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Abstract

We analyze invariance of the conclusion of optimality for the lin-
ear programming problem under scalings (linear, affine, . . . ) of various
problem parameters such as: the coefficients of the objective function,
the coefficients of the constraint vector, the coefficients of one or more
rows (columns) of the constraint matrix. Measurement theory con-
cepts play a central role in our presentation and we explain why such
approach is a natural one.
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1 Introduction

In this paper we analyze robustness of an optimal solution to the linear
programming problem1

maxP (x;w) = wTx
subject to:
x ∈ F := {x ∈ Rn : x ≥ 0 & Ax = b}

(1)

More precisely, we give conditions under which an optimal solution (or
basic variables determining it) is invariant under scaling of various problem
parameters such as the coefficients of the objective function w1, . . . , wn, coef-
ficients of the constraint matrix A (aij, i, j = 1, . . . , n), and coefficients of the
constraint vector b = (b1, . . . , bm)T . By scaling of parameters p1, . . . , pk by
a function Φ from some set of functions S, we mean replacing p1, . . . , pk by
Φ(p1), . . . , Φ(pk). Although scaling would usually mean scaling by increas-
ing linear functions (i.e., S = {Φ : R → R : Φ(x) = αx, α > 0}), we also
consider cases where various problem parameters are scaled by increasing
affine functions S = {Φ : R → R : Φ(x) = αx + β, α > 0}), and by even
more general sets of functions. This approach to analyzing robustness of an
optimal solution to the problem (1) is different than the standard sensitivity
analysis approach where only the effects of small perturbations of problem
parameters are considered. So, why should one be interested in the pertur-
bations of data that arise from scalings? For mathematical purists, there
is no justification needed since characterizing invariance of the conclusion
of optimality under scaling of certain parameters by functions from a set S
is an interesting mathematical question per se. Moreover, any characteriza-
tion of this type might give better understanding of the linear programming
problems. However, our motivation comes from situations that might arise in
practice: whenever problem parameters represent data that can be measured
in more than one acceptable way (e.g., costs/profits can be measured in US
dollars, Danish kroner, Croatian kunas, or any other currency; time can be
measured in seconds, minutes, hours,....). As will be shown (in Section 3),
the way data is measured gives rise to a set of scaling functions in a natural
way.

1Throughout we use a notational convention that boldfaced letters denote vectors, that
is x = (x1, . . . , xn)T . We also assume that A ∈ Mm,n(R) is of full rank and we assume
that m ≤ n, i.e., rank(A) = m.
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Example 1 Consider the production problem where n items could be pro-
duced and each produced unit of the j-th item brings the net profit/loss of
wj. Suppose that the production of any item requires m different resources
(machines, raw materials, etc.) and suppose that one unit of the j-th item re-
quires aij of the i-th resource. Further suppose that there is at most bi of the
i-th resource. Then the problem of maximizing the profit can be formulated
as the linear programming problem (1)2.

There are numerous problem parameters that can be presented in different
but equally acceptable ways. For example, the coefficients of the objective
function w1, . . . , wn can be expressed in US dollars but they can be expressed
in German marks or any other currency. Note that any transformation from
one monetary unit to another is an increasing linear function. If a flat fee
needs to be paid for every currency conversion (say, price of an option to
buy a currency at a given exchange rate), then a transformation from one
monetary unit to another is an increasing affine function.

Similarly, for any i, there might be more than one way to represent
ai1, . . . , ain, bi. For example, aij might represent time that the j-th item
needs to spend on the i-th machine. This time can be measured in seconds,
minutes, hours,. . . . In fact, relationship between any two acceptable ways to
represent such data is described by an increasing linear transformation.3

Our presentation is built up on measurement theory concepts. In partic-
ular scales of measurement (see Section 2) and the concept of meaningfulness
(see Section 3) are central notions of our presentation. The main reason for
such approach is not only to expose a natural connection between meaning-
fulness and invariance under scalings, but also to show that invariance under
scalings of problem parameters is a natural object of sensitivity analysis.
This paper is an attempt to illustrate this type of analysis in the case of the
linear programming problem which is the most widely used mathematical
model for optimization problems arising in practice. However, investigation
of meaningfulness of the conclusion of optimality is a theme that goes far
beyond the scope of this paper. Roberts [7, 8] was first to point out a variety

2Note that we may assume that all constraints are in fact equalities. For example, any
unused portion of the i-th resource can be viewed as another production item (it can be
resold, stored, disposed,. . . at some per unit profit/loss wn+i)

3Of course, it is trivial to see that the conclusion of optimality is invariant under such
transformations of problem parameters. The point of this example was to illustrate how
measurement of problem parameters gives rise to scaling functions
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of problems concerning meaningfulness of the statements that can be drawn
from various mathematical models that are commonly used to solve oper-
ations research problems. Detailed treatment of the meaningfulness of the
conclusion of optimality in combinatorial optimization problems can be found
in [4] (in fact, this paper is an improved version of part of work presented
there). Also, systematic analysis of the meaningfulness of the conclusion of
optimality for single machine scheduling problems can be found in [3].

In most of the situations that will be analyzed here, it will be clear that
there cannot be an optimal solution invariant under the given set of scaling
functions. However, we will characterize situations in which the set of basic
variables that defines the optimal basis and, hence, an optimal solution is
invariant to such scalings. In some sense, the set of the basic variables deter-
mining an optimal solution is a natural object of our analysis. It describes
only fundamental relationship between the set of feasible solutions F and
the objective function P , eliminating actual numerical values of the problem
parameters to the largest possible extent.

Let us introduce the notation by briefly defining basics about optimality
of the problem (1):

Ax = b can be written as

A1x1 + A2x2 + . . . + Anxn = b (2)

where Ai denotes the i-th column of A. For any m linearly independent
columns of A: Ai1, . . . , Aim, there exists a unique solution (xi1, . . . , xim) to
the system of m linear equalities:

Ai1xi1 + Ai2xi2 + . . . + Aimxim = b

This solution can be extended to a solution of the system Ax = b by setting
xk = 0 for all k 6∈ {i1, . . . , im}. Such a solution is called a basic solution to
the system Ax = b and variables i1, . . . , im are called basic variables while
the other n − m variables are called non-basic variables. We say that x is
a basic feasible solution if x is a basic solution and x ≥ 04.

An m× m non-singular matrix whose k-th column is Aik will be denoted
by B. We will call B a basis since by giving B we actually prescribe basic
variables. wB will denote the vector (wi1, wi2, . . . , wim)T and xB will denote

4Every basic feasible solution corresponds to an extreme point of F and every extreme
point of F corresponds to (one or more) basic feasible solutions (see, for example, [1, 2]).

