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Abstract

We present a verification of a distributed sorting algorithm in ALF,
an implementation of Martin Löf’s type theory. The implementation
is expressed as a program in a priortized version of CBS, (the Calculus
of Broadcasting Systems) which we have implemented in ALF. The
specification is expressed in terms of an ALF type which represents the
set of all sorted lists and an HML (Hennesey–Milner Logic) formula
which expresses that the sorting program will input any number of
data until it hears a value triggering the program to begin outputting
the data in a sorted fashion. We gain expressive power from the
type theory by inheriting the language of data, state expressions, and
propositions.
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1 Introduction

In this paper we present a machine checked verification of a distributed sort-
ing algorithm in type theory. The verification was done in ALF, an imple-
mentation of Martin-Löf’s constructive type theory [CNSvS95]. The sorter
is expressed in a prioritized version of CBS, The Calculus of Broadcasting
Systems [Pra95, Pra94, Pra93] and the specification is expressed as an ALF
type that represents the set of sorted lists. We wrap this specification in
an HML [Sti93] (Hennessy Milner Logic) formula which provides a layer of
abstraction familiar to concurrency theorists.

The verification is interesting because it is done in a value-passing process
calculus with a possibly infinite value domain. Even if we restrict ourselves
to finite data domains the CBS sorter is still infinite state because it works
over lists of arbitrary length. This contrasts with current approaches of doing
verification with automatic techniques based on finite-model checking. The
price paid is that our verification was done in a proof assistant rather than
proved automatically in a theorem prover.

The verification is an induction proof. ALF provides an induction princi-
ple for every inductively defined data type. Proofs by induction are useful in
verifying properties about infinite state systems. In [Mil89, page 136 section
6.2] Milner proves the correctness of a sorter in CCS by induction (Milner’s
verification uses bisimulation equivalence and has, to the best of our knowl-
edge, not been machine checked). In our ALF setup a few of the inductively
defined sets we use are, the set of natural numbers, lists, CBS processes,
and the transition relation that represents the operational semantics of CBS.
The induction principles provided by ALF correspond to, respectively, usual
mathematical induction over the naturals, induction on the structure of a
list, induction on the syntax of processes, and transition induction [Mil89,
page 58 section 2.1]. Contrast this with other frameworks such as Isabelle
[Pau94], HOL [GM93], and LF [Pfe91] which are based on weaker logics that
do not automatically provide induction principles.

To carry out the verification we must have a representation of value-
passing CBS in ALF. This representation is interesting in its own right be-
cause we borrow the domain of CBS value and state expressions directly
from ALF in a way that allows us to identify ALF variables with CBS data
variables, making the representation simple and robust. Process substitu-
tion and data variable substitution are borrowed from ALF through lambda-

2



abstraction and function application. We no longer need to include the syn-
tax and semantics of data expressions and we can borrow “off-the-shelf”
lemmas about data domains (e.g., that multiplication is commutative). The
correctness of the ALF representation is given in [HPP95].

1.1 Outline of the paper

In the rest of this section we explain, informally, the parallel sorting algo-
rithm we verify and discuss what our specification of the sorter is. Section
2 presents, formally, the syntax and semantics of prioritized CBS and de-
scribes the parallel sorting algorithm in CBS. Section 3 introduces HML for
CBS and gives the HML specification of the sorter. Section 4 introduces
ALF by example. Section 5 shows how CBS is presented in ALF and also
presents the ALF version of the CBS parallel sorter. Section 6 gives the proof
of correctness of the sorter. Section 7 concludes.

1.2 Informal Overview of The Problem

Sorter Implementation. In CBS when a process outputs a value, all of
the other processes may hear that value. This broadcast is the communication
primitive provided by CBS and is quite different than other process algebras
where communication occurs between exactly two processes. In prioritized
CBS, transitions are tagged with priorities and if two processes try to speak
at the same time then the transition with higher priority is taken. If both
processes try to speak simultaneously at the same priority, then one is chosen
non-deterministically.

