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1 Introduction

This paper investigates the notion of negative dependence amongst random
variables and attempts to advocate its use as a simple and unifying paradigm for
the analysis of random structures and algorithms.

The assumption of independence between random variables is often very con-
venient for the several reasons. Firstly, it makes analyses and calculations much
simpler. Secondly, one has at hand a whole array of powerful mathematical con-
cepts and tools from classical probability theory for the analysis, such as laws of
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contract No. 7141 (project ALCOM II)
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BRICS.
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large numbers, central limit theorems and large deviation bounds which are usually
derived under the assumption of independence.

Unfortunately, the analysis of most randomized algorithms involves random
variables that are not independent. In this case, classical tools from standard prob-
ability theory like large deviation theorems, that are valid under the assumption of
independence between the random variables involved, cannot be used as such. It is
then necessary to determine under what conditions of dependence one can still use
the classical tools.

It has been observed before [32, 33, 38, 8], that in some situations, even though
the variables involved are not independent, one can still apply some of the stan-
dard tools that are valid for independent variables (directly or in suitably modified
form), provided that the variables are dependent in specific ways. Unfortunately, it
appears that in most cases somewhat ad hoc strategems have been devised, tailored
to the specific situation at hand, and that a unifying underlying theory that delves
deeper into the nature of dependence amongst the variables involved is lacking.

A frequently occuring scenario underlying the analysis of many randomised
algorithms and processes involves random variables that are, intuitively, dependent
in the following negative way: if one subset of the variables is “high” then a disjoint
subset of the variables is “low”. In this paper, we bring to the forefront and
systemize some precise notions of negative dependence in the literature, analyse
their properties, compare them relative to each other, and illustrate them with
several applications.

One specific paradigm involving negative dependence is the classical “balls and
bins” experiment. Suppose we throw m balls into n bins independently at random.
For i ∈ [n], let Bi be the random variable denoting the number of balls in the
ith bin. We will often refer to these variables as occupancy numbers. This is a
classical probabilistic paradigm [16, 22, 26] (see also [31, § 3.1]) that underlies the
analysis of many probabilistic algorithms and processes. In the case when the balls
are identical, this gives rise to the well–known multinomial distribution [16, §VI.9]:
there are m repeated independent trials (balls) where each trial (ball) can result
in one of the outcomes E1, . . . , En (bins). The probability of the realisation of
event Ei is pi for i ∈ [n] for each trial. (Of course the probabilities are subject
to the condition

∑
i pi = 1.) Under the multinomial distribution, for any integers

m1, . . . , mn such that
∑
imi = m the probability that for each i ∈ [n], event Ei

occurs mi times is
m!

m1! . . .mn!
pm1

1 . . . pmnn .

The balls and bins experiment is a generalisation of the multinomial distribution:
in the general case, one can have an arbitrary set of probabilities for each ball: the
probability that ball k goes into bin i is pi,k, subject only to the natural restriction
that for each ball k,

∑
i pi,k = 1. The joint distribution function correspondingly

has a more complicated form.
A fundamental natural question of interest is: how are these Bi related? Note

that even though the balls are thrown independently of each other, the Bi variables
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are not independent; in particular, their sum is fixed to m. Intuitively, the Bi’s
are negatively dependent on each other in the manner described above: if one set
of variables is “high”, a disjoint set is “low”. However, establishing such assertions
precisely by a direct calculation from the joint distribution function, though possible
in principle, appears to be quite a formidable task, even in the case where the balls
are assumed to be identical.

One of the major contributions of this paper is establishing that the the Bi are
negatively dependent in a very strong sense. In particular, we show that the Bi
variables satisfy negative association and negative regression, two strong notions
of negative dependence that we define precisely below. All the intuitively obvi-
ous assertions of negative dependence in the balls and bins experiment follow as
easy corollaries. We illustrate the usefulness of these results by showing how to
streamline and simplify many existing probabilistic analyses in literature.

1.1 Organization

In § 2, we discuss discuss the notion of negative association. We examine its
basic properties and relation to other better–known (but weaker) notions of nega-
tive dependence. Then we apply it in the context of the balls and bins experiment.
We give a simple proof of a very simple assertion involving certain natural indicator
variables that describe the balls and bins experiment. Though extremely simple,
this result turns out to constitute a powerful and versatile technique for deriving
various correlation inequalities in a deft and “calculation–free” manner. In partic-
ular, it follows that the occupancy numbers in the balls and bins expriment are
negatively associated. In § 3 we discuss the notion of negative regression, and some
of its variants. After discussing some general properties and relationships between
these different notions of regression, we turn once again to apply it to the context
of the balls and bins experiment. The major result of this section is that even
in the most general balls and bins experiment, the occupancy numbers satisfy the
negative regression property. The proof again is “calculation-free”, but surprisingly
non-trivial. (We actually prove a stronger result from which this is an easy conse-
quence.) In § 4, we illustrate the usefulness of our results by applications of our
results to probabilistic analyses in areas as diverse as simulation of parallel com-
puters [8], dynamic load balancing [1],distributed graph algorithms [32, 33],and in
random graphs and percolation theory [15, 29].

We shall restrict our attention exclusively to discrete, non–negative integer–
valued random variables, as these are the ones of principal interest for the applica-
tions we have in mind. When we write conditional probabilities Pr[E | E′], we are
tacitly assuming that E′ is an event of non–zero probability to avoid triviality.
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2 Negative Association

A strong notion of negative dependence from the theory of multi–variate prob-
ability inequalities [12, 13, 39, 40] is that of negative association. The intuitive idea
behind the definition of this strong notion of negative dependence is as follows:
if a set of random variables is negatively related then if any monotone increasing
function f of one subset of variables increases then any other monotone increasing
function g of a disjoint set of variables must decrease. This is what is made formal
below.