4



the vector (xi1, xi2, . . . , xim)T . In this notation, the basic variables for the
basic feasible solution x corresponding to a basis B are given by xB = B−1b
(since BxB = b). Moreover, we have wTx = wB

TxB since for every non-
basic variable k, xk = 0.

The notation
zj := wT

BB−1Aj

will be used throughout this paper
It is straightforward to show (see, for example, [1] or [2]) that basic feasible

solution x∗ corresponding to basis B is an optimal solution to problem (1) if
and only if

zj − wj ≥ 0, j = 1, . . . , n. (3)

This characterization of an optimal solution to problem (1) is known as the
optimality criterion. The basis B corresponding to an optimal solution x∗

is called an optimal basis.
As already mentioned, in the next section we will introduce the measure-

ment theory terminology. Throughout the paper, this terminology will be
used to describe and analyze invariance under various scalings. Section 3
is conceptually the most important part of this paper: in this section we
define the concept of meaningfulness, overview our results, and give proofs
for some simple cases. The cases that are technically more complicated will
be analyzed in Section 4. Finally, we give some closing remarks in Section 5.

2 Background–Measurement Theory Termi-
nology

Invariance of the conclusion of optimality under scaling of certain parameters
of the problem (1) might not only be a nice property of an optimal solution,
but it is often a necessary condition if the linear programming formulation
is used to model a problem whose parameters are numerical representations
of problem data. We will show how the information about the scale type of
data often gives rise to a set of scaling functions S with the property that the
conclusion of optimality must be invariant under scalings by functions from
S. We first introduce some basic measurement theory concepts (following
[6]).

Obviously, measurement has something to do with assigning numbers that
correspond to or “preserve” certain observed relations. Formally, objects be-
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ing measured together with relations that should be preserved define a rela-
tional system, i.e., an ordered (p + q + 1)-tuple (A, R1, . . . , Rp, o1, . . . , oq),
where A is a set of objects, R1, . . . , Rp are (not necessarily binary) relations
on A, and o1, . . . , oq are binary operations on A. The type of the relational
system is a sequence (r1, . . . , rp; q) of length p+1 where ri denotes that Ri is
an ri-ary relation (i.e., Ri ⊆ Ari). A scale of measurement is defined by a
mapping (into some relational system on R) that preserves relations and bi-
nary operations of the relational system whose elements are being measured,
i.e., a scale of measurement is a triple (A, B, f) where A and B are relational
systems of the same type (and B is a relational system on R.), and f : A → B
is a homomorphism of relational systems (that is, for all a1, a2, . . . , ari ∈ A,
Ri(a1, a2, . . . , ari) ⇔ R′i(f(a1), f(a2), . . . , f(ari)) i = 1, . . . , p, and for all
a, b ∈ A, f(aoib) = f(a)o′if(b), i = 1, . . . , q). Every scale of measurement
(A, B, f) defines a representation A → B.

As already point out, usually there is more than one acceptable way to
measure objects from A (i.e., there can be more than one representation
A → B). Let S1 = (A, B, f) and S2 = (A, B, g) be two scales of measure-
ment. If there exists Φ : f(A) → R such that Φ ◦ f = g, then we say that
Φ is an admissible transformation of S1 (since g = Φ ◦ f defines S2, i.e.,
another acceptable way to measure objects from A). The set of all admis-
sible transformations of f (which defines S1) is denoted by AT (f). f is a
regular homomorphism (and S1 is a regular scale) if for any other scale
(A, B, h), there exists Φh ∈ AT (f) such that h = Φh ◦ f . Regular scales
are important since (A, B, f) and the corresponding AT (f) define any other
scale (A, B, h). If any scale (A, B, f) is regular then we say that A → B is a
regular representation.

All the homomorphisms (scales, representations) that will be
considered in the rest of this paper are assumed to be regular.5

The set AT (f) defines the scale type of f . If all homomorphisms of a
representation A → B have the same scale type (as will be the case with all
scales that will be considered) then the scale type of a representation A → B
is defined to be the scale type of any of its homomorphisms. We will refer to
the following scale types that often appear in practice:
• Absolute scales. f is an absolute scale if AT (f) = {id}. The scale values
are predetermined here and there is a unique way to measure data.

5This is a natural assumption since it can be shown that any homomorphism can be
reduced to a regular one in a natural way [4, 6].
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• Ratio scales. f is a ratio scale if AT (f) is the set of all increasing linear
transformations. It is not hard to see that in this case the scale value is
determined up to choice of a unit. Examples of ratio scales are measurement
of cardinal utility (i.e., monetary amounts), time, length, mass, . . .
• Interval scales. f is an interval scale if AT (f) is the set of all increasing
affine transformations. In other words, the scale value is determined up to
choice of a unit and choice of a zero point. For example, temperature is mea-
sured on an interval scale. Also, cardinal utility with one unknown parameter
(for example per-unit production cost with the unknown fixed start-up cost),
or time with one unknown parameter (e.g., calendar time, or per-unit pro-
cessing time with unknown fixed start-up time) are examples interval scale
type data.
• Ordinal scales. f is an ordinal scale if AT (f) is the set of all increasing
functions. Hence, the scale value is determined only up to order. For exam-
ple, whenever only the ordering among objects being measured is known, we
have an ordinal scale.

If AT (f) ⊆ AT (g), we say that the scale of f is stronger than or equal
to the scale of g (or the scale of g is weaker than or equal to the scale of f).
For example, we can order scales introduced here from the strongest towards
the weakest: absolute, ratio, interval, ordinal.

3 Meaningfulness of the conclusion of opti-
mality

The central measurement theory concept that will be used throughout this
paper is that of meaningfulness. We say that a statement involving scales
of measurement is meaningful if its truth value is unchanged whenever ev-
ery scale (A, B, f) is replaced by another (acceptable) scale (A, B, Φ ◦ f),
Φ ∈ AT (f). In other words a statement is meaningful if it has the same
truth value (always true or always false) regardless of the choice of the ho-
momorphism f : A → B. Therefore, meaningful statements are unambiguous
in their interpretation and they say something about fundamental relations
among the objects being measured. Statements which are not meaningful are
meaningless. In other words, a statement involving scales is meaningless
if there exists a scale (A, B, f) and a scale (A, B, Φ ◦ f), Φ ∈ AT (f), such
that the statement is false. Obviously, we cannot put much weight behind
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such statements since their truth value is an accident of the choice of an
(acceptable) way to measure the objects in question.