The broadcast sort is a kind of parallelized insertion sort. A list of input
data is spoken sequentially to the sorter along with a final sentinel value done.
In the scope of this paper we only consider naturals as our data domain. The
sentinel prohibits the sorter from speaking until all of the input has been read.
Two special processes Bot(n) and Top(m) keep track of the smallest integer
n and the greatest integer m read so far. If the input list consisted of one
integer n the sorter is configured as Bot(n)|Top(n).

In addition to the processes Bot and Top there are processes Cell(m,n)
which keep track of intermediate values. Cell(m,n) has the property that
m ≤ n and we think of n as the current value of the cell and m as a link to
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Sorter

4?

Bot(4) | Top(4)

2?

Bot(2) | Cell(2, 4) | Top(4)

1?

Bot(1) | Cell(1, 2) | Cell(2, 4) | Top(4)

3?

Bot(1) | Cell(1, 2) | Cell(2, 3) | Cell(3, 4) | Top(4)

the cell containing the next low-
est value, Cell(l,m). After the
list is read, each Cell(m,n) out-
puts its current value n when it
hears m.

As an example, given a list
[4, 2, 1, 3] the transition graph to
the left traces the configurations
of the sorter after each value
in the list is spoken (assuming
Sorter is the initial configura-
tion). After the last configura-
tion there is no more input so
Bot says its value, 1. When this

happens, Cell(1, 2) hears the 1 and then speaks its value 2, and so on resulting
in the output trace [1, 2, 3, 4].

Sorter Specification. The sorter outputs a finite list of sorted integers
so an obvious choice of a specification is to consider the set of all sorted
lists. This set will be defined by an inductively defined relation Ordered(`).
Assuming we have a type of lists with the empty list nil, the operation cons,
and a relation Minimal(n, `) which says that n is smaller than every element
in ` then the following rules define Ordered along with a relation Sorted(`1, `2)
which

Ordered(nil)
Minimal(n, `) Ordered(`)

Ordered(cons(n, `))

Perm(`1, `2) Ordered(`2)
Sorted(`1, `2)

says that `2 is a sorted version of `1 iff `2 and `1 are permutations of each
other and `2 is ordered. We can summarize this into a specification (SortSpec)
of the Sorter.
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SortSpec: The Sorter will first input a list l of integers followed
by the sentinel done. Then it will output the Sorted permutation
of l and nothing else.

1.2.1 The Verification

We use a slight variation of CBS which allows the user to specify lists of
parallel processes. That is, the tree of parallelism is flattened into a list.
We thereby directly inherit the laws of associativity of parallel composition
and Nil being neutral with parallel composition and the semantics will au-
tomatically clean up any extraneous Nil processes. Using a list of parallel
processes gives us a better handle on doing proofs by induction. Correctness
of this version of CBS with CBS as presented in [Pra93] is omitted but is
straightforward. The verification we study in the rest of the paper then is
that the sorter, called Sorter meets the specification Sorted.

2 CBS — Syntax and Semantics

In this section we formally present the syntax and semantics of (prioritized)
CBS. As mentioned in the introduction we present a slightly stylized version
version of CBS. Rather than expressing parallelism using a binary combinator
“|” parallelism pervades the syntax at every level by using lists of parallel
processes. For example, the process p|q|r becomes [p, q, r]. The empty list is
the Nil process.

Syntax. The syntax of CBS is given by the following grammar.

p ::= λx.[p] w!π[p] A(s) (1)

In the grammar, [p] is a “list of processes”, τ is the unique silent action,
and α, β are types such that τ 6∈ α, β. The priority π ranges over N and
w ∈ α ∪ {τ}. A(s) is a process constant with parameter s ∈ β. Associated
with A is a set of defining equation of the form A(x) def= ps where x is of
type β and ps a list of processes. Proc is the set of processes defined by the
above BNF. We regard f as a function from α → [Proc]. The priority 0 is
the highest and ∞ is the lowest.
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Pars1
ps

w?−→π qs r
w?7−→π rs

r : ps w?−→π rs++ qs

Pars2
[] w?−→π []

Pars3
qs

w?−→π qs
′ p

w!7−→π ps
′

p : qs w!−→π ps′ ++ qs′
Pars4

qs
w!−→π qs

′ p
w?7−→π ps

′

p : qs w!−→π ps′ ++ qs′

Out1
w!π1ps

w′?7−→π2 [w!π1ps]
π1 ≤ π2 Out2

w!πps
w!7−→π ps

In1
f

v?7−→π f(v)
In2

f
τ?7−→π [f ]

Con
ps[w/s] w?−→π ps

′

A(s) w?7−→π ps′
A(s) def= ps

Figure 1: Operational semantics of CBS.