Definition 1 (Negative Association) Let X := (X1, . . . , Xn) be a vector of ran-
dom variables.

(−A) The random variables, X are negatively associated if for every two dis-
joint index sets, I, J ⊆ [n],

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)]

for all functions f : R|I| → R and g : R|J| → R that are both non–decreasing
or both non–increasing.

2.1 Properties of Negative Association

In this section, we collect together some useful properties of negatively associ-
ated variables.

Lemma 2 Let X1, . . . , Xn satisfy the negative association condition (−A). Then
for any non–decreasing functions fi, i ∈ [n],

E[
∏
i∈[n]

fi(Xi)] ≤
∏
i∈[n]

E[fi(Xi)].

Proof. Take the non–decreasing functions f(Xi, i < n) :=
∏
i<n fi(xi) and g(xn) :=

fn(xn) to deduce that E[
∏
i∈[n] fi(Xi)] ≤ E[

∏
i<n fi(Xi)]E[fn(Xn)] and now use

induction.
Many useful consequences of the (−A) condition flow out of this simple lemma.

Proposition 3 The negative association property (−A) on a set of variables X1, . . . , Xn
implies the following notions of negative dependence:

(−COV ) Negative Covariance: for any I ⊆ [n],

E[
∏
i∈I

Xi] ≤
∏
i∈I

E[Xi].
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(−OD) Negative Right Orthant Dependence: For any two disjoint subsets
I, J ⊆ [n],

Pr[Xi ≥ ti, i ∈ I | Xj ≥ tj , j ∈ J ] ≤ Pr[Xi ≥ ti, i ∈ I].

Proof. For (−COV ), apply Lemma 2 with each fi being the identity. For (−OD),
apply the definition of (−A) with f(ai, i ∈ I) :=

∏
i∈I [ai ≥ ti], and g(aj , j ∈

J) :=
∏
j∈J [aj ≥ tj ], the indicator functions of the two events (Xi ≥ ti, i ∈ I) and

(Xj ≥ tj, j ∈ J), respectively.
A very useful property of negative association is that the joint probability can

be upper–bounded by the product of the marginals. This is another simple conse-
quence of Lemma 2 applied with each fi(ai) := [ai ≥ ti], the indicator function of
the event Xi ≥ ti.

Proposition 4 (Marginal Probability Bounds) Let X1, . . . , Xn satisfy (−A).
Then

Pr[Xi ≥ ti, i ∈ [n]] ≤
∏
i∈[n]

Pr[Xi ≥ ti].

A property of negatively associated random variables that is very useful in
applications to the analysis of algorithms is that one can apply the Chernoff–
Hoeffding(CH) bounds to give tail estimates on their sum; in effect, for purposes
of stochastic bounds on the sum, one can treat the variables as if they were inde-
pendent.

Proposition 5 (−A and Chernoff–Hoeffding Bounds) The Chernoff–Hoeffding
bounds are applicable to sums of variables that satisfy the negative association con-
dition (−A).

Proof. Let X1, · · · , Xn be negatively associated (and bounded) variables. To show
that the Chernoff–Hoeffding bounds apply to the sum X := X1 + · · ·+Xn, we use
the standard proof of the CH–bound, see for example, [3, 31]. The only change
needed is in a crucial step, where one uses the fact that for independent variables,
E[etX ] = E[

∏
i e
tXi ] =

∏
iE[etXi ]. For negatively associated variables, we have,

for t > 0, E[etX ] = E[
∏
i e
tXi ] ≤

∏
iE[etXi ], by Lemma 2 applied with each

fi(x) := etx. The rest of the proof is unchanged, and gives the upper tail bound.
For the lower tail, we apply the same argument to the variables bi −Xi, where bi
is an upper bound on the variable Xi. Note that if the Xi variables are negatively
associated, then so are the variables bi −Xi.

Remark 6 Colin McDiarmid (personal communication) has independently ob-
served results in a similar vein.

Finally, the following proposition lists two simple but extremely useful proper-
ties of negative association [13]:
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Proposition 7 1. If X and Y satisfy (−A) and are mutually independent, then
the augmented vector (X,Y) = (X1, · · · , Xn, Y1, · · · , Ym) satisfies (−A).

2. Let X := (X1, · · · , Xn) satisfy (−A). Let I1, · · · , Ik ⊆ [n] be disjoint in-
dex sets, for some positive integer k. For j ∈ [k], let hj : R|Ik| → R
be functions that are all non–decreasing or all non–increasing, and define
Yj := hj(Xi, i ∈ Ij). Then the vector Y := (Y1, · · · , Yk) also satisfies (−A).
That is, non–decreasing (or non–increasing) functions of disjoint subsets of
negatively associated variables are also negatively associated.

2.2 Negative Association in Balls and Bins

We use Proposition 7 to give a simple “calculation–free” proof that the variables
B1, . . . , Bn are negatively associated. It is most expedient to introduce the indicator
random variables Bi,k for i ∈ [n], k ∈ [m]:

Bi,k :=
{

1, if ball k goes into bin i;
0, otherwise.

We start with the following intuitively appealing result which will turn out to
be surprisingly powerful.

Lemma 8 (Zero–One Lemma for (−A)) If X1, . . . , Xn are zero-one random vari-
ables such that

∑
iXi = 1, then X1, . . . , Xn satisfy (−A).