In this paper we analyze the meaningfulness of the conclusion of optimal-
ity for the linear programming problem (1). It should be noted that we may
assume that every parameter of the problem (1) (i.e., coefficients of the ob-
jective function w1, . . . , wn, coefficients of the constraint matrix a11, . . . amn

and coefficients of the resource vector b1, . . . , bm) and the value of every vari-
able x1, . . . , xn represent data measured on some scale of measurement (since
everything is being measured on at least an absolute scale of measurement).

We say that x∗ is a meaningful optimal solution to the problem (1)
if and only if x is an optimal solution and the conclusion of optimality is
a meaningful statement (with respect to all scales of measurement). More
formally, suppose that there are k different scales of measurement involved
in formulation of the problem (1) and suppose that f1, . . . , fk are regular
homomorphisms representing all the data. Then an optimal solution x∗ for
problem (1) is meaningful if and only if, for any choice of Φ1, . . . , Φk (Φi ∈
AT (fi), i = 1, . . . , k), x̄∗ is an optimal solution to the problem

maxP (x, w̄) = w̄Tx
subject to:
x ∈ F̄ := {x ∈ Rn : x ≥ 0 & Āx = b̄}

where x̄s := Φi(xs)(xs), w̄s := Φi(ws)(ws), the coefficients of matrix Ā are
ārs := Φi(ars)(ars), and b̄r := Φi(br)(br) for xs, ws, ars, br being data mea-
sured on the i(xs)-th, i(ws)-th, i(ars)-th, and i(br)-th scale of measurement,
respectively (that is, for any r and s Φi(xs) is a regular homomorphism rep-
resenting xs, Φi(ws) is a regular homomorphism representing ws, Φi(ars) is a
regular homomorphism representing ars, and Φi(br) is a regular homomor-
phism representing br). In what follows we adopt the convention that if only
the scale of some of the parameters is mentioned, it is assumed that the other
parameters are fixed (i.e., measured on an absolute scale).
Remark. Suppose that x∗ is an optimal solution to problem (1). Let
{p1, . . . , pl} be some set of the problem parameters (i.e., each pi is a co-
efficient of either w or A or b). Let S be a scale of measurement with a
property that there exists a set of functions G such that for every homo-
morphism f , the set of admissible transformations AT (f) = G. Then the
following are equivalent:
(a) x∗ is a meaningful optimal solution if {p1, . . . , pl} are measured on a
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common scale of measurement S.
(b) The conclusion that x∗ is an optimal solution to problem (1) is invariant
under scaling of {p1, . . . , pl} by any function from G.

For example, invariance of the conclusion of optimality of x∗ under scaling
of {p1, . . . , pl} by increasing linear (affine) transformations is equivalent to x∗

being a meaningful optimal solutions if {p1, . . . , pl} represent data measured
on a ratio (interval) scale of measurement.

In what follows we will discuss several situations:

• Coefficients of the objective function (w1, . . . , wn) are measured on a
(common) scale of measurement (Theorem 2, and Corollary 3).

• Coefficients of the i-th row of the matrix A (ai1, . . . , ain) together with
bi (i-th coordinate of the vector b) are measured on a (common) scale
of measurement Si (Proposition 4 and Corollary 5).

• Coefficients of the i-th row of the matrix A (ai1, . . . , ain) are measured
on a (common) ratio scale of measurement or bi is measured on some
scale of measurement Si (Proposition 6, Theorem 8, Corollary 9, Corol-
lary 10, Theorem 12, and Corollary 13).

• Coefficients of the j-th column of the matrix A (a1j, . . . , amj) together
with wj (j-th coefficient of the objective function) are measured on a
(common) scale of measurement Si (Proposition 15).

• Coefficients of the j-th column of the matrix A (a1j, . . . , amj) are mea-
sured on a (common) ratio scale of measurement or wj is measured on
some scale of measurement Si (Theorem 17, Corollary 18, Theorem 19,
Corollary 20, and Theorem 21).

The following notation will be used in the proof of the next theorem and
throughout the rest of the paper: for Φ:R→R, and x =(x1, . . . , xn)T ∈ Rn,
we denote Φ(x) := (Φ(x1), . . . , Φ(xn))T .

Theorem 2 Let x∗ be an optimal solution for problem (1).

1. x∗ is a meaningful optimal solution if w1, . . . , wn are measured on a
ratio scale.

2. Suppose that w1, . . . , wn are measured on an interval scale. Then x∗

is a meaningful optimal solution if and only if x1 + x2 + . . . + xn is a
constant on F .

9



Proof: 1. follows from the fact that (αw)Tx = αwTx, i.e., for any α > 0,
(αw)Tx∗ ≥ (αw)Ty if and only if wTx∗ ≥ wTy.

In order to prove 2., first note that, for any Φ(t) = αt + β, [Φ(w)]Tx =
αwTx + β(1, . . . , 1)x. Hence, for any α > 0, [Φ(w)]Tx∗ ≥ [Φ(w)]Ty if and
only if

wTx∗ ≥ wTy +
β

α
(1, . . . , 1)(x − y).

If x1 +x2 + . . .+xn is a constant on F (i.e., if for any x,y ∈ f , (1, . . . , 1)(x−
y) = 0), then [Φ(w)]Tx ≥ [Φ(w)]Ty if and only if wTx ≥ wTy. Conversely,
if x1 +x2 + . . .+xn is not a constant on F , then there exists y ∈ F such that
(1, . . . , 1)(x − y) 6= 0 and we can find α > 0 and β such that [Φ(w)]Tx∗ <
[Φ(w)]Ty. In other words, x∗ is not a meaningful optimal solution.

It should be noted that Theorem 2 holds as long as the objective function
is linear, i.e., we need no assumptions whatsoever on the structure of the set
F . (In fact, the theorem also holds for more general objective functions; see
[4])

We use the special structure of the set of feasible solutions F to obtain

Corollary 3 Suppose that w1, . . . , wn are measured on an interval scale and
let x∗ be an optimal solution for problem (1). Then x∗ is a meaningful optimal
solution if and only if there exists λ ∈ Rm such that λT A = (1, 1, . . . , 1).

Proof: By Theorem 2, if w1, . . . , wn are measured on interval scale then
x∗ is a meaningful optimal solution if and only if x1 + x2 + . . . + xn is a
constant on F := {x ≥ 0 : Ax = b}. Note that any x ∈ F can be written as
x0 + y ≥ 0 where x0 is some fixed element from F and Ay = 0. Moreover,
x1 + x2 + . . . + xn is a constant on F if and only if y1 + y2 + . . . + yn = 0
for every y such that x0 + y ∈ F . Since rank(A) = m all the rows of A are
linearly independent and

{y : Ay = 0} (4)

is an (n −m)-dimensional subspace of Rn. By adding an additional equality
(an additional row in A) y1 + y2 + . . . + yn = 0, the set

{y : Ay = 0, y1 + y2 + . . . + yn = 0}

will be the same as the set (4) if and only if (1, . . . , 1) can be expressed as a
linear combination of the rows of A. Of course, this will be the case if and
only if there exists a λ ∈ Rm such that λT A = (1, 1, . . . , 1)
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Proposition 4 Suppose that ai1, ai2, . . . , ain, bi are measured on a scale of
measurement S.

