (deref (xkr)) = xkr

Deref
deref (ref (xk)) = xk

Choice choose(xm) ∈ xm

Ext
choose(um) ∈ tm choose(tm) ∈ um

um = tm

Fig. 3. Rn-deduction rules

Example 1. Let n = 1 and P = {a ∈ A, b ∈ B, a ∈ C, b ∈ C}. Now, let A be
the model interpreting A as {a}, B as {b} and C as {a, b}. A trivially satisfies
ClassicExt, since the premiss never gets true. However chooseA(CA) has to
coincide with either chooseA(AA) or chooseA(BA). But neither AA = CA

nor BA = CA. So HornExt is not valid in this Rn-model of P. But, since
choose is free, we may quantify over all possible interpretations, and therefore
Ext is sound for deduction.

The fact that choice functions allow the formulation of non-standard exten-
sionality as a deduction rule over Horn clauses without inductive conditions, is
the key for achieving completeness of deduction for Rn-logics using the simple
first-order, order-sorted, equational Horn clause calculus given in Figure 3.

The notation (Σ,P,X) `RNL φ means that the formula φ is deducible from
P using the Rn-deduction rules.

Theorem4. Let P be a Rn-presentation. Assume that there exists at least one
ground term of sort sm for each m ∈ [0..n]. The deduction rules of Figure 3 are
complete: for any (Σ,X)-atom L, if (Σ,P,X) |=Rn L, then (Σ,P,X) `RNL L.
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The construction of the initial model IR can be done inductively: for ground
terms in s0, i.e. representing individuals, and for non-standard ground terms
in s′i, i ∈ [1..n], it is just the usual quotient construction. For terms t in si,
i ∈ [1..n], it is the set of all terms uIR such that (Σ,P,X) `RNL u ∈ t. Using
this construction, we get:

Theorem5. Let P be a Rn-presentation. Assume that there exists at least one
ground term of sort sm for each m ∈ [0..n]. Then IR is an initial object in the
category of Rn-models of P.

The proof relies on three lemmas stating the following facts:

– Equational replacement using sort-preserving equalities preserves the sort of
the terms, i.e. their order.

– Deductive term models (as described above in the construction of the initial
model) interpret “=” as the equality relation and “∈” as the membership
relation.

– All terms occuring in a deductive term model are well-sorted.

Full details of the proofs can be found in [11].

5 Gn-Logics

In this section, we go over from Rn-logics to Gn-logics. The main difference
between the two is that functions in Gn-logics are partial over the universe. This
leads to complications when we define the corresponding models, since terms,
that have to be interpreted in order-sorted equational Horn clause logic, might
not necessarily be interpreted in Gn-logics.

Gn-logics were inspired by G-algebras [20], but can also be seen as closely
related to Scott’s logic of partial equality [33, 6] and to partial models in [32].
In what follows strictness is reflected by well-definedness axioms and leads to a
unique notion of equality. Gn-signatures are just extensions of Rn-signatures.

Definition6. A Gn-signature is an Rn-signature Σ = (S,≤S,F,R), such that
R contains additionally the relation Ex with ranks {(Ex : s′i) | i ∈ [0..n]}.
A Gn-presentation is an Rn-presentation, such that Σ is a Gn-signature.

The difference between Rn- and Gn-models relies on partiality of functions
and on the existential predicate. Let us precisely state the additional require-
ments for Gn-models: in a Gn-interpretation A,

– ∀f ∈ F, if (f : s1, . . . , sq → s), then fA is a partial function from the
Cartesian product sA1 × . . .× sAq into sA.

– Moreover Ex is interpreted as the membership relation in CA.

10



The difference between Rn- andGn-interpretations seems small at first glance,
but is more fundamental. There is no more totality obligation for function sym-
bols. However, a function f with rank (f : s1, . . . , sq → s) must have sA

as codomain whenever it is defined for an element in the Cartesian product
sA1 × . . .× sAq . So Gn-formulas have to include declarations for the domain of
functions. The satisfaction relation in all Gn-interpretations is now denoted by
|=Gn .