We shall prove this by using the one–dimensional case of the famous FKG inequality
[17, 3, 19], also known as Chebyshev’s inequality [12, 39, 40] or as Harris’ Lemma
[20]:

Theorem 9 (Chebyshev, FKG, Harris) Let X be a random variable on the
real line, and let f, g : R→ R be two functions.

• If f, g are both non-decreasing then

E[f(X)g(X)] ≥ E[f(X)]E[g(X)].

• If f is non-decreasing and g is non-increasing then

E[f(X)g(X)] ≤ E[f(X)]E[g(X)].

Proof. (Of Zero–One Lemma): Let X1, X2, .., Xn be zero-one random variables with
exactly one Xi = 1. Let I and J be disjoint subsets of [n] and let f(ai, i ∈ I) and
g(aj , j ∈ J) be non-decreasing functions. Suppose by renumbering if necessary that
I := {1, . . . , |I|}, J := {n− |J |+ 1, . . . , n} and that

f(0, .., 0) ≤ f(0, .., 1) ≤ .. ≤ f(1, 0, ..0)

6



and
g(0, .., 0) ≤ g(1, .., 0)≤ .. ≤ g(0, .., 1).

Note that since I and J are disjoint sets, this can always be arranged by renum-
bering. Define

X := i ↔ Xi = 1.

Thus X is a random variable taking values in [n] with Pr[X = i] = pi for some
probabilities pi summing to 1.

Set for i ∈ [n],

f ′(i) =
{
f(0, . . . , 0, . . . , 0), i 6∈ I;
f(0, . . . , 1, . . . , 0), i ∈ I.

and

g′(i) =
{
g(0, . . . , 0, . . . , 0), i 6∈ J ;
g(0, . . . , 1, . . . , 0), i ∈ J .

where the 1 appears in the ith position. Observe that f ′ is non-increasing and g′

is non-decreasing. Hence

E[f ′(X)g′(X)] ≤ E[f ′(X)]E[g′(X)],

by the FKG–inequality. Finally observe that

E[f ′(X)] = E[f(Xi, i ∈ I)]
E[g′(X)] = E[g(Xj , j ∈ J)]

E[f ′(X)g′(X)] = E[f(Xi, i ∈ I)g(xj , j ∈ J)]

and hence the conclusion of the Zero–One Lemma.

Remark 10 The following simple proof of the Zero–One Lemma for (−A) was
communicated to us by Colin McDiarmid. By considering the non–negative func-
tions f(ai, i ∈ I)−f(0, . . . , 0) and g(aj , j ∈ J)−g(0, . . . , 0) instead, we may assume
that f(0, . . . , 0) = 0 = g(0, . . . , 0). Then

E[f(Xi, i ∈ I)g(Xj , j ∈ J)] = 0 ≤ E[f(Xi, i ∈ I)]E[g(Xj , j ∈ J)].

This completely elementary proof does not require the use of any inequality at all!

For any fixed k ∈ [m], take Xi := Bi,k, i ∈ [n] and use the Zero–One lemma to con-
clude that the indicator variables (Bi,k, i ∈ [n]) for any fixed k ∈ [m] satisfy (−A).
Since the balls are thrown independently of each other, we obtain immediately from
Proposition 7 the following consequence:

Proposition 11 The full vector (Bi,j , i ∈ [n], j ∈ [m]) is negatively associated.
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Remark 12 Proposition 11 taken in conjunction with Proposition 7 will turn out
to constitute a simple but extremely potent and versatile technique. We shall see
many examples of how it can be used to provide deft “calculation–free” proofs
of various correlation statements starting with the main result of this subsection,
namely that the variables B1, . . . , Bn are negatively associated (Proposition 13
below) and continuing with applications in the next sub–section. We thank Martin
Dietzfelbinger for impressing this upon us, in particular for sharing some results of
his own [7] which are intermediate in strength between some of our results.

Theorem 13 Let B := (B1, · · · , Bn) be the vector of the number of balls in the
bins. Then B is negatively associated.

Proof. Apply Proposition 11 and Proposition 7 (2) together with the non–decreasing
functions Bi =

∑
j∈[m] Bi,j for each i ∈ [n].

Remark 14 Joag–Dev and Proschan [13] also prove Theorem 13 for the multino-
mial distribution (§ 3.1(a)) although their proof is a bit cryptic. They also claim
without proof the same result for the general balls and bins experiment (“convolu-
tion of unlike multinomials”).

Remark 15 Immediate consequences of this theorem are that the occupany num-
bers B1, . . . , Bn satisfy the negative orthant dependence conditions, (−OD),

Pr[Bi ≥ ti, i ∈ I | Bj ≥ tj, j ∈ J ] ≤ Pr[Bi ≥ ti, i ∈ I],

for any disjoint index sets I, J ⊆ [n]. However results such as

Pr[Bi ≥ ti, i ∈ I | Bj ≥ tj , j ∈ J ] ≤ Pr[Bi ≥ ti, i ∈ I | Bj ≥ t′j, j ∈ J ],

for any disjoint index sets I, J ⊆ [n] and for any reals t′j ≤ tj , j ∈ J do not follow.
For this we turn to an apparently stronger notion of dependence in the next section.

2.3 Negative Association and the BK Inequality

In this subsection we try to relate the concept of negative association to the
concept of “disjointly–occuring events” and the associated BK inequality which is
widely used in Percolation Theory [20]. Consider the space (Ω, µ), where Ω :=
{0, 1}n for a positive integer n, endowed with the component–wise order and µ :
Ω→ R is a measure, not necessarily the product measure. Denote for each ω ∈ Ω,
1(ω) := {i | ωi = 1}. Likewise, conversely, for K ⊆ [n], denote Ω(K) := {ω ∈ Ω |
ωi = 1, i ∈ K}. For non–decreasing events A,B ⊆ Ω, define

A⊗ B := {ω ∈ Ω | ∃H ⊆ 1(ω),Ω(H) ⊆ A and Ω(1(ω) \H) ⊆ B}. (1)
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Definition 16 The space (Ω, µ) is a BK space if

µ(A⊗ B) ≤ µ(A)µ(B),

for all non–decreasing events A,B ⊆ Ω.