All processes ignore τ at any priority and so idles. Let v ∈ α, w ∈ α∪{τ},
f be of the form λx.ps and s be of the form w!πps. The process f will hear
a value v at any priority and become the list of parallel processes ps[v/x],
which means that x is replaced by v for each process in ps. The functional
notation allows us to write ps[v/x] as f(v). We avoid the the standard
notation of input prefixing x?p not hiding the fact that, in CBS, we identify
input prefixing with lambda abstraction. We do, however, assume x ranges
over α, so our notation is the sloppy version of: λ(x ∈ α).[p]

The process w!πps can speak w at priority π and evolve to ps. It can hear
and ignore any input at priority less than or equal to π. The process λx.ps
cannot speak, but it can hear a value from α at any priority. The Nil process
is the empty list, [], which we write as 0.
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Semantics. The operational semantics of CBS is given by defining two
transition relations, 7−→ for Proc and −→ for lists of processes. Our defini-
tion of −→ is slightly non-standard in that it identifies transitions ps α−→π qs
meaning that the list of parallel processes ps can do an action α and evolve to
the list of parallel processes qs. An element process of a list can do an action
and evolve to a list of processes identifying transitions p w7−→π qs. Formally,

−→⊆ [Proc]× α ∪ {τ} × N× [Proc]
7−→⊆ Proc× α ∪ {τ} × N× [Proc]

The operational semantics is given in figure 1 where : and ++ are the
list cons and append operators. The rules Pars1 through Pars4 describes
transitions for lists of parallel processes.

Parallel Broadcast Sort. The broadcast sort explained in the introduc-
tion is given in figure 2. The type of the values spoken come from the
disjoint union done ] num(N) which tags values as either being numbers
or the sentinel value done. The implementation uses conditional constructs
freely (if-then-else and case statements). These are added to the semantics
in the obvious way, but as we shall see, need not be as we borrow them from
ALF.

The process Sorter is the starting process and Bot and Top are as before.
The process Cell is split up into two process InCell and OutCell that describe
a cell as being in either an input phase (the input is still being read) or and
output phase (the sentinel value has been read). When an OutCell hears the
(left) number which links it to the previous process it will output it’s number
with priority 0 if it stores the same number as heard, if not it outputs with
priority 1. In this fashion duplicates get higher priority and is spoken before
the higher values.
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Sorter def= λx.case x of

num x→ [Bot(x),Top(x)]
done→ []

Bot(n) def= λx.case x of

num x→ if x ≤ n then [Bot(x), InCell(x, n)] else [Bot(n)]
done→ n!10

Top(n) def= λx.case x of

num x→ if n < x then [Top(x), InCell(n, x)] else [Top(n)]
done→ []

InCell(m,n) def= λx.case x of

num x→ if m < x and x ≤ n then [InCell(m,x), InCell(x, n)]
else [InCell(m,n)]

done→ [OutCell(m,n)]

OutCell(m,n) def= λx.case x of

num x→ if m = x then if m = n then n!00
else n!10

else [OutCell(m,n)]
done→ [OutCell(m,n)]

Figure 2: The Broadcast Sort in CBS.
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3 HML

In this section we present the syntax and semantics of our version of HML
for CBS. By itself HML is a rather weak logic without recursion or open ex-
pressions over the value domain, but is however, powerful in another sense as
we can combine HML expressions with ALF expressions and write expressive
formulae including a concise sorting specification.