1. If S is a ratio scale then every optimal solution x∗ to problem (1) is
meaningful.

2. If S is an interval scale and if

x1 + x2 + . . . + xn = 1 (5)

for all x ∈ F , then then every optimal solution x∗ to problem (1) is
meaningful.

Proof: Obviously,

ai1x1 + ai2x2 + . . . + ainxn = bi

holds if and only if

αai1x1 + αai2x2 + . . . + αainxn = αbi

holds for any α > 0 and this proves 1. Similarly, 2. follows directly from the
obvious fact that for any choice of α > 0 and β

(αai1 + β)x1 + (αai2 + β)x2 + . . . + (αain + β)xn = αbi + β

if and only if
ai1x1 + ai2x2 + . . . + ainxn = bi.

(This is because x1 + x2 + . . . + xn = 1.)

Corollary 5 Suppose that ai1, ai2, . . . , ain, bi are measured on a scale of mea-
surement Si, i = 1, . . . , m.

1. If for every i = 1, . . . , m, Si is a ratio scale or stronger, then every
optimal solution x∗ to problem (1) is meaningful.

2. If for every i = 1, . . . , m, Si is an interval scale and if (5) holds for all
x ∈ F , then then every optimal solution x∗ to problem (1) is meaning-
ful.
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Proof: Same as the proof of Proposition 4.

Remark. Without the condition (5) the conclusion of feasibility of x is a
meaningless statement in general and, consequently, the conclusion of opti-
mality might be a meaningless statement. It might be the case that a partic-
ular x is in F for any choice of Φ(ai1), Φ(ai2), . . . , Φ(ain), Φ(bi). It is possible
that there exists a meaningful optimal solution and that the conditions of
Corollary 5 are not met. For example, consider problem (1) where

wT = (1, 0, 0, 0), A =
(

1 0 1 0
2 1 0 1

)
, bT =

(
1 2

)
It is easy to see that x∗ = (1, 0, 0, 0)T is a meaningful optimal solution when-
ever a21, a22, a23, a24, b2 are measured on an interval scale. This is because
x∗ ∈ F for any choice of αa21 + β, αa22 + β, αa23 + β, αa24 + β, αb2 + β and
because x1 ≤ 1 (this follows from the first equality and xi ≥ 0).

If we just change wT in the example to be (1, 1, 0, 0), the conclusion of
optimality won’t be a meaningful statement anymore. x∗ = (1, 1, 0, 0)T is
not even feasible whenever β 6= 0.

4 Invariance of basic variables

In this section we will consider situations where the statement “x ∈ F ” will
be obviously meaningless. However, one might be interested in determining
if there exists a basis such that the corresponding x∗ is optimal regardless of
the choice of acceptable ways to measure problem data. In other words, we
will investigate the meaningfulness of the statement “the basic variables of
the basis B determine an optimal basis”.

The first such situation is where only bi are measured on scales of mea-
surement Si. Any transformation Φi(bi), can be viewed as replacing bi with
bi
′ := α−1

i bi where αi := bi/Φ(bi). Obviously, in this case, the statement
“x ∈ F ” is meaningful if and only if bi = bi

′. However, we will be inter-
ested in determining if there exists a basis such that the corresponding x∗

is optimal for any choice of Φi(bi), where Φi is an admissible transformation
for the scale of measurement of bi. This question is equivalent to analyzing
whether there exists a basis which is optimal whenever ai1, ai2, . . . , ain are
replaced by αiai1, αiai2, . . . , αiain. For example, if bi is measured on a ratio
scale, then αi can be any positive real number. Even if bi (note that b ≥ 0 by
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the definition of problem (1)) were measured on an interval, ordinal or even
nominal scale on R+ we still have α ∈ R+ and we can view this problem as
a problem where ai1, ai2, . . . , ain are measured on a ratio scale.

The simplest possible example is when all bi are measured on the same
ratio scale S.

Proposition 6 Suppose that b1, . . . , bm are measured on a (common) ratio
scale. Then the conclusion that B is an optimal basis for problem (1) is a
meaningful statement.

Proof: Clearly, for any α > 0, wTx(1) ≤ wTx(2) if and only if wT (αx(1)) ≤
wT (αx(2)). Furthermore, for any α > 0, B is a basis for a basic feasible
solution x of Ax = b if and only if B is a basis for a basic feasible solution
αx of Ax = αb

We now turn our attention to the case where only one bi is measured on
some scale of measurement (i.e., Sk, k 6= i, are absolute scales). As already
mentioned, there is a natural correspondence between bi being measured on
a scale S and ai1, . . . , ain being measured on a (common) ratio scale.

Example 7 (Production problem revisited)
Consider the production problem presented in Example 1. It is possible that
the exact amount of the i-th resource is not known exactly (for example,
the total time machine i can be used might be proportional to the outside
temperature) while the exact amount of other resources is known exactly.
This can be viewed as bi being measured on some scale of measurement S
(if bi is proportional to the outside temperature, then it is easy to see that
S is an interval scale).

Also, for this fixed i, ai1, . . . , ain might be numerical representations of
some measure of the i-th resource (which might be different than the measure
of wj or akj, k 6= i). For example, aij might represent the processing time of a
unit of the j-th product on the i-th machine. These processing times might
depend on the quality of some raw material used in the working process
(the higher the quality, the shorter the processing times), so the numbers
ai1, ai2, . . . , ain are not known precisely. However, it is possible that (for a
fixed i) all the ratios rjk = aij/aik are known (i.e., it might be known that the
j-th item needs rjk times more time than the i-th item). Hence, it is possible
that ai1, . . . , ain are measured on a common (ratio) scale of measurement.
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The following notation will be used throughout: for any α 6= 0 and i =
1, . . . , n we define

I(α; i) := Diag(1, . . . , 1, α, 1, . . . , 1)

where α is the (i, i) entry of I(α; i).

Theorem 8 Let B be an optimal basis for problem (1). If ai1, ai2, . . . , ain

are measured on a ratio scale, then the statement that the basic variables
of B define an optimal basis for problem (1) is meaningful if and only if
(B−1)i ≥ 0 (the i-th column of B−1 has no negative entries) and

m∑
k=1

bk(B−1)k ≥ bi(B−1)i. (6)

Proof: Replacing ai1, ai2, . . . , ain by αai1, αai2, . . . , αain can be written in
matrix form as replacing matrix A by matrix

Aα := [I(α; i)]A.