The following result due to van den Berg and Kesten [6, 20] is widely used in
Percolation Theory to complement the FKG inequality:

Theorem 17 (BK Inequality) Let (Ω, µ) be a product space, that is, µ is a prod-
uct measure, µ(ω) =

∏
i∈[n] µi(ωi), for probabilities µi(1) = pi = 1− µi(0) for each

i ∈ [n]. Then (Ω, µ) is a BK space.

Remark 18 To see what this connective ⊗ means, it is helpful to view each co–
ordinate ωi as standing for a resource. Thus ωi = 1 iff resource i is available.
A non–decreasing event A is enabled or established as soon as all the resources
necessary for it are available. To establish two different non–decreasing events
A,B, the resources necessary for both should be available. However, resources are
consumed and cannot be reused. Thus to establish both events together, there
must be partition of the available resources, one set enabling event A and the
other the event B. The resource intuition is the basic intuition behind linear logic
and the connective ⊗ is exactly the linear logic connective, [18] (see also [5] for a
very readable account stressing the resource interpretation). In the literature in
Percolation Theory [20, Chap. 2] (and the references therein) the connective is
denoted ◦ and is discussed as “disjoint occurences of events” .

Let (Ω, µ) be a BK space with Ω :=
∏
i∈[n] Ωi, and each Ωi := {0, 1}. Let I ⊆ [n]

be fixed, and consider two cylindrical non–decreasing events A = AI ×
∏
i∈[n]\I Ωi

and B = B[n]\I ×
∏
i∈I Ωi with AI ⊆

∏
i∈I Ωi and B[n]\I ⊆

∏
i∈[n]\I Ωi. Note that

in this case, A ⊗ B = A ∧ B. Hence for such events in a BK–space, µ[A ∧ B] =
µ[A⊗ B] ≤ µ(A)µ(B).

It is easily seen that

Observation 19 Let X1, . . . , Xn be 0/1 variables with
∑
iXi = 1. Then their

distribution forms a BK space.

Further, we conjecture that

Conjecture 20 BK spaces are preserved under direct products.

If true, the conjecture together with Observation 19, would establish that the prod-
uct space
(Bi,k, i ∈ [n].k ∈ [m]) =

∏
k∈[m](Bi,k, i ∈ [n]), would also be a BK space. Actually

one can verify directly that this product space is in fact also a BK space, but it
would be neater to apply the conjecture.
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Let I, J ⊆ [n] be disjoint, and let EI , EJ be non–decreasing events that depend
only on the variables (Bi, i ∈ I) and (Bj , j ∈ J) respectively. Observe that these
are disjoint cylindrical events in the BK–space of the underlying indicator variables.
Hence by the remarks above,

Pr[EI ∧ EJ ] ≤ Pr[EI]Pr[EJ ].

This puts the results on negative association in balls and bins in the perspective of
“disjointly–occuring events” from percolation theory [20, 6].

For some more remarks on the relation between the two notions, and an outline
of how negative association can be applied to derive the BK inequality, see [9].

3 Negative Regression

Negative regression is possibly the most direct and compelling formulation of
the intuition that when one set of variables is “high”, a disjoint set is “low”.

3.1 Negative Regression Conditions

Definition 21 Let X := (X1, . . . , Xn) be a vector of random variables. X satisfies

(−R) the negative regression condition if E[f(Xi, i ∈ I) | Xj = tj , j ∈ J ] is
non–increasing in each tj , j ∈ J for any disjoint I, J ⊆ [n] and any non–
decreasing function f.

(−LTR) the negative left tail regression condition if E[f(Xi, i ∈ I) | Xj ≤
tj, j ∈ J ] is non–increasing in each tj, j ∈ J for any disjoint I, J ⊆ [n] and
any non–decreasing function f.

(−RTR) the negative right tail regression condition if E[f(Xi, i ∈ I) | Xj ≥
tj, j ∈ J ] is non–increasing in each tj, j ∈ J for any disjoint I, J ⊆ [n] and
any non–decreasing function f.

Remark 22 The negative regression condition (−R) yields some stronger correla-
tion inequalities in some cases than negative association. This, and the fact that it
is highly intuitive, might make it a more appealing notion of negative dependence.
Unfortunately, as we shall also see below, it does not seem as robust and versatile
as negative association under monotone transformations of variables. This limits
its applicability rather severly. A judicious combination of the two appears to be
the optimal strategy.
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3.2 Properties of Regression

We collect together some useful properties of the regression conditions.
We begin with the following proposition, which is intuitive and perhaps folklore,

but we include a oomplete proof since the proof is tricky and instructive and we
are unaware of another source where it has been published in detail.

Proposition 23 (Mixed Regression) Let X1, . . . , Xn be random variables sat-
isfying the negative regression condition (−R). Let I, J,K ⊆ [n] be disjoint index
sets. Then

E[f(Xi, i ∈ I) | (Xj = tj, j ∈ J), (Xk ≥ tk, k ∈ K)]

is non–increasing in each of tj, j ∈ J and tk, k ∈ K for an arbitrary non–decreasing
function f.