3.1 Syntax & Semantics of HML

Let α be a type, w ∈ ατ and ~w ∈ ~ατ then the syntax priority abstracted
HML is as follows:

f ::= f ∧ f
∣∣∣ f ∨ f ∣∣∣ [w?]f

∣∣∣ [w!]f
∣∣∣ 〈w?〉f

∣∣∣ 〈w!〉f
∣∣∣ ϕ(~w)

where ϕ is a first order logic predicate on ~w ∈ ~ατ , such that ϕ(~w) is a closed
expression. The satisfiability relation is defined as follows:

ps |= ϕ(~w) ⇐⇒ ϕ(~w)
ps |= f ∧ g ⇐⇒ ps |= f and ps |= g
ps |= f ∨ g ⇐⇒ ps |= f or ps |= g

ps |= [w?]f ⇐⇒ ∀π, qs such that ps w?−→π qs implies qs |= f

ps |= 〈w?〉f ⇐⇒ ∃π, qs such that ps w?−→π qs and qs |= f

ps |= [w!]f ⇐⇒ ∀π, qs such that ps w!−→π qs implies qs |= f

ps |= 〈w!〉f ⇐⇒ ∃π, qs such that ps w!−→π qs and qs |= f

Note that in PCBS all processes can hear (at least with priority 0), hearing
is deterministic, and the derived state is independent of the priority at which
the transition was made. The query modalities therefore coincide, i.e. ps |=
[w?]f ⇐⇒ ps |= 〈w?〉f .

3.2 Specifying the Sorter

We define the HML SortSpec in three steps using two inductively defined
formulae. First, we define a formula InputFormula (IF) parameterized with
a list of naturals, xs, and a formula, f . IF states that the derived state of a
process after hearing xs must satisfy f .

9



IF :: [Nat] −→ HML −→ HML

IF ([], f) ∆= f

IF (x : xs, f) ∆= [num(x)?] IF (xs, f)

Second, we define a formula DeterministicOutputFormula (DOF) param-
eterized with two lists xs, ys. DOF specifies that the output is deterministic.
If xs = ys = [] then determinism is trivially true. If xs = x : xs′ and
ys = y : ys′ are non-empty a satisfying process must be able to output x
and if it can also output y then the two must be equal. Furthermore after
outputting the value x any derived process must satisfy DOF of xs, ys.

DOF :: [Nat] −→ [Nat] −→ HML

DOF ([], []) ∆= True

DOF (x : xs′, y : ys′) ∆= 〈num(x)!〉True ∧ [num(y)!](x 6= y)∧
[num(x)!]DOF (xs′, ys′)

Third, to specify sorting we wrap these two formulae around a sorting
function, Sort. The function Sort is a functional version of the relation
Sorted given in the introduction and, as we mentioned, we omit the proof that
Sort implements Sorted. SortSpecFormula (SSF) states that after inputting
some list xs and the special value done a satisfying process must output the
sorted version of xs and not some other list ys.

SSF :: [Nat] −→ [Nat] −→ HML

SSF (xs, ys) ∆= IF (xs, [done?]DOF (Sort(xs), ys))

Instead of just checking the Sorter |= SSF(xs,ys) for two specific lists our
goal is to prove that Sorter meets our specification for all list:

(∗) ∀xs, ys : Sorter |= SortSpecFormula(xs, ys)
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4 Representation in ALF

Before we proceed with the verification we informally present ALF through a
few examples on the natural numbers (This short discussion of type theory is
taken from [CNSvS95]). We view ALF as the typed lambda calculus extended
with dependent types. ALF is a proof editor and all of the ALF code given
here appears as it does on the screen. There are two kinds of terms in ALF
— types and objects.

Natural Numbers. The type (set) of natural numbers is introduced with
the definition N ∈ Set, 0 ∈ N, and s ∈ (N)N, the latter being constructors
for zero and the successor of a natural. Here the type (N)N is ALF notation
for the function type N → N. An object (i.e., function) Add that adds
two natural numbers and a set (or type) Le representing a relation for ≤ are
defined by the following (which is how they actually appear in the ALF proof
editor).

