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Abstract

We investigate random variables arising in occupancy problems, and
show the variables to be negatively associated, that is, negatively de-
pendent in a strong sense. Our proofs are based on the FKG cor-
relation inequality, and they suggest a useful, general technique for
proving negative dependence among random variables. We also show
that in the special case of two binary random variables, the notions
of negative correlation and negative association coincide.
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1 Introduction

Informally speaking, random variables are said to be negatively dependent , if
they have the following property: if any one subset of the variables is “high”,
then other (disjoint) subsets of the variables are “low”. Such variables arise
frequently in the analysis of algorithms, for which a stream of random bits
influences either the input or the execution of the algorithm. To give a
more specific example, we consider occupancy problems, where m balls are
randomly allocated into n bins. Typical random variables of interest are
the occupancy numbers Bi, i ∈ [n], that is, the number of balls that are
contained in bin i. The Bi’s are dependent, since

∑
iBi = m. The intuitive

argument from above—if one of the Bi’s is “large”, the other variables are
less likely to be “large” as well—suggests that they are negatively dependent.
Occupancy problems arise in the analysis of algorithms from areas as diverse
as dynamic load balancing [1], simulation of parallel computer models on
realistic parallel machines [3], and distributed graph coloring [11].

Dependence among random variables makes the analysis of an algorithm
more difficult, since independent random variables obey many simple laws
that do not hold for dependent random variables. The well-known Chernoff–
Hoeffding bounds from the theory of large deviations are an excellent example
in this respect. Much effort has been made to salvage these sharp bounds in
the more general situation under consideration; see, for example, [11, 13, 3, 8].
It turns out that one can apply the Chernoff–Hoeffding bounds to sums of
“strongly” negatively dependent random variables just as one would apply
them to independent random variables; see Section 6. Hence, it is useful to
establish negative dependence among random variables. However, this can
be a hard task, and it is mostly accomplished by ad-hoc techniques. In this
paper, we show that the FKG correlation inequality from the theory of partial
orders can be a useful, general tool. We give simple proofs based on the FKG
inequality, establishing negative dependence among random variables in three
different settings. The results are not new, but we give new proofs that are
more elegant than those appearing in the literature.

Our results involve a strong notion of negative dependence called nega-
tive association, which, in general, is much stronger than the better known
negative correlation. In Section 5.1, we give a short proof that for the special
case of two binary random variables, the two notions coincide. (This result
can also be obtained by combining results in [5, 7].)
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We further deal with two different types of occupancy experiments. In
the first one, balls are thrown independently into bins—this gives rise to a
(generalized) multinomial distribution for (B1, . . . , Bn). The Bi’s are known
to be negatively associated, [4]. In Section 5.3, we give a more direct proof
of negative association for sums of the Bi’s. In the second experiment, we
assume that m < n, that bins contain at most one ball, and that each
distribution of balls among the bins is equally likely to occur. This is the
so-called Fermi–Dirac model, which can be viewed as a special case of the
more general permutation distribution. We prove in Section 5.2 that random
variables with a permutation distribution satisfy the negative association
condition, a result already mentioned in [7]. In particular, it follows that the
occupancy numbers in the Fermi–Dirac model are negatively associated.

The paper is organized as follows. A detailed description of the proba-
bilistic experiments is given in Section 2. We review the notion of negative
association and the FKG inequality in Sections 3 and 4, respectively. Our
results are proved in Section 5, and we give an application of our results to
a probabilistic analysis in Section 6.

2 Experiments

For a positive integer n, let [n] := {1, . . . , n}; for I ⊆ [n], let Ī := [n]−I . We
investigate probabilistic experiments where m balls are randomly distributed
among n bins. Let Bi, i ∈ [n], denote the occupancy number of bin i, that is,
the number of balls that are contained in bin i at the end of the experiment.

We consider two types of experiments. In the first one, balls are thrown
independently into bins with Pr(ball j goes into bin i) = pi,j, i ∈ [n], j ∈ [m],
and for each ball j,

∑
i pi,j = 1. In the uniform case where pi,j = pi for each

j ∈ [m], (B1, . . . , Bn) have the usual multinomial distribution with

Pr(B1 = m1, . . . , Bn = mn) =
n!

m1! · · ·mn!
· pm1

1 · · · pmnn ,

when
∑
imi = m. This is sometimes called the Maxwell–Boltzmann model .