Proof. We shall proceed by induction on on the size of K. If K = ∅, this is simply
the condition (−R). For the inductive step, let l ∈ [n] \ I ∪ J ∪K and consider

E[f(Xi, i ∈ I) | (Xj = tj , j ∈ J), (Xk ≥ tk, k ∈ K), Xl ≥ tl].

It suffices to show that this is non–increasing in tl. Fix integers tj, j ∈ J and tk, k ∈
K and let us abbreviate Xj = tj, j ∈ J by XJ = tJ and similarly Xk ≥ tk, k ∈ K
by XK ≥ tK and f(Xi, i ∈ I) by f(XI ). It suffices now to show that for any integer
a,

E[f(XI ) | XJ = tJ , XK ≥ tK , Xl ≥ a] ≥ E[f(XI ) | XJ = tJ , XK ≥ tK , Xl ≥ a+1].

For this in turn, it suffices to prove that for any non–decreasing f , and any integer
tI ,

Pr[f(XI ) ≥ tI | XJ = tJ , XK ≥ tK , Xl ≥ a] ≥ Pr[f(XI ) ≥ tI | XJ = tJ , XK ≥ tK , Xl ≥ a+1].

Denote C := XJ = tJ , XK ≥ tK . We have,

Pr[f(XI ) ≥ tI | C, Xl ≥ a] =
Pr[f(XI) ≥ tI , C, Xl ≥ a]

Pr[C, Xl ≥ a]

=
A+ C

B +D
,

where we put

A := Pr[f(XI ) ≥ tI , XJ = tJ , XK ≥ tK , Xl ≥ a+ 1]
B := Pr[XJ = tJ , XK ≥ tK , Xl ≥ a+ 1]
C := Pr[f(XI ) ≥ tI , XJ = tJ , XK ≥ tK , Xl = a]
D := Pr[XJ = tJ , XK ≥ tK , Xl = a]

11



Then

A

B
= Pr[f(XI ) ≥ tI | C, Xl ≥ a+ 1]

=
∑
t≥a+1

Pr[f(XI ) ≥ tI | C, Xl = t] · Pr[Xl = t | C, Xl ≥ a+ 1]

by induction

≤ Pr[f(XI ) ≥ tI | C, Xl = a] ·
∑
t≥a+1

Pr[Xl = t | C, Xl ≥ a+ 1]

=
C

D
.

Hence A+C
B+D ≥

A
B which is what we needed to prove.

Corollary 24 The regression condition (−R) implies both the tail regression con-
ditions (−RTR) and (−LTR).

Proof. Take J := ∅ in Proposition 23.
Let the comparsion operators {<,≤,=,≥, >} be ordered as follows:

< � ≤ � = � ≥ � >,

and let ?i, i ∈ I stand for a sequence of comparison operators. The technique used
in the proof of Proposition 23 can be used to prove the following intuitive assertion
about a compound regression condition on the variable values and the comparison
operators ordered by �:

Corollary 25 (Compound Regression) Let I, J ⊆ [n] be disjoint, and let f be
non–decreasing and tj, j ∈ J be arbitrary reals. If X1, . . . , Xn satisfy (−R), then

E[f(Xi, i ∈ I) | Xj ?j tj , j ∈ J ],

is non–increasing in each tj, j ∈ J and in each ?j, j ∈ J .

Next we state a sequence of properties analogous to those that obtained for the
negative association condition.

Lemma 26 Let X1, . . . , Xn satisfy the negative regression condition (-R). Then
for any index set I ⊆ [n] and any non–decreasing functions fi, i ∈ I,

E[
∏
i∈I

fi(Xi)] ≤
∏
i∈I

E[fi(Xi)].
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Proof. Without loss of generality, suppose I := {1, . . . , |I|} and denote XI :=
X|I|, fI := f|I|. Then

E[
∏
i∈I

fi(Xi)] = E[E[
∏
i∈I

fi(Xi) | XI ]]

= E[E[
∏

i∈I\|I|
fi(Xi) | XI ]fI(XI)]

=
∑
a

E[
∏

i∈I\|I|
fi(Xi) | XI = a] · fI(a)Pr[XI = a]

≤ E[
∏

i∈I\|I|
fi(Xi)]E[fI(XI )]

In the penultimate line we used the regression condition to apply the Chebyshev–
FKG–Harris inequality, Theorem 9. Now the result follows by induction.

Analogous to (−A), the regression condition (−R) also implies some other
notions of negative dependence:

Proposition 27 The negative regression property (−R) on a set of variables X1, . . . , Xn
implies the following notions of negative dependence: negative covariance, (−COV ),
and negative orthant dependence, (−OD).

Proof. The first assertion is proved by by applying Lemma 26. The second follows
from Corollary 24.

Again, like (−A), the regression condition (−R) has the very useful that the
joint probability distribution can be upper–bounded by the product of the marginals:

Proposition 28 (Marginal Probability Bounds) Let X1, . . . , Xn be distributed
to satisfy (−R). Then

Pr[X1 ≤ t1, . . . , Xn ≤ tn] ≤
∏
i∈[n]

Pr[Xi ≤ ti].

Finally, we get Chernoff–Hoeffding bounds on sums of variables which satisfy
the negative regression condition:

Proposition 29 (−R and Chernoff–Hoeffding Bounds) The Chernoff–Hoeffding
bounds apply to sums of variables that satisfy the negative regression condition (-R).

The proof, as in § 2 follows the standard route with Lemma 26 used (taking each
fi(x) := etx) to replace the equality E[et(X1+...+Xn)] =

∏
i∈[n]E[etXi ] (which holds

for independent variables) by the inequality E[et(X1+...+Xn)] ≤
∏
i∈[n]E[etXi ], ap-

plying Lemma 26 with each fi(x) := etx.