Add ∈ (N; N)N
Add(0, y) = y
Add(s(x), y) = s(Add(x, y))

Le ∈ (m,n ∈ N)Set
le0 ∈ (n ∈ N)Le(0, n)
leS ∈ (m,n ∈ N; Le(m,n))Le(s(m), s(n))

The definition of Le follows the normal relational definition. Notice the use
of the dependent function type. In Le the constructor le0 is a function whose
result type Le(0, n) depends on the object n. This allows us to define Le as
would be done in an operational semantics and hints at how the operational
semantics of CCS will be specified in ALF, as an inductively defined relation.
That is, le0 encodes the rule 0≤n and leS encodes n ≤ m

s(n) ≤ s(m) .

Types as Propositions. A function in ALF can be viewed as a proof of a
proposition in first-order logic where the type of the function represents the
proposition to be proved. For example, the following function is a proof that
Le is transitive. In the definition the first three parameters i, j, k ∈ N have
been hidden along with the declarations of m and n in the constructors for
Le. This feature of ALF makes proofs more readable.
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LeTrans ∈ (Le(i, j); Le(j, k))Le(i, k)
LeTrans(le0, h) = le0
LeTrans(leS(h2), leS(h)) = leS(i, k, LeTrans(h2, h))

The type of the function represents the proposition to be proved and the
body of the function represents the proof. The function is recursive, which
represents a proof by induction.

Equality in ALF. In ALF there is a class of objects denoted by a relation
Id where Id ∈ (A ∈ Set;A;A) that are equivalent up to ALF’S αβη-reduction.
This relation plays an important role in our representation as it will allow us
to identify closed expressions with their values.

5 PCBS & HML – ALF style

We now describe how we have defined PCBS and HML in ALF and how we
use these definitions to implement the Sorter and the sorting specification.
First we represent PCBS and implement Sorter, then we represent HML and
give the sorting specification.

5.1 PCBS — ALF style

The syntax of PCBS is represented in a type Proc(A,S), where A is the set
of actions Act and we let Actτ be represented by the lifted domain Lift(A)
where bot(A) represents τ . An element a ∈ A is now denoted in(a). Instead
of giving the ALF syntax as it looks in ALF we give the translation of the
standard syntax into that of our implementation.

w!kps SAY(triple(w, k, ps))
x?ps LISTEN(fun([x]ps))
s VAR(s)

Here fun([x]y) constructs a function of type (A)B where x ∈ A and y ∈ B
and [x]y is ALF notation for the lambda abstraction λx.y. Note that the
conditional is not part of the CBS syntax. This is not a problem as we
borrow it from ALF. We define If-Then-Else as a function, Cond.
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Cond ∈ (b ∈ Bool; ps1, ps2 ∈ List(Proc(A,S)))List(Proc(A,S))
Cond(tt, ps1, ps2) = ps1

Cond(ff, ps1, ps2) = ps2

The transition relation is defined by two separate relations, one for listening
and one for speaking. The listening relation p w?−→k qs is defined by

Query ∈ (env ∈ (S)List(Proc(A,S)); p ∈ Proc(A,S);
w ∈ Lift(A); k ∈ Nat; qs ∈ Proc(A,S))Set

PQuery ∈ (env ∈ (S)List(Proc(A,S)); ps ∈ List(Proc(A,S));
w ∈ Lift(A); k ∈ Nat; qs ∈ List(Proc(A,S)))Set

where Query and PQuery defines the relations p w?7−→k qs and ps w?−→k qs from
the operational semantics. The relations (p w!7−→k qs and ps

w!−→k qs) are
similarly defined in Speak and PSpeak.

To implement Sorter from Figure 2 in ALF first we define the set of
actions Act and the set of process constants State.

Act ∈ Set
done ∈ Act
num ∈ (Nat)Act

State ∈ Set
sorter ∈ State
botcell ∈ (Nat)State
topcell ∈ (Nat)State
incell ∈ (Nat; Nat)State
outcell ∈ (Nat; Nat)State

The Sorter is then implemented in a function SorterEnv of type Proc(Act,State).
SorterEnv maps process constants to PCBS processes. The function sgl maps
an object to the singleton list.