In the second experiment, the so-called Fermi–Dirac model , bins contain
at most one ball, and each distribution of balls among the bins is equally
likely to occur. (This requires m < n.) The Bi’s are indicator variables in
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this case, and for mi ∈ {0, 1}, i ∈ [n], with
∑
imi = m,

Pr(B1 = m1, . . . , Bn = mn) =
(
n

m

)−1

.

The joint distribution of (B1, . . . , Bn) in the Fermi–Dirac model is a spe-
cial case of a permutation distribution for n random variables.

Definition 1 Let n be a positive integer.

1. The random variables J1, . . . , Jn have the permutation distribution on
[n], if they take values in [n] and, for every permutation σ : [n]→ [n],

Pr(J1 = σ(1), . . . , Jn = σ(n)) =
1
n!

.

2. Let x1, . . . , xn be arbitrary real numbers. The random variables X1, . . . , Xn

are said to have a permutation distribution on (x1, . . . , xn), if there is
a set of random variables J1, . . . , Jn with the permutation distribution
on [n] and Xi = xJi for each i ∈ [n].

We shall refer to either situation as a permutation distribution.

Remark 2 If x1, . . . , xn are all distinct, then this definition is equivalent to
stating that

Pr(X1 = xσ(1), . . . , Xn = xσ(n)) =
1
n!

for every permutation σ : [n] → [n]. This is apparently the definition of
Joag-Dev and Proschan [7].1 However, this is not equivalent if the xi’s are
not all distinct, which is the case needed in our application to the Fermi–
Dirac model.

3 Negative Dependence of Random Variables

We consider only discrete random variables. X = (X1, . . . , Xn) denotes a
tuple of random variables X1, . . . , Xn; we will assume that all expectations
E[h(X)] exist.

1They use the term “expermutation” which we were not able to locate in the literature.
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Two random variablesX, Y are called negatively correlated , if cov(X, Y ) :=
E[XY ]−E[X]E[Y ] ≤ 0. The following definition from [7] is a natural gener-
alization of negative correlation (and other notions of negative dependence)
to the case of n random variables.

Definition 3 (–A) The random variables X = (X1, . . . , Xn) are negatively
associated if for every index set I ⊆ [n], cov(f(Xi, i ∈ I), g(Xi, i ∈ Ī)) ≤ 0,
that is,

E[f(Xi, i ∈ I)g(Xi, i ∈ Ī)] ≤ E[f(Xi, i ∈ I)]E[g(Xi, i ∈ Ī)] ,

for all non-decreasing functions f : R|I| → R and g : Rn−|I| → R. (A function
h : Rk → R is said to be non-decreasing, if h(x) ≤ h(y) whenever x ≤ y in
the component-wise ordering on Rk.)

Note that the same inequality will hold if f and g are both non-increasing
functions.

Negative association of random variables is preserved under taking sub-
sets, forming unions of independent sets, and forming sets of non-decreasing
functions that are defined on disjoint subsets of the random variables. The
following proposition makes some of these very useful properties more precise,
see [7].

Proposition 4 1. If X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) both sat-
isfy (−A) and are mutually independent, then the augmented vector
(X,Y) = (X1, . . . , Xn, Y1, . . . , Ym) satisfies (−A).

2. Let X := (X1, . . . , Xn) satisfy (−A). Let I1, . . . , Ik ⊆ [n] be disjoint
index sets, for some positive integer k. For j ∈ [k], let hj : R|Ik| → R
be non-decreasing functions, and define Yj := hj(Xi, i ∈ Ij). Then the
vector Y := (Y1, . . . , Yk) also satisfies (−A). That is, non-decreasing
functions of disjoint subsets of negatively associated variables are also
negatively associated. The same is true if each hj is a non-increasing
function.