Remark 30 Colin McDiarmid (personal communication) has independently ob-
served results in a similar vein.
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3.3 Negative Regression in Balls and Bins

In this sub–section, we show that the variablesB1, . . . , Bn from the most general
balls and bins experiment satisfy the negative regression condition, (−R).

Theorem 31 The vector B := (B1, . . . , Bn) satisfies the negative regression con-
dition (−R).

Corollary 32 The variables B1, . . . , Bn satisfy the negative right and left tail re-
gression conditions, (−RTR) and (−LTR).

Proof. Apply Corollary 24.
Let us start by considering the special case of Theorem 31 when all balls are

identical (the bins need not be identical). This is the situation of the Multinomial
Distribution. In this case, by symmetry between any two subsets of the balls of the
same size, the conditioning Bj = tj, j ∈ J is equivalent to the simple unconditional
balls and bins experiment with fewer balls and bins – precisely with m′ := m −∑
j∈J tj balls thrown into the bins labelled by the set J̄ := [n] \ J . Let us use

superscripts to denote the variables in the experiment corresponding to throwing
m balls into bins labelled by I ⊆ [n] by Bm,Ii , i ∈ I. Then, our observation can be
phrased as:

E[f(Bm,[n]
i , i ∈ I) | Bm,[n]

j = tj, j ∈ J ] = E[f(Bm
′ ,J̄

i , i ∈ I)].

Finally, we conclude that this is a monotone increasing function in m′ by noting
that for each i ∈ I,

Bm+1,I
i = Bm,Ii +Bi,m+1.

Thus the (−R) property holds easily in the case when all balls are identical.

Remark 33 A weaker form of this result was proved by Mallows [28]: he shows
that in the case of identical balls, the joint probability distribution can be bounded
by the product of the marginal distributions:

Pr[B1 ≤ t1, . . . , Bn ≤ tn] ≤
∏
i∈[n]

Pr[Bi ≤ ti].

By Proposition 28, this is simple consequence of the regression property (−R).
Of course the regression condition (−R) yields much more. Mallows claims the
analogous result for the general case (balls not identical) but does not supply a
proof. We shall prove a stronger version of the (−R) property for the general case,
when neither the bins nor the balls need be identical.

The general case appears to be surprisingly non–trivial by comparison, with
many subtle technical difficulties. As a first indication of this, let us comment
on why another plausible simple approach, analogous to that used in the proof of
negative association, is not applicable.

14



Proposition 34 The variables Bi,j , i ∈ [n], j ∈ [m] satisfy the negative regression
condition (−R).

As with negative association, it is true that the union of independent families
of random variables satisfies (−R) if each family satisfies it separately. Hence it
suffices, as in the negative association case, to prove

Lemma 35 (Zero One Lemma for (−R)) Let X1, . . . , Xn be 0/1 variables with∑
iXi = 1. Then they satisfy (−R).

Proof. Let I, J ⊆ [n] be disjoint subsets and assume, without loss of generality
that n ∈ J , It suffices to prove that

E[f(Xi, i ∈ I) | Xj = 0, j ∈ J ] ≥ E[f(Xi, i ∈ I) | Xn = 1, Xj = 0, n 6= j ∈ J ].

Let f0 := f(0, . . . , 0) and for i ∈ I, denote fi := f(0, . . . , 1, . . . , 0) (with the 1 in
the ith place). Note that f0 ≤ fi for each i ∈ I. Then, for some probabilities
p0, pi, i ∈ I summing to 1,

E[f(Xi, i ∈ I) | Xj = 0, j ∈ J ] =
∑
i

fipi

≥
∑
i

f0pi

= f0

= E[f(Xi, i ∈ I) | Xn = 1, Xj = 0, n 6= j ∈ J ].

Now, observing that for each i ∈ [n], Bi =
∑
k∈[m] Bi,k, the (−R) property

would hold for B1, . . . , Bn if we could, in analogy to the negative association prop-
erty (−A), transfer the property to disjoint sums of variables. Unfortunately, this is
not true in general. There is a simple counter–example to the following plausible–
sounding conjectures, see [11].

Conjecture 36 • Sums of disjoint subsets of variables satisfying (−R) also
satisfy (−R).

• Let X1, . . . , Xn satisfy (−R) and suppose Y1, . . . , Yn are a set of 0/1 variables
independent of the X variables, such that

∑
i Yi = 1. Then X1 +Y1, . . . , Xn+

Yn also satisfy (−R).

Instead, we shall prove the following statement about a “mixed” negative re-
gression condition involving both the indicator variables Bi,j and the occupancy
numbers B1, . . . , Bn.

Theorem 37 Let I and J be disjoint subsets of [n] and let f be a non–decreasing
function. Then

E[f(Bi,k, i ∈ I, k ∈ [m]) | Bj = tj , j ∈ J ],

is non–increasing in each tj, j ∈ J .
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Remark 38 Note that the variables Bi,k, i ∈ I, k ∈ [m] are disjoint from the indi-
cator variables involved in the condition on the right. By considering f(

∑
kBi,k, i ∈

I), we get Theorem 31, the (−R) condition for the occupancy numbers B1, . . . , Bn
as an immediate corollary.

We shall now embark on the proof of Theorem 37. For a start, let us introduce
some notation.

Notation 39 Let Si ⊆ [m] denote the set of balls in bin i for i ∈ [n] Thus
⋃
i Si =

[m] and |Si| = Bi for i ∈ [n]. For a subset J ⊆ [n], we use the abbreviations
SJ := (Sj , j ∈ J) and S(J) :=

⋃
j∈J Sj . As usual, let I and J be disjoint subsets

of [n], and let f(Bi,k , i ∈ I, k ∈ [m]) be a an arbitrary non–decreasing function.