SorterEnv ∈ (State)List(Proc(Act,State))
SorterEnv(sorter) = sgl(LISTEN(fun([a]sorterCase(a))))
SorterEnv(botcell(a1)) = sgl(LISTEN(fun([a]botCase(a, a1))))
SorterEnv(topcell(a1)) = sgl(LISTEN(fun([a]topCase(a, a1))))
SorterEnv(incell(a1, a2)) = sgl(LISTEN(fun([a]incellCase(a, a1, a2))))
SorterEnv(outcell(a1, a2)) = sgl(LISTEN(fun([a]outcellCase(a, a1, a2))))

13



We show the two cases incellCase and outcellCase which are direct trans-
lation from figure 2.

incellCase ∈ (Act;Nat;Nat)List(Proc(Act,State))
incellCase(done, n1, n2) = sgl(VAR(outcell(n1, n2)))
incellCase(num(n1), n2, n3) =

Cond(bool and(bool lt(n2, n1), bool leq(n1, n3)),
cons(VAR(incell(n2, n1)), sgl(VAR(incell(n1, n3)))),
sgl(VAR(incell(n2, n3))))

outcellCase ∈ (Act;Nat;Nat)List(Proc(Act,State))
outcellCase(done, n1, n3) = sgl(VAR(outcell(n2, n3)))
outcellCase(num(n1), n2, n3) =

Cond(bool eq(n1, n2),
Cond(bool eq(n2, n3),

sgl(SAY(triple(in(num(n3)), 0, nil))),
sgl(SAY(triple(in(num(n3)), s(0), nil)))),

sgl(VAR(outcell(n2, n3))))

In a similar fashion we implement topCase, botCase and sorterCase. We now
proceed to implementing the sorting specification in ALF.

5.2 HML — ALF style

The HML syntax from section 3 is mapped to ALF terms by the following
translation.

True True
False False
f ∧ g And(f, g)
f ∨ g Or(f, g)
[w?]f BoxQuery(w)f
〈w?〉f DiaQuery(w)f
[w!]f BoxSpeak(w)f
〈w!〉f DiaSpeak(w)f

The modal logic we use in Section 3 is seemingly more powerful as we can use
first-order logic predicates in the specifications. Here we are left with only
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the propositional variables True and False. That is, every HML expression
is closed and each first-order predicate can be identified with either True or
False. To inherit the expressive power of ALF we simply move the first order
logic expressions, ϕ to |= in the following way.

(∗∗) p |= [w!]ϕ ⇔ if ¬ϕ then p |= [w!]False

The satisfiability relation |= is defined between lists of PCBS processes
and HML formulae given the process’ environment.

Sat ∈ (env ∈ (S)List(Proc(A,S)); ps ∈ List(Proc(A,S)); f ∈ HML(A))Set

We show constructors for two cases, p |= [w!]f and p |= 〈w!〉f .

SatDiaSpeak ∈ (PSpeak(env, ps, w, n, qs); Sat(env, qs, f))
Sat(env, ps,DiaSpeak(w, f))

SatBoxSpeak ∈ ((n ∈ Nat; qs ∈ List(Proc(A,S)); PSpeak(env, ps, w, n, qs))
Sat(env, qs, f))Sat(env, ps,BoxSpeak(w, f))

We can now give our sorting specification in terms of HML. DOF from
section 3.2 is redefined using (∗∗). That is, we assume a proof neq ∈
Id(x, y)Empty which means (x 6= y) 1. To do this we first define a rela-
tion DistinctElemList in DEL which relates a list vs with a list nvs of equal
length where the elements are pairwise distinct. The input formula IF is
represented in IF, DOF in DOF and the entire specification in SSF.

DEL ∈ (vs, nvs ∈ List(A))Set
distinct0 ∈DEL(nil,nil)
distinctR ∈(neq ∈ (Id(v, nv))Empty; dist ∈ DEL(vs, nvs))

DEL(cons(v, vs), cons(nv, nvs))

In the SSF we have replaced the function Sort with a relation, Sorted from
the introduction. This relation and the DistinctElemList provide us with the
induction basis when we, in section 6, prove that Sorter satisfies SortSpec.