Remark 5 It is obvious from the definition that two negatively associated
random variables are negatively correlated. In general, the notion of negative
association is much stronger than the notion of negative correlation; however,
see Theorem 9.
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4 The FKG Inequality

We recall some concepts from the theory of partial orders. A (finite) lattice
(L,≤L) is a (finite) set L, partially ordered by ≤L, in which every two ele-
ments x, y have a least upper bound, denoted x ∨ y and called the join of x
and y, and a greatest lower bound, denoted x ∧ y and called the meet of x
and y. A lattice L is called distributive, if, for all x, y, z ∈ L, we have the
following two distributive laws:

x∧(y∨z) = (x∧y)∨(x∧z) or, equivalently, x∨(y∧z) = (x∨y)∧(x∨z) .

A function f : L → R on a lattice (L,≤L) is said to be non-decreasing
(non-increasing) with respect to ≤L, if x ≤L y implies f(x) ≤ f(y) (re-
spectively, x ≤L y implies f(x) ≥ f(y)). A function µ : L → R+ is called
log-supermodular , if, for all x, y ∈ L,

µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y) . (4.1)

We give two examples of lattices that we will use in later sections.

Example 6 For positive integers n,m, define L := [n]m and ≤L to be the
component-wise order, that is, for a = (a1, . . . , am),b = (b1, . . . , bm) ∈ L,

a ≤L b ⇐⇒ ak ≤ bk for each k ∈ [m] .

Join and meet are given by the following equations on the components,

(a ∨ b)k := max{ak, bk} and (a ∧ b)k := min{ak, bk} ;

and it turns out that (L,≤L) is a distributive lattice because of the following
property of integers,

min{u,max{v, w}} = max{min{u, v},min{u, w}} ,
max{u,min{v, w}} = min{max{u, v},max{u, w}} .

Example 7 For m < n, let Lm be the set of (ordered) m-element subsets
S = {s1, . . . , sm} of [n], that is, s1 < · · · < sm. For S, S ′ ∈ Lm, we define S �
S ′ if sk ≤ s′k for all k ∈ [m]. If we identify S with (s1, . . . , sm) ∈ [n]m, we can
view (Lm,�) as a sublattice of the lattice (L,≤L) from the previous example.
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(Note that Lm is closed under ∨ and ∧. For m-element subsets S, S ′ of [n]
and any k ∈ [m− 1], (S ∨ S ′)[k+1] := max{s[k+1], s′[k+1]} > max{s[k], s′[k]} =
(S ∨ S ′)[k], since s[k+1] > s[k] and s′[k+1] > s′[k]. Therefore, (S ∨ S ′) ∈ Lm,
and (S ∧ S ′) ∈ Lm is proved similarly.) (Lm,�) is distributive, since it is a
sublattice of the distributive lattice (L,≤L). (The lattice (Lm,�) has also
been considered in [14]. Figure 4.1 shows (L2,�) for n = 5.)

{1, 2}
{1, 3}

{1, 4}
{1, 5}

{2, 3}
{2, 4}

{2, 5}{3, 4}
{3, 5}

{4, 5}

...............
...............

................
.........

...............
................

...............
.........

................
...............

................
........

................
...............

................
........

...............
...............

................
.........

...............
................

...............
.........

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

Figure 4.1: The lattice (L2,�) of ordered 2-element subsets of {1, . . . , 5}.

There is an interesting relationship between (Lm,�) and (Ln−m,�). For
m-element subsets S, S ′ of [n], S � S ′ if and only if S ′ � S. For i ∈ [m], let
S ′i =: ` + i, ` ≥ 0. This means ` + i − 1 ≥ S ′` ≥ S`, since S � S ′, and, in
turn, `+ i− 1 ≤ Si−1. This implies Si ≥ ` + i = S ′i, that is, S ′ � S.

The FKG inequality extends the correlation of monotone functions on the
real line to the situation in which functions are defined on a lattice.

Theorem 8 (FKG Inequality [6, 12, 2]) Let L be a finite, distributive
lattice and let µ : L → R+ be a log-supermodular function. Then, if f, g :
L → R are both non-decreasing or both non-increasing with respect to ≤L,
we have ∑

x∈L
f(x)µ(x) ·

∑
x∈L

g(x)µ(x) ≤
∑
x∈L

f(x)g(x)µ(x) ·
∑
x∈L

µ(x) .