The less restrictive definition of term interpretations prevents us to use order-
sorted equational Horn clause deduction directly. In particular, Reflexivity is
no more sound. Instead, we have to ask for well-definedness of the interpretation
of a term before deducing reflexivity. Figure 4 shows the set of deduction rules
for Gn-logics incorporating well-definedness formulas and therefore suitable for
partial function handling.

1. Gn-Deduction Rules from Order Sorted Equational Horn Logics
with Partial Functions:

PartialReflex Ex t
t = t

Axioms G⇒ L
if G⇒ L ∈ P

SubstConform G⇒ L
σ(G)⇒ σ(L) if σ ∈ P-SubstΣ(X)

Cut G ∧ L′ ⇒ L G′ ⇒ L′

G ∧G′ ⇒ L

Paramodulation
G⇒ L[s] G′ ⇒ (s = t)

G ∧G′ ⇒ L[t]

WellDef
Φ[t]
Ex t

if Φ[t] is a (Σ,X)-atom containing t

2. Specific Deduction Rules of Gn-logics (for k ∈ [0..n] and m ∈ [1..n]):

Ref
ref (deref (xkr)) = xkr

Deref
deref (ref (xk)) = xk

Choice choose(xm) ∈ xm

Ext
choose(um) ∈ tm choose(tm) ∈ um

um = tm

Fig. 4. Gn-deduction rules
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As a consequence, the deduction system for Gn-logics is not a conservative
extension of the Rn-logics system, since the introduction of partial functions
makes it necessary to use a restricted form of reflexivity and substitution. A
Σ-substitution is called P-conform, when Ex σ(x) can be proved for all x in
the domain of σ. P-SubstΣ(X) stands for the set of P-conform Σ-substitutions
whose domain is a subset of X. Additionally, we need to add a well-definedness
rule WellDef .

As in the case of Rn-logics, soundness and completeness of the calculus
with respect to the corresponding class of models can be stated. The nota-
tion (Σ,P,X) `GNL φ means that the formula φ is deducible from P using the
Gn-deduction rules.

Theorem7. (soundness, completeness of deduction, initial model)
Let P be a Gn-logic presentation. Assume that there exists at least one ground
term of sort sm for each m ∈ [0..n].
The deduction rules of Figure 4 are sound w.r.t. deduction in Gn-models.
The deduction rules of Figure 4 are complete:
for any (Σ,X)-atom L, if (Σ,P,X) |=Gn L, then (Σ,P,X) `GNL L.
Furthermore, there exists an initial object IG in the category of Gn-models of P.

The proofs of these results can be found in [11]. The main difficulty here
comes from partiality of functions. In contrast to Rn-logics, we do not need to
interpret all terms in the set of all Σ-ground terms, just those terms that have
to denote an element in all models.

6 Operationalisation by Rewriting Techniques

The main application for Rn-and Gn-logics is the software specification and
verification domain. The major idea is to use set theoretic semantics for both
types and higher-order features. We have therefore investigated operationalisa-
tion aspects for Rn-and Gn-presentations through first-order typed conditional
term rewriting systems [11]. These techniques may be used for the design of a
programming language in the style of OBJ-3, but using dynamic types and sort
constraints with clear set theoretic semantics.

In order to transform a Rn-or Gn-presentation into a conditional term rewrit-
ing system, we can adapt a saturation procedure on equational Horn clauses,
such as the ones described for instance in [2, 27]. The three main inference rules
are superposition into conclusion, superposition into premisses and equality res-
olution. Application of these rules requires the existence of a well-founded re-
duction ordering [4] on terms and literals. Superposition is performed by unify-
ing the maximum term in an equational conclusion of a clause with a subterm
in another clause, then performing a paramodulation step on the instantiated
clauses. In this process, relation symbols are considered as boolean functions.
Other inference rules, such as subsumption by another clause and elimination of
tautologies, are also added to eliminate redundant clauses. An ordered strategy
is used for reducing the search space by using only maximal terms and literals
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with respect to the given ordering. A saturation process is a sequence of presen-
tations (P0, P1, . . .), also called a derivation, where Pi is deduced from Pi−1 by
application of one inference rule. This derivation must be fair in the intuitive
sense that no clause is forgotten in the process of generating consequences. P0 is
consistent if and only if the empty clause does not belong to any Pi. Moreover
if P∞ is the set of persisting clauses in this fair derivation and does not contain
the empty clause, then one can construct from P∞ a conditional term rewriting
system which is terminating and confluent in the initial model of P0. This indeed
provides a way to compute in a finite and unambiguous way the normal form of
any expression in P0. The complete description of the process and its proof can
be found in [11].