Recall, that in the case of identical balls, conditioning on the event BJ = tJ
was equivalent to an unconditional experiment involving the remaining balls and
bins. The analogue of this assertion in the general case is stated next. Let us use
the subscripts in EI,K etc. to denote the statistics of the balls and bins experiment
restricted to the subset K of balls distributed independently into the subset I of
bins with probabilities proportional to the original ones. That is, for I ⊆ [n], and
K ⊆ [m],

PrI,K[Bi,k = 1] =

{
pi,k

1−
∑

j 6∈I
pj,k

, if i ∈ I, k ∈ K;

0, otherwise.

Proposition 40 Let K ⊆ [m]. Then for any event EI involving the variables
Bi,k, i ∈ I, k ∈ [m],

Pr[EI | S(J) = K] = PrJ,K [EI].

That is, conditioning on the event S(J) = K is equivalent to an unconditional balls
and bins experiment involving the subset K of balls distributed in the subset J of
bins with probabilities that are proportional to the original ones.

Proof. First, we compute Pr[Bi,k∗ = 1 | S(J) = K] for k∗ 6∈ K and i ∈ I. Let
K′ := [m] \ (K ∪ {k∗}). Then,

Pr[Bi,k∗ = 1 | S(J) = K] =
Pr[Bi,k∗ = 1, S(J) = K]

Pr[S(J) = K]

=
Pr[k∗ ∈ Si, (k ∈ S(J), k ∈ K), (k 6∈ S(J), k ∈ K′)]

Pr[(k ∈ S(J), k ∈ K), (k 6∈ S(J), k 6∈ K)]

=
Pr[k∗ ∈ Si]

Pr[k∗ 6∈ S(J)]
, by independence of the balls (2)

=
pi,k∗

1−
∑
j∈J pj,k∗

Thus each remaining ball is thrown into the remaining bins with probabilities pro-
portional to the original ones.
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Next we verify that the remaing balls are also thrown independently of each
other even under the conditioning S(J) = K. It suffices to show for a set of
pairs P := {(i, k) | i ∈ I, k 6∈ K}, that Pr[Bi,k = 1, (i, k) ∈ P | S(J) = K] =∏

(i,k)∈P Pr[Bi,k = 1 | S(J) = K]. We have by a computation similar to the one
above,

Pr[Bi,k = 1, (i, k) ∈ P | S(J) = K] =
∏

(i,k)∈P

Pr[k ∈ Si]
Pr[k 6∈ S(J)]

=
∏

(i,k)∈P
Pr[Bi,k = 1 | S(J) = K], using (2).

Corollary 41 Let

f̂(K) := E[f(Bi,k, i ∈ I, k ∈ [m]) | S(J) = K].

Then f is non–increasing in K.

Proof. By Proposition 40, we have

f̂(K) = EJ,K [f(Bi,k, i ∈ I, k ∈ [m])],

and the result follows by a trivial coupling, since PrJ,K[Bi,k = 1] = 0 for k ∈ K
and i ∈ I while PrJ,K [Bi,k = 1] = PrJ,K′ [Bi,k = 1] for any i ∈ I, any K,K′ ⊆ [m]
and k 6∈ K,K′.

Remark 42 Corollary 41 does not follow readily from Proposition 34. The ad-
ditional information from Proposition 40 relating a conditional experiment to an
unconditional one is used in an essential manner.

Now we are ready to prove Theorem 37.
Proof. (of Theorem 37): We need to show that for disjoint index sets I, J ⊂ [n],
any non–decreasing f , and any fixed integers tj ≤ t′j , j ∈ J ,

E[f(Bi,k, i ∈ I, k ∈ [m]) | (Bj = tj, j ∈ J)] ≥ E[f(Bi,k, i ∈ I, k ∈ [m]) | (Bj = t′j, j ∈ J)],

that is, with the abbreviation f(BI ) := f(Bi,k, i ∈ I, k ∈ [m]), and abbreviations
in Notation 39,

E[f(BI ) | BJ = tJ ] ≥ E[f(BI ) | BJ = t′J ].

By partitioning the probability space, we can write, for K ranging over all
subsets of [m] of size

∑
j∈J tj ,

E[f(BI ) | BJ = tJ ] =
∑
K

E[f(BI ) | S(J) = K]Pr[S(J) = K | BJ = tJ ]
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=
∑
K f̂(K)Pr[S(J) = K]

Pr[BJ = tJ ]

=
∑
K f̂(K)µ(K)∑

K µ(K)
(3)

where we put f̂(K) := E[f(BI ) | SJ = K], and

µ(K) := Pr[S(J) = K].

Similarly, with K′ ranging over all subsets of [m] of sizes
∑
j∈J t

′
j,

E[f(BI ) | BJ = t′J ] =
∑
K′ f̂(K′)µ(K′)∑

K′ µ(K′)
. (4)

Interrupting for a check, let us return to the case where all the balls are identical
(the bins may not be identical). In this case, Pr[SJ = K | BJ = tJ ], and f̂(K)
depend only on |K|. Let us denote these quantities by pk and fk respectively.
Then, by Lemma 41 fk ≥ fk′ if k ≤ k′ and the inequality follows immediately by
comparing ( 3) and ( 4).

Let’s get back to the general case.Observe that for K ⊆ [m],

µ(K) =
∏
k∈K

(
∑
j∈J

pj,k)
∏

k∈[m]\K
(1−

∑
i 6∈J

pi,k).