If one of the functions is non-decreasing and the other is non-increasing, then
the reverse inequality holds.
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It is helpful to view µ as a measure on L. Assuming that µ is not iden-
tically zero, we can define, for any f : L → R, its expectation E[f ] :=
(
∑
x∈L f(x)µ(x))/(

∑
x∈L µ(x)). In this notation, the FKG inequality asserts,

for example, that for any log-supermodular µ and functions f, g : L→ R,

E[f ] · E[g] ≥ E[f · g] ,

if one of the functions is non-decreasing and the other one is non-increasing.
This should be taken not only as a formal similarity with Definition 3 but
as an indication why the FKG inequality is at the core of many proofs of
negative association among random variables.

5 Results on Negative Dependence

5.1 Negatively Correlated Coins Satisfy (−A)

As already mentioned in Remark 5, two random variables are negatively
correlated if they are negatively associated. We now show that the converse
is true if both variables are binary (that is, are “coins”); cf. [5, Theorem 2]
and [7, p. 287].

Theorem 9 Binary random variables are negatively associated if and only
if they are negatively correlated.

Proof. In view of Remark 5, it remains to be proved that two binary ran-
dom variables satisfy the negative association condition (−A) if they are
negatively correlated. Let X, Y be negatively correlated binary random vari-
ables, that is, cov(X, Y ) = E[XY ]− E[X]E[Y ] ≤ 0. For i, j ∈ {0, 1}, define
µi,j := Pr(X = i, Y = j). We have E[X] = Pr(X = 1) = µ1,0 + µ1,1, and
cov(X, Y ) ≤ 0 reads µ1,1 ≤ (µ1,0 + µ1,1) · (µ0,1 + µ1,1). Since µ0,0 + µ0,1 +
µ1,0 + µ1,1 = 1, this is equivalent to

µ1,1 · µ0,0 = µ1,1 · (1− µ0,1 − µ1,0 − µ1,1) ≤ µ1,0 · µ0,1 . (5.1)

Let L := {0, 1}2 and for x = (x1, x2), y = (y1, y2) ∈ L, x ≤L y if and only
if x1 ≤ y1 and x2 ≥ y2; see Figure 5.1. It is easily seen that (L,≤L) defines
a distributive lattice.
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(0,1)

(0,0)

(1,0)

(1,1)
...........
...........
...........
...........
...........
.

........................................................ ...........
............
...........
...........
...........

........................................................

Figure 5.1: The lattice (L = {0, 1}2,≤L) defined in the proof of Theorem 9.

To establish the negative association condition for (X, Y ), we have to
prove that E[f(X)g(Y )] ≤ E[f(X)]E[g(Y )] for non-decreasing functions
f, g : R → R. (All other cases are trivial.) Define real-valued functions
f ′, g′ on (L,≤L) by setting

f ′(x1, x2) := f(x1) , g′(x1, x2) := g(x2) .

By definition of (L,≤L), f ′ is non-decreasing and g′ is non-increasing on the
lattice. For x = (x1, x2) ∈ L, define µ(x) := µx1,x2. Note that∑

x∈L
f ′(x)µ(x) = E[f(X)] ,

∑
x∈L

g′(x)µ(x) = E[g(Y )] , and

∑
x∈L

f ′(x)g′(x)µ(x) = E[f(X)g(Y )] .

Therefore, the desired result follows from the FKG inequality as soon as we
have established log-supermodularity of µ. Again, there is only one non-
trivial case to check, namely, x = (1, 1) and y = (0, 0) with x ∨ y = (1, 0)
and x ∧ y = (0, 1). However, for these elements, the log-supermodularity
condition (4.1) is nothing else but (5.1), that is, log-supermodularity of µ is
implied by the assumption that X, Y are negatively correlated. 2

5.2 Permutation Distribution Satisfies (−A)

In this paragraph, we prove that the indicator variables B1, . . . , Bn in the
Fermi–Dirac model are negatively associated. We will prove the stronger
result that random variables having the permutation distribution are nega-
tively associated. Basically, this result already appears in [7, Theorem 2.11].
Here we give a new short proof of this result via the FKG inequality.