In Rn-logics, the saturation procedure defined for instance in [29], can be
reused after replacing the unsorted unification algorithm by an order-sorted one.
This is possible thanks to the sort preservation of Rn-presentations. If saturation
terminates, then the set of ground instances of rules decreasing with respect to
a given ordering on terms [5], forms a terminating and confluent term rewriting
system on ground terms.

Concerning Gn-logics, we have to change the inference rules for saturation
a little bit due to the partiality of functions, which results in a partial form
of reflexivity (cf. PartialReflex). We omit details here (the interested reader
may refer to [11]). Let us instead illustrate the saturation technique with the
following example :

Example 2. Assume we want to define stacks as set St over elements of sort E.
Let the Rn-presentation P be defined as follows:

ε ∈ E
empty ∈ St

x ∈ E ∧ y ∈ St ⇒ pop(push(x, y)) ∈ St
x ∈ E ∧ y ∈ St ⇒ top(push(x, y)) ∈ E
x ∈ E ∧ y ∈ St ⇒ push(x, y) ∈ St
x ∈ E ∧ y ∈ St ⇒ pop(push(x, y)) = y
x ∈ E ∧ y ∈ St ⇒ top(push(x, y)) = x.

Let pop � top � push � empty � ε � E � St be the precedence for a lexico-
graphic path ordering (LPO) on terms [14]. The multiset expression giving the
complexity of membership formulas with respect to this LPO is defined in the
same way as for equalities in [26], i.e. by ignoring the relation symbol.

Using the inference rules from [26] with an order-sorted equational constraint
solver, we can then eliminate the membership formulas for pop(push(x, y)) and
top(push(x, y)) (i.e. the third and fourth clauses in P above) by simplification
with the two last equalities. The result is a saturated presentation.

Refuting (top(pop(push(x, y))) = top(y) ⇒) then gives (top(y) = top(y) ⇒),
which has the identity substitution as solution.

It should be more natural to consider P as a presentation in Gn-logic, since
the operations pop and top are partial functions not defined on the empty stack.
Then the goal (top(pop(push(x, y))) = top(y)⇒) has an infinite set of solutions
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{y 7→ push(ε, . . .push(ε, empty) . . .)}, but no more the identity substitution,
since top is undefined for empty.

In order to get a better efficiency for membership proofs, we extend Horn
clauses furthermore by assertions, which are a kind of cache mechanism for
atoms derivable from the premiss of a clause using the current presentation.
This is illustrated in the following example :

Example 3. Let F = {id, 0, Nat} and P the following set of clauses :

0 ∈ Nat
x ∈ Nat ⇒ id(x) = x
id(0) ∈ Nat⇒

We start saturation (using an LPO with precedence id � 0 � Nat) by deducing
from the first clause an assertion for the last one. The result is :

id(0) ∈ Nat⇒ [[0 ∈ Nat]]

Here, the part added to the clause between the brackets [[ and ]] is the assertion.
The remainder is a usual clause. For better readability, we omit ordering condi-
tions and constraints in our argumentation. Now, we can superpose the second
clause into the previous one to get :

0 ∈ Nat⇒ [[0 ∈ Nat]]

Now the goal 0 ∈ Nat is satisfied since the corresponding atom is already present
in the assertion. Hence, we can deduce without further superposition the empty
clause, which proves the inconsistency of P. The gain of efficiency appears in
bigger examples when an assertion is used several times.