In this notation
Bα = [I(α; i)]B

and

B−1
α = B−1[I(α−1; i)] = B−1 + B−1[Diag(0, . . . , 0,

1
α

− 1, 0, . . . , 0)].

Bα is an optimal basis if and only if the corresponding basic solution x∗α
is feasible and the optimality criterion holds. We need to show that the
statement “Bα is an optimal basis for problem (1) where A is replaced by
Aα” is a true statement for any α > 0 if and only if (6) holds. (Note that
the statement is true for α = 1 by hypothesis.)

Note that (Aα)j = [I(α; i)]Aj and we have

B−1
α (Aα)j = B−1[I(α−1; i)][I(α; i)]Aj = B−1Aj.

Consequently,

wB
T B−1

α (Aα)j − wj = wB
T B−1Aj − wj

and, for any α > 0, the optimality criterion holds for Bα since it holds for B
by hypothesis.

14



Feasibility corresponds to the condition

(x∗α)Bα = B−1
α b ≥ 0,

since B(x∗)B = b.

B−1
α b = B−1b + B−1[Diag(0, . . . , 0,

1
α

− 1, 0 . . . , 0)]b

= x∗B + (B−1)i(
1
α

− 1)bi

= x∗B + bi
1 − α

α
(B−1)i.

Therefore, B−1
α b ≥ 0 if and only if

x∗B ≥ bi
α − 1

α
(B−1)i. (7)

Hence, it remains to show that (7) holds for any α > 0 if and only if both
(B−1)i ≥ 0 and (6) hold. Inequality (7) is required to hold for any α > 0.
Since f(α) := C α−1

α
is a monotone function on R+ we only need to check

that Inequality (7) holds when α → 0+ and when α → +∞.
When α → 0+ then α−1

α
→ −∞ and Inequality (7) holds if and only if

(B−1)i ≥ 0. This is because x∗B ≥ 0 (by feasibility) and bi ≥ 0 (by definition
of problem (1)).

When α → +∞ then α−1
α

→ 1− and we need to show that x∗B ≥ bi(B−1)i.
Note that

x∗B = B−1b = b1(B−1)1 + . . . + bm(B−1)m.

Therefore, we need

b1(B−1)1 + . . . + bm(B−1)m ≥ bi(B−1)i,

which is exactly (6)

Corollary 9 Let B be an optimal basis for problem (1). Suppose that bi

from problem (1) is measured on a scale of measurement (A, B, f) where B is
a relational system on R+ If (B−1)i ≥ 0 and if (6) holds, then the statement
that the basic variables of a basis B define an optimal basis for problem (1)
is meaningful.
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Proof: This follows directly from Theorem 8. As mentioned just before
Theorem 8, replacing bi by Φ(bi) (Φ ∈ AT (f)) is equivalent to replacing ai1,
ai2,. . . , ain by αai1, αai2,. . . , αain where α = bi/Φ(bi). α ≥ 0 since both bi

and Φ(bi) are in R+.
The following corollary is the converse of Corollary 9.

Corollary 10 Let B be an optimal basis for problem (1). Suppose that bi

from problem (1) is measured on a scale of measurement (A, B, f) where B
is a relational system on R+. Further suppose that the set

S := { bi

Φ(bi)
: Φ ∈ AT (f)} ⊆ R+

does not have an infimum or supremum in R+. If the statement that the basic
variables of a basis B define an optimal basis for problem (1) is meaningful,
then (B−1)i ≥ 0 and (6) holds.

Proof: This follows from the proof of Theorem 8. Note that (7) must hold
for every α ∈ S. Since inf S = 0 and sup S = ∞, we use the same argument
as in the proof of Theorem 8

Example 11 Consider problem (1) where

wT = (2, −1, 0, 0), A =
(

1 0 1 0
1 1 0 1

)
, bT =

(
1 2

)
.

It is easy to see that x∗ = (1, 0, 0, 1)T is the optimal solution and the basic
variables are 1 and 4. The corresponding optimal basis B and its inverse
B−1 are

B =
(

1 0
1 1

)
, B−1 =

(
1 0

−1 1

)
If b1 is measured on some scale of measurement, then the conclusion that
the basic solution corresponding to basic variables 1. and 4. is optimal is
meaningless by Corollary 10 since the first column of B−1, (B−1)1, is not a
nonnegative vector. Indeed, whenever b1 is replaced by Φ(b1) we can consider
problem (1) where instead of replacing b1 by Φ(b1), we replace A by( 1

Φ(b1) 0 1
Φ(b1) 0

1 1 0 1

)
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Note that the basic solution in which 1 and 4 are basic variables is not feasible
whenever Φ(b1) > 2 since

( 1
Φ(b1) 0
1 1

)−1 (
1 2

)T
=
(

Φ(b1) 0
−Φ(b1) 1

)(
1 2

)T
=
(

Φ(b1) 2−Φ(b1)
)

.

Therefore, such a basic solution cannot be optimal (since is not even feasible)
whenever Φ(b1) > 2.

Theorem 12 Let B be an optimal basis for problem (1). Suppose that for
every i = 1, . . . , m, bi from problem (1) is measured on a scale of measure-
ment (Ai, Bi, fi), where Bi is a relational system on R+. Further suppose
that for

Si := { bi

Φi(bi)
: Φi ∈ AT (fi)} ⊆ R+

inf(Si) = 0, i = 1, . . . , m. Then the statement that the basic variables of a
basis B define an optimal basis for problem (1) is meaningful if and only if
B−1 ≥ 0.

Proof: We again note that replacing bi by Φi(bi) is equivalent to replacing
ai1, . . . , ain by αiai1, . . . , αiain where αi = bi/Φi(bi).

We follow the proof of Theorem 8. For any choice of Φi ∈ AT (fi), i =
1, . . . , m, replacing bi by Φ(bi) can be viewed as replacing matrix A by matrix

Aα := (
m∏

i=1
[I(αi; i)])A = [Diag(α1, . . . , αm)]A.

We define

Bα := (
m∏

i=1
[I(αi; i)])B = [Diag(α1, . . . , αm)]B.