1Empty ∈ Set is a set without any constructors, i.e. no objects of type Empty can exist.
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IF ∈ (List(Nat); f ∈ HML(Act))HML(Act)
IF(nil, f) = f
IF(cons(v, vs), f) = BoxQuery(in(num(v)), IF(vs, f))

DOF ∈ (dist ∈ DEL(svs, nsvs))HML(Act)
DOF(distinct0) = True
DOF(distinctR(neq, dist1)) =

And(And(
DiaSpeak(in(num(v)),True),
BoxSpeak(in(num(nv)), False)),
BoxSpeak(in(num(v)),DOF(dist1)))

SSF ∈ (ins ∈ Sorted(vs, svs); dist ∈ DEL(svs, nsvs))HML(Act)
SSF(ins, dist) = IF(vs,BoxQuery(in(done),DOF(dist)

6 Verification in ALF

Recall the HML requirement (∗) in Section 3.2. This requirement translates
into ALF as follows.

SorterSat ∈ (ins ∈ Sorted(vs, svs); dist ∈ DEL(svs, nsvs))
Sat(SorterEnv, sgl(VAR(sorter)), SSF(ins, dist))

This is not an easy requirement to prove directly in ALF. To help us we will
prove a variety of lemmas that characterize the Sorter.

6.1 Characterising the Sorter

The first step in proving the Sorter correct is finding something to do induc-
tion on. The Sorter has two phases, an input phase and an output phase.
In either phase the sorter satisfies similar properties for every state. In the
input phase the sorter will input a number and evolve to a process still in
the input phase. If it at any state in the input phase inputs the value done
it will evolve to a process in the output phase. Likewise, all processes in the
output phase have similar behavior. They will all output the minimum value
stored. Recognising these facts we make a “syntax for the sorter” in either
phase. The following BNF represents the sorter in its input phase.
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ISorter nil ::= [Sorter]
ISorter x : xs ::= Bot(x) : ITop x xs

ITop x nil ::= [Top(x)]
ITop x y : ys ::= InCell(x, y) : ITop y ys

Given a sorted list ISorter describes a derived state of the Sorter in the input
phase. The first parameter to ITop is the link to the last InCell. We use
this syntax to implement the following predicate ISorter in ALF, however, we
require the list to be sorted. We only give the types for ISorter and ITop.

ISorter ∈ (List(Nat); List(Proc(Act,State)))Set
ITop ∈ (Nat; List(Nat); List(Proc(Act,State)))Set

Similarly, we make a syntax describing the derived states of the Sorter in
the output phase. However, here we will have to distinguish the set of initial
states (the set of states after the Sorter has heard a done) and the set of
derived states.

OSorterInit nil ::= nil

OSorterInit x : xs ::= x!1 nil : OTop x xs

OSorter x nil ::= nil

OSorter x x : xs ::= x!0 nil : OSorter x xs

OSorter (x 6=y)x y : ys ::= y!1 nil : OTop y ys

OTop x nil ::= nil

OTop x y : ys ::= OutCell(x, y) : OTop y ys

Again, given a sorted list the OSorterInit syntax describes a derived state of
the Sorter after hearing done. The OSorter syntax describes the process after
it has spoken the value given by the first parameter. OTop describes the
remaining OutCell’s where the first parameter is the link to the previously
spoken value.

OSortInit ∈ (List(Nat); List(Proc(Act,State)))Set
OSorter ∈ (Nat; List(Nat); List(Proc(Act,State)))Set
OTop ∈ (Nat; List(Nat); List(Proc(Act,State)))Set
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These syntax definitions provide the extra structure needed to do induction.
We state a few of the lemmas that are used to prove the high-level sorting
specification. By Lemma 1 we establish that processes in the input phase
stay in the input phase after inputting a number.

Lemma 1 Let ps, qs :: [Proc(Act,State)], v, π ∈ N, vxs, xs :: [N]. If Sorted(xs),
ps ∈ ISorter xs, insert(v, xs) = vxs and ps

v−→π qs then qs ∈ ISorter vxs

Lemma 2 states that if a process in the input phase hears the value done
the derived process is given by the syntax of initial processes in the output
phase.

Lemma 2 Let ps, qs :: [Proc(Act,State)], π ∈ N, xs :: [N]. If Sorted(xs),
ps ∈ ISorter xs and ps Done−→π qs then qs ∈ OSortInit xs

If a process given by the syntax of initial output processes outputs a
number the derived state is a process of the OSorter syntax. This is stated
in Lemma 3.