Theorem 10 Random variables having the permutation distribution are neg-
atively associated.
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Proof. We shall first show that for any positive integer n, the permutation
distribution on [n] is negatively associated. Let J1, . . . , Jn have the per-
mutation distribution on [n]. Let I ⊆ [n] be an arbitrary index set with
|I | = k ≤ n. For a k-element subset S = {S1, . . . , Sk} ⊆ [n] and a permuta-
tion τ on S, we shall write τ (S) for the vector (τ (S1), . . . , τ (Sk)).

Let (Lk,�) be the lattice on the k-element subsets of [n] as defined in
Example 7. For non-decreasing functions f : Rk → R, g : Rn−k → R , we
define real-valued functions f ′, g′ on (Lk,�) by setting

f ′(S) :=
1
k!
∑
τ

f(τ (S)) , g′(S) :=
1

(n− k)!
∑
ρ

g(ρ(S)) ,

where τ ranges over all permutations of S and ρ ranges over all permutations
of S. Then f ′ is non-decreasing and g′ is non-increasing on the lattice. To see
that f ′ is non-decreasing, that is, f(S) ≤ f(S ′) if S � S ′, merely do a term-
wise comparison of the two summations. To see that g′ is non-increasing,
observe in addition that S � S ′ if and only if S � S ′, see Example 7. Set
µ(S) :=

(
n
k

)−1
to get a trivially log-supermodular measure. Observe now

that (with σ varying over all permutations of [n])∑
S

f ′(S)µ(S) =
∑
S

∑
τ

f(τ (S))(n−k)!/n! =
∑
σ

f(σ(i), i ∈ I)/n! = E[f(Ji, i ∈ I)] .

Similarly, ∑
S

g′(S)µ(S) = E[g(Ji, i ∈ Ī)]

and ∑
S

f ′(S)g′(S)µ(S) =
∑
S

∑
τ

f(τ (S))
∑
ρ

g(ρ(S))/n!

=
∑
σ

f(σ(i), i ∈ I)g(σ(i), i ∈ Ī)/n!

= E[f(Ji, i ∈ I)g(Ji, i ∈ Ī)] .

Applying the FKG inequality, we conclude that J1, . . . , Jn are negatively
associated.

We deduce that for any reals x1, . . . , xn, random variables X1, . . . , Xn

having the permutation distribution on (x1, . . . , xn) are negatively associated.
Indeed, Xi = hi(Ji) := xJi are non-decreasing functions of distinct variables;
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hence, by Proposition 4(2), we conclude that any permutation distribution
is negatively associated. 2

The desired result is now an immediate corollary.

Corollary 11 The indicator variables in the Fermi–Dirac model satisfy the
negative association condition (−A).

5.3 Correlation Inequalitites for Sums of Occupancy
Numbers

Correlations of the occupancy numbers B1, . . . , Bn in our first experiment
are extensively studied in [4]; it turns out that (B1, . . . , Bn) satisfy a num-
ber of negative dependence conditions, including negative association. By
Proposition 4, this implies general correlation inequalities for non-decreasing
functions of disjoint subsets of the occupancy numbers. We now show that
correlation inequalities involving sums of these occupancy numbers can be
obtained in a more direct way via the FKG inequality.

A possible configuration of the experiment can be represented by a vector
a := (a1, . . . , am), with ak ∈ [n] for each k ∈ [m]. This is the configuration
where ball k goes into bin ak for each k ∈ [m]. Define the lattice (L,≤L
) on all such configurations as in Example 6 and define µ : L → R+ by
µ(a) :=

∏
k pak,k for each a ∈ L. For any a,b ∈ L, we have µ(a)µ(b) =

µ(a ∨ b)µ(a ∧ b), and so µ is log-supermodular.
Let I, J ⊆ [n] be two index sets such that either I ∩ J = ∅ or I ∪

J = [n]; without loss of generality, we can arrange it by renumbering that
J = {1, . . . , |J |} and I = {n − |I | + 1, . . . , n}. Let tI , tJ be arbitrary non-
negative integers and define f, g : L→ {0, 1} to be the indicator functions of
the events (

∑
i∈I Bi ≥ tI) and (

∑
j∈J Bj ≥ tJ), respectively, where Bi, i ∈ [n],

are the (random) occupancy numbers. (The occupancy number of bin i on
configuration a is given by Bi(a) := |{j | aj = i}|.) The definition of the
lattice order ≤L ensures that f is non-decreasing, while g is non-increasing
on L for any fixed integers tI , tJ . Applying the FKG inequality, we get the
following correlation inequality on the random variables Bi, i ∈ [n].