We want to show that the statement “Bα is an optimal basis for prob-
lem (1) where A is replaced by Aα” is a true statement for any choice of
(α1, . . . , αn)T = α > 0. (Note that the statement is true for α = (1, . . . , 1)T

by hypothesis.) As in the proof of Theorem 8, we conclude that the op-
timality criterion holds for a basic solution x∗α (corresponding to the basis
Bα) if and only if it holds for x∗ (corresponding to the basis B). This is
because matrices I(αi; i) and I(αj; j) commute for any αi, αj ∈ R+ and any
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i, j ∈ [m]). Hence, for any α > 0, the optimality criterion holds for x∗α (be-
cause, by hypothesis, the optimality criterion holds for x∗ corresponding to
the basis B)

In order to show feasibility of x∗α we need to show that (Bα)−1b ≥ 0. We
have

B−1
α b = B−1b + B−1[Diag(

1
α1

− 1, . . . ,
1

αm
− 1)b]

= x∗B +
m∑

i=1
(B−1)i(

1
αi

− 1)bi

= x∗B +
m∑

i=1
bi

1 − αi

αi
(B−1)i

It remains to prove that

[ ∀α > 0 : x∗B +
m∑

i=1
bi

1 − αi

αi
(B−1)i ≥ 0 ] ⇔ B−1 ≥ 0.

Proof of (⇒):
Note that we can set any of αi := 1 by choosing Φi to be the identity
function (which is certainly an admissible transformation). Therefore, by
setting αj = 1 for all j 6= i, we see that the condition (Bα)−1b ≥ 0 implies

x∗B ≥ bi
αi − 1

αi
(B−1)i, i := 1, . . . , m. (8)

As in the proof of Theorem 8 (when αi → 0+), using the fact that inf Si = 0,
we conclude that (B−1)i ≥ 0 for every i = 1, . . . , m. Hence, if x∗α is feasible
then B−1 ≥ 0.
Proof of (⇐):
if B−1 ≥ 0 then

B−1
α b =

m∑
i=1

1
αi

(B−1)ibi ≥ 0

for any choice of α1, . . . , αm ∈ R+ (since bi ≥ 0 by definition of problem (1)).

Corollary 13 Let B be an optimal basis for problem (1) such that B−1 ≥ 0.
If for every i = 1, . . . , m, bi from problem (1) is measured on a scale of
measurement (Ai, Bi, fi), where Bi is a relational system on R+, then the
statement that the basic variables of a basis B define an optimal basis for
problem (1) is meaningful.
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Proof: This is just one direction (sufficiency) of Theorem 12. Note that in
the proof of sufficiency, we did not need the assumption inf Si = 0.

Now we turn our attention to the case when wj, a1j, a2j, . . . , anj are mea-
sured on the same scale of measurement.

Example 14 We consider the production problem from Example 1 again.
Changing the definition of the unit of the j-th item will change all of wj , a1j,
a2j,. . . , anj . (Of course, it is possible that all n items are measured on the
same scale of measurement. In this case we would need to change w and A
completely.) In the simplest possible case, if the new unit of the j-th item
is α×(old unit), then wj, a1j, a2j,. . . , anj need to be replaced by αwj, αa1j,
αa2j,. . . , αanj. In matrix form, this change can be written as multiplying
both wT and A from the right by the matrix I(α; j).

Proposition 15 Suppose that, for every j = 1, . . . , n, wj, a1j, a2j, . . . anj are
measured on a scale Sj which is stronger than or equal to a ratio scale. Then
the statement that the basic variables of a basis B define an optimal basis for
problem (1) is meaningful. Moreover, (x1, . . . , xn)T is an optimal solution
for the original problem if and only if

x̄ = (
1
α1

(x1), . . . ,
1
αn

(xn))T

is an optimal solution for problem (1) where wj, a1j, a2j, . . . , anj are replaced
by αj(wj), αj(a1j), αj(a2j), . . . , αj(anj), j = 1, . . . n.

Proof: Note that for any y ∈ Rn, (α1w1, . . . , αnwn)ȳ = wTy. Also note
that replacing a1j, a2j, . . . , anj by αj(a1j), αj(a2j), . . . , αj(anj), j = 1, . . . n,
can be written in matrix form as replacing matrix A by matrix

Aα := A
n∏

j=1
[I(αj; j)] = A[Diag(α1, . . . , αn)].

Since ȳ = [Diag(α1, . . . , αn)]−1y, we have Ay = b ⇔ Aαȳ = b. Finally,
α1 > 0, . . . , αn > 0 implies y ≥ 0 ⇔ ȳ ≥ 0.

Finally, we consider situations where wj, j = 1, . . . , n, are not known
precisely or where wj are measured on some scale of measurement. In other
words, Φ(wj) is an acceptable replacement for wj whenever Φ is an admissible
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transformation of the scale of measurement of wj . We will make the (reason-
able) assumption that Φ(wj) and wj have the same sign, i.e., wjΦ(wj) > 0 for
all Φ. Similar to our analysis of the admissible transformations of bi, here we
can change the unit of the j-th item by replacing Φ(wj), a1j, a2j, . . . , anj by
wj = αΦ(wj), αa1j, αa2j, . . . , αanj where α = wj/Φ(wj) (> 0 by assumption).

Similar to our analysis of the meaningfulness of the conclusion of opti-
mality in the case when bi are measured on some scale of measurement, we
will first give a detailed analysis of the case when just one wj is measured
on some scale of measurement (i.e., wk, k 6= j, are measured on an absolute
scale) and then extend these results to the case when all wj’s are measured
on (possibly different) scales of measurement (Theorem 21).

Example 16 We turn once more to the production problem described in
Example 1. The exact profit per unit of the j-th item, wj, might not be known
exactly (for example it might be proportional to the current market price).
This can be viewed as wj being measured on some scale of measurement S.

Also, for a fixed j, the numbers a1j, a2j, . . . , anj might not be known pre-
cisely but all the ratios qkl = ajk/akl might be known. For example, the
production of the the j-th item might require a different amount of resources
depending on the outside temperature (provided that the production process
must be kept at the constant temperature) but it is known that the j-th
item contains qkl times more of the k-th ingredient(resource) than l-th ingre-
dient(resource). In such a case, a1j, a2j, . . . , anj represent data measured on
a common ratio scale.

The first step is to analyze the situation when a1j, a2j, . . . , anj are mea-
sured on a ratio scale of measurement.

Theorem 17 Let x∗ be an optimal solution for problem (1). Furthermore,
let x∗ be a basic feasible solution of Ax = b and let j be a non-basic variable
for x∗. Suppose that a1j, a2j, . . . , anj are measured on a ratio scale of mea-
surement. Then x∗ is a meaningful optimal solution to problem (1) if and
only if zj ≥ 0 ≥ wj.
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Proof: x∗ is a meaningful optimal solution if and only if x∗ is feasible and
satisfies the optimality criterion whenever A is replaced by A[I(α; j)], α > 0.