A saturation calculus with assertions in developed in [11] and gives a seman-
tics to saturation in a fragment of G1-logics in the style of [12, 13]. Saturation is
performed for order-sorted presentations with polymorphic, dynamic types and
partial functions, using so-called decorated terms, in which set terms are added
locally to term nodes to store typing information [11]. The possibility to mix
this style of dynamic typing with the more efficient static typing, like in [1], is
to be investigated.

7 Discussion

In this section, we discuss more precisely the connections of Rn-and Gn-logics
with set theory and algebraic specifications, but also mention relations with
higher-order logic and functional programming.
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Set Theory: Rn-logics stem from naive set theory and may also be seen as
a fragment of Z [35]. Let us examine which part of set theory can be easily
specified.

Horn clauses are built with two logical connectives, implication and conjunc-
tion, which correspond directly with inclusion and intersection. It is therefore
not surprising that Rn-and Gn-logics allow specifying set inclusion ⊆ and inter-
section ∩, assuming xm, ym to be variables of sort sm, z′m−1 be a variable of
sort s′m−1, for m ∈ [1..n] :

choose(xm) ∈ ym ⇒ xm ⊆ ym
z′
m−1 ∈ xm ∧ xm ⊆ ym ⇒ z′

m−1 ∈ ym
z′
m−1 ∈ xm ∧ z′m−1 ∈ ym ⇒ z′

m−1 ∈ xm ∩ ym
z′
m−1 ∈ xm ∩ ym ⇒ z′

m−1 ∈ xm
z′
m−1 ∈ xm ∩ ym ⇒ z′

m−1 ∈ ym.
Depending on the logic, we have different behaviours. In Rn-logics, all terms

are defined and therefore all intersections of non-empty sets (represented by a
ground term) denote a non-empty set, since they are represented by a ground
term. In Gn-logics, terms t are non-empty if they are defined, i.e. if we can derive
Ex t. Hence, intersections like int∩ list, where int is the set of integers and list
is the set of lists, can be specified as empty if we avoid to define their existence
and use initial semantics.

One might try to define singletons sgl(xm) by:

z′
m = xm ⇒ z′

m ∈ sgl(xm)
z′
m ∈ sgl(xm)⇒ z′

m = xm.

But this last definition is not admissible due to the requirement of sort preser-
vation for the equalities in clauses. Union would be:

z′
k ∈ xm ⇒ z′

k ∈ xm ∪ ym
z′
k ∈ ym ⇒ z′

k ∈ xm ∪ ym
z′
k ∈ xm ∪ ym ⇒ z′

k ∈ xm ∨ z′k ∈ ym.

The last clause is obviously not a Horn clause. However, we may define a weak
union that covers the exact one:

xm ⊆ xm ∪ ym
ym ⊆ xm ∪ ym

xm ⊆ zm ∧ ym ⊆ zm ⇒ xm ∪ ym ⊆ zm.

We may conclude from this short outline that the set theory that can be
described by Rn-and Gn-logics is rather weak, due to the absence of negation.
Negation must be avoided as long as we want initial models. A limited amount of
negation can be used by admitting goal clauses, which are Horn clauses without
conclusion. The existence of initial models is then guaranteed if the presentation
is consistent. In [11], we extended the completeness results for consistency tests
in form of saturation procedures to Rn-and Gn-logics, as illustrated in Section 6.
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Order-sorted algebras, ETL and Unified Algebras: From an algebraic
point of view, Rn-and Gn-logics compare best with many and order-sorted alge-
bras [7], already implemented via rewriting for instance in OBJ-3 [15]. However
simple Gn-logics provide arbitrary terms as sorts and thus achieve a greater ex-
pressivity. Polymorphic order-sorted algebras can be seen as a fragment of simple
G1 logic.

In order to compare Rn-logics with ETL and unified algebras, we tried to
encode them in our framework. ETL [19] is in fact a fragment of Rn-logics. An
ETL presentation is a triple 〈Ω, V, E〉, such that Ω is a set of function symbols
(with associated arity), V is a set of unsorted variables and E is a set of Ω-Horn
clauses using only equality “=” and the typing relation “:” as binary operators.
The typing relation satisfies the paramodulation axiom and therefore we may
use it as a new relation symbol in Rn-logics. Remark that we cannot reuse “∈”
for this purpose, since it has more properties than “:” in ETL. Now, it is possible
to construct an Rn-presentation, such that an Ω-atom is true in Rn-logic if and
only if it holds in ETL [11].