Lemma 3 Let ps, qs :: [Proc(Act,State)], v, π ∈ N, xs :: [N]. If Sorted(xs),
ps ∈ OSortInit xs, and ps

v!−→π qs then qs ∈ OSorter head(xs) tail(xs)

Lastly, by lemma 4, if a process is given by OSorter and it outputs a
number, the derived state will also be given by OSorter.

Lemma 4 Let ps, qs :: [Proc(Act,State)], v, π ∈ N, xs :: [N]. If Sorted(v :
xs), ps ∈ OSorter v xs, and ps v!−→π qs then qs ∈ OSorter head(xs) tail(xs)

Note in lemmas 3 and 4 that if xs is empty, then ps must be nil and will
therefore not be able to output. These lemmas plus some auxiliary lemmas
that the Sorter deterministically outputs numbers in make up a verification
of the Sorter. What remains is taking these lemmas and apply them in the
proof of our more high level HML specification.
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6.2 Sorter |= SortSpec

We can now prove satisfaction in three steps. First we prove that any process
satisfies IF(xs, f) if the derived state after hearing a sequence of numbers sat-
isfies f . ListPQuery is a priority abstracted relation of hearing a list numbers.

SatIF ∈ ((qs ∈ List(Proc(Act,State)); ListPQuery(ps, vs, qs))
Sat(SorterEnv, qs, f))Sat(SorterEnv, ps, IF(vs, f))

Second, by Lemmas 3 and 4 we know that the derived state of a process
in OSortInit or OSorter after outputting a number is a process in OSorter.
Also, we have proven auxiliary lemmas stating that output is deterministic.
Using these we can prove that processes in the output phase satisfy the DOF.

OSortInitSatDOF ∈ (OSortInit(svs,ps); dist ∈ DEL(svs, nsvs))
Sat(SorterEnv, ps,DOF(dist,True))

OSorterSatDOF ∈ (OSorter(v, svs, ps); dist ∈ DEL(svs, nsvs))
Sat(SorterEnv, ps,DOF(dist,True))

Third, we combine the above two proofs. We establish by lemma 1 that
the derived state after hearing a sequence of numbers will also be in the input
phase. By lemma 2 we know the derived state after hearing done is given by
OSortInit with the parameter list being the sorted version of the input list.
This yields the desired satisfaction result.

SorterSat ∈ (ins ∈ Sorted(vs, svs); dist ∈ DEL(svs, nsvs))
Sat(SorterEnv, sgl(VAR(sorter)), SSF(ins, dist))

7 Conclusions

Proofs done by pencil and paper are often incorrect whereas proofs that are
machine checked are guaranteed to be correct modulo the correctness of the
implementation of the theorem prover or proof checker. Systems that are
finite state can be verified using automatic techniques whereas most infinite
state systems cannot be and must be “proof checked”. In this paper we
presented a machine checked proof of a distributed sorting algorithm. The
implementation was done in CBS, the Calculus of Broadcasting Systems and
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the specification was written in HML, Hennessy-Milner Logic. The verifica-
tion itself was done in ALF, an implementation of constructive type theory.
To our knowledge this is the first machine checked proof of a parallel sorting
algorithm done in either a process calculus such as CBS or in a modal logic
such as HML.

One thing worth emphasising about the proof is that proving directly that
the CBS sorter is correct with respect to a high-level sorting specification
is difficult. We first expressed the sorter in an equivalent version of CBS
where parallelism is expressed as lists of processes rather than with a binary
combinator. This technique allowed us to omit repeated applications of the
law for associativity of parallel composition and the law that the Nil process
is a zero for parallel composition.

Also, the initial sorting specification was too abstract to be used directly
and in the verification we used one that was more concrete. Of course, we had
to verify that this new specification was correct with respect to the abstract
specification (which was done but omitted for lack of space). As one would
expect in a large proof2, the verification was reduced to proving a series of
lemmas about the sorter and then combining these lemmas into a complete
verification.

The actual ALF–proof is available by contacting yogi@iesd.auc.dk
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