Since j is non-basic, x∗j = 0 and x∗ = [I(α; j)]−1x∗. Therefore, for any α,
A[I(α; j)]x∗ = b.

Hence it remains to show that the optimality criterion holds whenever A
is replaced by A[I(α; j)] if and only if zj ≥ 0 ≥ wj . We first note that B
remains unchanged since the j-th column of A is not a column of B. For any
k 6= j, Ak remains unchanged and consequently zk − wk remains unchanged
and zk − wk ≥ 0 since x∗ is an optimal solution to problem (1). It remains
to check the optimality criterion for k = j:

wB
T B−1(αAj) − wj ≥ 0.

This is equivalent to

zj = wB
T B−1Aj ≥ 1

α
wj. (9)

Note that (9) holds for all α ≥ 0 (i.e., x∗ is a meaningful optimal solution)
if and only if zj ≥ 0 ≥ wj.

Corollary 18 Let x∗ be an optimal solution for problem (1). Furthermore,
let x∗ be a basic feasible solution of Ax = b and let j be a non-basic variable
for x∗. Suppose that wj is measured on a scale of measurement S. Further
suppose that the set

S := { wj

Φ(wj)
: Φ ∈ AT (f)} ⊆ R+

is unbounded in R+ (i.e., inf S = 0 and supS = ∞). Then x∗ is a meaningful
optimal solution to problem (1) if and only if zj ≥ 0 ≥ wj

Proof: This follows directly from the proof of Theorem 17 and the fact that
replacing wj by Φ(wj) is equivalent to replacing a1j, . . . , anj by αa1j, . . . , αanj

where α = wj/Φ(wj). Note that x∗ is a meaningful optimal solution if and
only if (9) holds for all α ∈ S. The latter is equivalent to zj ≥ 0 ≥ wj since
inf S = 0 and sup S = ∞.

In what follows, (B−1)(r) will denote the r-th row of the matrix B−1.

Theorem 19 Let B be an optimal basis for problem (1) and let j be a ba-
sic variable for the corresponding optimal solution x∗. Suppose that a1j,
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a2j,. . . , anj are measured on a (common) ratio scale of measurement. Then
the statement that the basic variables of a basis B define an optimal basis for
problem (1) is meaningful if and only if

zk − wk ≥ wj((B−1)(j))Ak ≥ 0 (10)

holds for all non-basic variables k ∈ [n].

Proof: Let Φ(t) = αt, α > 0, be an admissible transformation of a1j, a2j,. . . ,
anj. For any x ∈ Rn we define

x(α) := [I(α; j)]−1x = (x1, . . . , xj−1,
1
α

xj, xj+1, . . . , xn)T .

Then x ≥ 0 if and only if x(α) ≥ 0 (note that α > 0) and Ax = b if and
only if A[I(α; j)]x(α) = b. Furthermore, if x is a basic feasible solution, then
x(α) is also a basic feasible solution with the same basic variables.

Therefore, the meaningfulness is equivalent to the statement that, for any
α > 0, x∗(α) is an optimal solution for problem (1) where A is replaced by
A[I(α; j)].

Note that x∗ is feasible for the original problem, so x∗(α) is feasible for
problem (1) where A is replaced by A[I(α; j)]. Therefore, we only need to
check that (10) holds if and only if x∗(α) satisfies the optimality criterion
for any α > 0. Since j is a basic variable for x∗, the matrix consisting of
columns of A[I(α; j)] indexed by basic variables is just B[I(α; j)]. In other
words, the basis matrix for x∗(α) is just a basis matrix for x∗ where the j-th
column is multiplied by α. Note that

(B[I(α; j)])−1 = [I(α; j)]−1B−1 = [I(α−1; j)]B−1.

The optimality criterion trivially holds for basic variables. The optimality
criterion for a non-basic variable k,

wB
T (B[I(α; j)])−1(A[I(α; j)])k − wk ≥ 0,

becomes
m∑

i=1
(wB)i([I(α−1; j)]B−1Ak)i − wk ≥ 0

since (AI(α; j))k = Ak for every non-basic variable k. Also note that

(I(α; j)−1B−1Ak)i =
{

((B−1)(i))Ak if i 6= j
1
α
((B−1)(j))Ak if i = j

22



Now we have

wB
T (B[I(α−1; j)](A[I(α; j)])k − wk =

m∑
i=1

(wB)i((B−1)(i))Ak − wk

+wj(
1
α

− 1)((B−1)(j))Ak

= zk − wk +
1 − α

α
wj((B−1)(j))Ak

Therefore, the optimality criterion holds for all α if and only if for all non-
basic k,

zk − wk ≥ α − 1
α

wj((B−1)(j))Ak (11)

for all α > 0. It remains to show that (11) holds for all α > 0 if and only if
(10) holds. As in the proof of Theorem 8 we observe that f(α) := C α−1

α
is a

monotone function on R+ and we only need to check that (11) holds when
α → 0+ and when α → +∞.

When α→0+ then α−1
α

→−∞ and (11) holds if and only if wj((B−1)(j))Ak

≥ 0. This is because zk − wk ≥ 0 by the optimality criterion for x∗.
When α → +∞ then α−1

α
→ 1− and (11) is equivalent to zk − wk ≥

wj((B−1)(j))Ak.

Corollary 20 Let B be an optimal basis for problem (1) and let j be a basic
variable. Suppose that wj is measured on a scale of measurement (A, B, f)
where B is a relational system on R such that the set

S = { wj

Φ(wj)
: Φ ∈ AT (f)} ⊆ R+

is unbounded in R+ (i.e., inf S = 0 and sup S = ∞) Then the statement that
the basic variables of the basis B define an optimal basis for problem (1) is
meaningful if and only if

zk − wk ≥ wj((B−1)(j))Ak ≥ 0

holds for all non-basic variables k ∈ [n].
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Proof: This follows from the proof of Theorem 19 (in the same way as
Corollary 18 follows from Theorem 17). Since inf S = 0 and sup S = ∞, we
use the same argument as in the proof of Theorem 19

Theorem 21 Let B be an optimal basis for problem (1). Suppose that for
every j = 1, . . . , n, wj from problem (1) is measured on a scale of measure-
ment (Aj, Bj, fj) where Bj is a relational system on R. Further suppose that,
for any j = 1, . . . , n,

Sj := { wj

Φj(wj)
: Φj ∈ AT (fj)} ⊆ R+

is such that inf(Sj) = 0. Then the statement that the basic variables of the
basis B define an optimal basis for problem (1) is meaningful if and only if

(wB)k(B−1)(k)Aj ≥ 0 ≥ wj (12)

for every basic variable k and every non-basic variable j.