Theorem 12 Let I, J ⊆ [n] be index sets such that either I ∩ J = ∅ or

11



I ∪ J = [n], and let tI, tJ be arbitrary non-negative integers. Then

Pr
(∑

i∈I Bi ≥ tI ,
∑
j∈J Bj ≥ tJ

)
≤ Pr (

∑
i∈I Bi ≥ tI) · Pr

(∑
j∈J Bj ≥ tJ

)
.

(5.2)

Remark 13 (5.2) is referred to as the negative quadrant dependence condi-
tion for X :=

∑
i∈I Bi and Y :=

∑
j∈J Bj. It is known to be equivalent to

the negative association condition (−A) for X, Y , [7]. This can also be easily
seen by replacing f, g in the proof of Theorem 12 by arbitrary non-decreasing
functions. In fact, even more general correlation inequalities follow along the
same lines. For example, if we define a partial order on tuples of occupancy
numbers (for a fixed number of balls) by

(B1, . . . , Bn) � (B′1, . . . , B
′
n) ⇐⇒

∑
k≤i≤n

Bi ≤
∑

k≤i≤n
B′i for all k ∈ [n− 1] ,

then a ≤L b implies (B1(a), . . . , Bn(a)) � (B1(b), . . . , Bn(b)) and, hence,
the FKG inequality on L can be applied to functions on (B1, . . . , Bn) that
are non-decreasing or non-increasing with respect to �.

6 Applications

Chernoff–Hoeffding bounds are large deviation estimates for sums S =
∑n
i=1Xi

of independent, identically distributed random variables Xi, that is, they pro-
vide bounds of the form

Pr(S > an) ≤ inf
t>0

e−ant(E[exp(tX1)])n for a > E[X1] = E[S]/n ; (6.1)

see, for example, [15, 10]. The independence assumption can be replaced by
the requirement that

E[exp(t
∑
i

Xi)] ≤
∏
i

E[exp(tXi)] .

Because of Proposition 4, this is easily seen to be fulfilled if the Xi’s are
negatively associated.

Theorem 14 Let X1, . . . , Xn be identically distributed random variables whose
joint distribution satisfies the negative association condition (−A). Then the
Chernoff–Hoeffding bounds (6.1) apply for S :=

∑
iXi.
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Analogues of this result are true for other notions of “strong” negative depen-
dence among random variables, but the argument gets slightly more involved;
see [4] for a more detailed account.

Theorem 14 allows, for example, a simple analysis of the following prob-
abilistic experiment from [9]. Consider a k × n matrix A that is defined as
follows. Row entries Ai·, i ∈ [k], are independent random variables, and
for each row i, the entries Aij, j ∈ [n], are indicator variables distributed
according to the Fermi–Dirac model, that is, each row of A is a random 0-1
vector of length n with exactly m ones.

Let f(A) be the number of all-zero columns in A. By Corollary 11 and
Proposition 4(1), the random variables Aij, i ∈ [k], j ∈ [n], are negatively
associated and so are the random variables Cj := 1− sgn

∑
i∈[k]Aij, j ∈ [n],

by Proposition 4(2) (sgn 0 := 0, sgn x := 1 for x > 0). Note that f(A) =∑
j∈[n]Cj, and Theorem 14 allows to apply Chernoff–Hoeffding bounds on

f(A).
In [9], Mehlhorn and Priebe consider shortest path problems on complete

digraphs (with loops) with respect to simple weight functions. On a graph
with n vertices, for every vertex v and every integer j ∈ [n], there is exactly
one edge of length j leaving v. Among other facts, Mehlhorn and Priebe use
large deviation estimates for f(A) to deduce that on random simple weight
functions, any algorithm for the single source shortest path problem has
complexity Ω(n log n) with high probability.
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