Concerning unified algebras [25], the main difference is the absence of the
empty set, which should take the role of the bottom element in unified algebra.
As mentioned above, we cannot allow for the empty set if we want to have initial
models for all presentations. Extending our formula language by goals, it is actu-
ally possible to extend Rn-and Gn-logics by a predefined constant representing
the empty set. However, choose has then to become partial. The problem with
singletons, which are necessary for the relation “:” in unified algebras, cannot
be solved as easily. A work-around is the use of quasi-singletons defined by the
axioms for sgl given above, after replacing the variable z′m of sort s′m by one of
sort sm. Then, sgl(x) is a set with exactly one standard element, namely x, but
arbitrarily many non-standard elements. To cope with real singletons, we would
need to extend our type theory in order to avoid that choose becomes determin-
istic, which is in conflict with the sort preservation property of Rn-and Gn-logic
presentations and deduction rules. The other operators of unified algebras, lower
bound ≤, join | and meet &, can be realised by set inclusion, intersection and
weak union, as defined above, so that we may come quite close to unified alge-
bras at least. Simple Rn-logics have also strong similarities with power algebras,
i.e. unified algebras with set interpretations [25].

Relation to Higher-Order Logic and Algebras: The framework of Rn-
and Gn-logics provides some higher-order features, since function graphs are
specified as set constants, which can be passed to other functions as higher-
order arguments. This can be situated in the context of higher-order logic that
provides variables for subsets, relations, functions on the universe, functions
defined on functions and quantification over these. An introductory survey to
the literature on higher-order logic, its relation to set theory, and reduction to
first-order logic can be found in [36].

During the last years, a number of papers have dealt with the extension of
first-order algebraic specifications to higher-order ones. Among them are [18,
32, 22, 24, 23, 21]. We share with these approaches the objectives of integrat-
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ing higher-order function space with algebraic specifications, and keeping the
existence of initial (and possibly terminal) models. But we differ from universal
algebras with higher-order types as developed for instance in [21] in the fact that
our models are set-theoretic rather than purely algebraic, and we so provide a
uniform treatment of types and higher-order functions.

Relation to λ-calculi and higher-order rewriting: As in higher-order al-
gebras, we do not allow λ-abstractions as terms, but rather consider that λx.t
can always be replaced by a new constant symbol f together with the axiom
f(x) = t. This has the advantage to avoid technical problems associated with
binding mechanism and to minimize the functions in the initial model, which
may be crucial for limiting the search space for automated theorem proving.

Polymorphically typed λ-calculi have shown that types and subtypes provide
interesting features for functional programming and some connections can be
drawn also from our work to the system F≤ of [3] and to dynamic types proposed
in [1].

Concerning the operationalisation of deduction, we have a purely first-order
mechanism and avoid higher-order rewriting or unification as developed in [28] as
well as combinatory reduction systems [16]. In contrast, in the theorem proving
domain, HOL [8] and Isabelle [31] are based on type theory but provide means
to reason in set theory.

Relation to object-oriented languages: Through their use of sets, both for
types and for higher-order functions, Rn-and Gn-logics are close to the semantics
of imperative programming languages with subtyping, inheritance and polymor-
phism, like C++. In the latter language, two types declared to hold exactly the
same objects have to be different. Furthermore, it is possible to compare func-
tion symbols. Such a test has to fail for two functions defined in exactly the
same way but with different names. In analogy, we cannot derive A = B from
{a ∈ A, a ∈ B} in Rn-and Gn-logics. Although Rn-and Gn-logics do not provide
any built-in mechanism for features or records, extensions in this direction could
be done.

Acknowledgements: We are grateful to anonymous referees for pointing out miss-
ing references in the original version of this paper. This work was partially sup-
ported by the Esprit Basic Research Working Group 6112 Compass.
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