Proof: We again note that replacing wj by Φj(wj) is equivalent to replac-
ing a1j, . . .,amj by αia1j, . . . , αiamj where αi = wj/Φj(wj). For any x we
define x̄ as in Proposition 15. Let x∗ be an optimal solution to problem (1)
corresponding to B. Note that x̄∗ corresponds to a basis

Bα := B[Diag(α1, . . . , αn)] = B(
n∏

j=1
I(αj; j)).

We also use the notation

Aα := A[Diag(α1, . . . , αn)] = A
n∏

j=1
I(αj; j).

Since B is an optimal basis by hypothesis, we need to prove that the state-
ment “Bα is an optimal basis for problem (1) where A is replaced by Aα”
is true for any α > 0 if and only if (12) holds. Note that the basic feasi-
ble solution x̄∗ ≥ 0 corresponding to Bα is always a feasible solution since
Aαx̄∗ = b. Therefore, we just need to check that
(i) x̄∗ satisfies the optimality criterion for any choice of αj ∈ Sj, j = 1, . . . , n.
is equivalent to
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(ii) (wB)k(B−1)(k)Aj ≥ 0 ≥ wj for every basic variable k and every non-basic
variable j.
Proof of (i) ⇒ (ii):
Note that 1 ∈ Sj for every j since the identity function is always an admissible
transformation. For any j, we set αi := 1, i 6= j, and let αj → 0+. If j is
a non-basic variable then, as in the proof of Theorem 17, we conclude that
0 ≥ wj. If j is a basic variable, then, as in the proof of Theorem 19, we
conclude that (wB)j(B−1)(j)Ai ≥ 0 must hold for any non-basic variable i.
Hence, (12) holds for every basic variable k and every non-basic variable j.
Proof of (ii) ⇒ (i):
Suppose that (12) holds for every basic variable k and every non-basic vari-
able j and we need to show that x̄∗ satisfies the optimality criterion:

(wB)T (B−1
α )(Aα)j − wj ≥ 0

for every non-basic variable j (note that the optimality criterion always holds
trivially for any basic variable j). Now,

(wB)T (B−1
α )(Aα)j =

m∑
i=1

(wB)k(B−1
α )(k)(Aα)j

=
m∑

i=1
(wB)k

αj

αk
(B−1)(k)Aj

≥ 0
≥ wj

where the first inequality holds because αj
αk

> 0 and by using (12) for every
basic variable k. The last inequality also holds by (12).

Example 22 Consider the problem from Example 11. Note that B, which
is the optimal basis (the first and fourth variable are basic) satisfies (12).
Hence, it is meaningful to say that the first and fourth variable are the
basic variables of an optimal solution whenever wi is measured on a scale Si,
i = 1, 2, 3, 4, satisfying the conditions of Theorem 21.

Example 23 To illustrate Theorem 21 we consider problem (1) where

wT = (1, −1, 0, 0), A =
(

1 −2 1 0
0 1 0 1

)
, bT =

(
1 1

)
.
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It is easy to see that x∗ = (3, 1, 0, 0)T is the optimal solution and the basic
variables are 1 and 2. The corresponding optimal basis B and its inverse
B−1 are

B =
(

1 −2
0 1

)
, B−1 =

(
1 2
0 1

)
.

Note that (12) does not hold for k = 1 and j = 3. Hence, if w1 is measured
on some scale of measurement satisfying the conditions of Theorem 21, the
conclusion that the first and second variable are basic variables of an optimal
solution is meaningless. For example, if we replace w1 with Φ(w1), then

z4 − w4 = (Φ(w1), −1)
(

1 2
0 1

)(
0 1

)
) − 0 = 2Φ(w1) − 1.

Hence, whenever Φ(w1) < 1
2 , the basic feasible solution with basic variables

1 and 2 is not optimal since the optimality criterion does not hold.

5 Closing Remarks

We again point out (see Remark at the beginning of Section 3) that all
results presented here can be easily reformulated without referring to scales of
measurement and meaningfulness. For example, one could state Theorem 12
and Theorem 21 as follows:
Theorem 12 (reformulated) Let B be an optimal basis for problem (1).
Suppose that for every i = 1, . . . , m, Gi is a group of real-valued functions
such that

Si := { bi

Φi(bi)
: Φi ∈ Gi} ⊆ R+

and such that inf(Si) = 0. Then, B−1 ≥ 0 if and only if, for any choice
of f1 ∈ G1, . . . , fn ∈ Gn the basic variables of B define an optimal basis
for problem (1) where b = (b1, . . . , bm)T is replaced by (Φ1(b1), . . . , Φm(bm))T

(i.e., the basic variables of an optimal basis are invariant under scaling of bi

by functions from Gi, i = 1, . . . , m).
Theorem 21 (reformulated) Let B be an optimal basis for problem (1).
Suppose that for every j = 1, . . . , n, Gj is a group of real-valued functions
such that

Sj := { wi

Φj(wj)
: Φj ∈ Gj} ⊆ R+
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and such that inf(Sj) = 0. Then

(wB)k(B−1)(k)Aj ≥ 0 ≥ wj

holds for every basic variable k and every non-basic variable j if and only
if basic variables of B define an optimal basis for problem (1) where w =
(w1, . . . , wn)T is replaced by (Φ1(w1), . . . , Φn(wn))T (i.e., the basic variables
of an optimal basis are invariant under scaling of wj by functions from Gj ,
j = 1, . . . , n).

It should be noted that the striking similarity of these two theorems as
well as the presented proofs is no accident but a consequence of the duality
in linear programming (more about duality can be found in any standard
book on linear programming, e.g., see [1]).

Our analysis was limited to scalings by increasing linear (affine) transfor-
mations and scalings that can be related to these. It would be interesting
to consider scalings by some other sets of functions and determine necessary
and/or sufficient conditions for invariance of the conclusion of optimality.
(Meaningfulness of the conclusion of optimality for optimization problems
where the parameters of the objective function are measured on an ordi-
nal scale is discussed in [5]). Sort of an inverse approach to the problem
would also be interesting: given a problem (1) and a set of its parameters
{p1, . . . , pl}, find the largest set of scaling functions, S, such that the conclu-
sion of optimality is invariant under scaling of {p1, . . . , pl} by any function
from S.

Finally, we note that characterizing invariance under scalings is not a
problem that is limited to linear programming problems. In fact, such analy-
sis can be applied to any mathematical model (invariance of the output with
respect to scalings of input parameters). Of course, it is hopeless to expect
some sensible results if the problem is stated in such generality. The main
reason why we were able to characterize invariance of the conclusion of opti-
mality for problem (1) under certain scalings is because of the simplicity of
the objective function and the simplicity of the structure of the set of feasible
solutions.
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