By Lemma 41, for K ⊆ K′, f̂(K) ≥ f̂(K′). Thus we conclude the proof by
comparing ( 3) and ( 4) using the following Expectation Levels Lemma applied to
−f (note that f is non–increasing iff −f is non–decreasing).

Lemma 43 (Expectation Levels Lemma) Let µ be a product measure on the
lattice of all subsets of [m] defined by

µ(K) :=
∏
k∈K

pk
∏
k 6∈K

qk,

for arbitrary reals pk, qk, k ∈ [m]. Let f be a non–decreasing function on the lattice.
Then, ∑

|K|=t f(K)µ(K)∑
|K|=t µ(K)

,

is non–decreasing in t.

Proof. It suffices to show, for any a ≥ 0 that∑
|K|=a f(K)µ(K)∑
|K|=a µ(K)

≤
∑
|K′|=a+1 f(K′)µ(K′)∑

|K′|=a µ(K′)
.
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By cross–multiplying, let us rewrite this as:∑
K,K′

f(K)µ(K)µ(K′) ≤
∑
K,K′

f(K′)µ(K)µ(K′)

Here K ranges over all subsets of size a and K′ over all subsets of size a + 1.
Think of (pk, qk, k ∈ [m]) as independent indeterminates, and hence regard this an
inequality over the polynomial ring N [pk, qk, k ∈ [m]]. Then, of course, it is natural
to compare the two sides term–wise. Pick a fixed monomial t, and let

St := {(K,K′) | µ(K)µ(K′) = t},

be the set of pairs producing this monomial. Then, it suffices to prove that∑
(K,K′)∈St

f(K) ≤
∑

(K,K′)∈St

f(K′). (5)

Let us take a closer look at the structure of the set St. Let (K,K′) be a pair of
sets producing the monomial t. Note that for each i ∈ [m], the factor pαi q

β
i occurs

in t with exponent

• α = 2, β = 0, exactly if i is in both K and K′;

• α = 1 = β, exactly if i is in one of K or K′.

• α = 0, β = 2 exactly if i is in neither K nor K′.

Thus, the monomial t records exactly the multi–set Ut := K+K′. What other pairs
of sets could produce the monomial t? Exactly those that produce the same multiset
Ut as their multiset–union. Note that Ut is of size 2a+ 1 counting multiplicity. Let
It denote the intersection K ∩K′. Then St consists exactly of the pairs (K,K′)
with K ∩K′ = It and the remaining elements in Ut − (It + It) partitioned in all
possible ways into K and K′ with exactly one more element in K′. Let U ′t denote
the multi–set difference Ut − (It + It). Note that U ′t is a set of odd size. Note
also that each K can be paired with exactly one K′ and vice–versa to produce the
monomial t.

Thus (5) reduces to showing:∑
K⊆U ′t,|K|=a−|It|

f(K ∪ It) ≤
∑

K′⊆U ′t,|K′|=a−|It|+1

f(K′ ∪ It) (6)

This follows from the following lemma with S := U ′t and g(K) := f(K ∪ It).

Lemma 44 Let S be a set of size 2a+ 1 for a non–negative integer a let g be any
real–valued function on sets such that K ⊆ K′ implies g(K) ≤ g(K′). Then,∑

K⊆S,|K|=a
g(K) ≤

∑
K′⊆S,|K′|=a+1

g(K′).
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Proof. Consider the bipartite graph G := (A,B,E) where A := {K ⊆ S | |K| = a}
and B := {K′ ⊆ S | |K′| = a + 1} with an edge from K to K′ exactly if K ⊆ K′.
This is a regular graph of degree a+ 1, hence by Hall’s Marriage Theorem, there is
a matching saturating A. For any K and the matching K′, we have g(K) ≤ g(K′).
Hence the result.

4 Applications

4.1 Occupancy Problems in Statistical Physics

In Statistical Physics, one has an ensemble of m particles, distributed in a phase
space which is divided into n regions or cells, in such a way that “all configurations
are equally likely”. In order to calculate various random quantities of interest, it is
necessary to carefully specify in what sense one intends this last qualification. There
are two key dichotomies: whether the particles are regarded as indistinguishable
and whether multiple occupancy of a cell is permitted. There are three well known
models in use in Statistical Physics:

1. [Maxwell–Boltzmann Model] The particles are distinguishable and mul-
tiple occupancy is allowed.

2. [Fermi–Dirac Model] The particles are indistinguishable and multiple oc-
cupancy is forbidden (owing to the so called exclusion principle).

3. [Bose–Einstein Model] The particles are indistinguishable but multiple
occupancy is allowed.

Although the Maxwell–Boltzmann model appears at first to be the most natural
one, empirical and theoretical studies have showed that various classes of elementary
particles actually obey one of the other two distributions.

The joint distribution of the occupancy numbers B1, · · · , Bn is well known under
all three distributions:

Proposition 45 For any non–negative integers m1, · · · , mn such that m1 + · · ·+
mn = m, we have,

1. For the Maxwell–Boltzmann statistics,

Pr[B1 = m1, · · · , Bn = mn] =
m!

m1! · · ·mn!
n−m.

This is just the multinomial distribution with equal cell probabilities.

2. For the Fermi–Dirac statistics, for mi = 0, 1, i ∈ [n],

Pr[B1 = m1, · · · , Bn = mn] =
(
n

m

)−1

.
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3. For the Bose–Einstein statistics,

Pr[B1 = m1, · · · , Bn = mn] =
(
n +m− 1

m

)−1

.

In principle, one can deduce from this joint distribution, all other quantities and
relationships of interest. But establishing even such innocuous–looking correlation
inequalities like

1. Pr[B1 ≥ 3 | B2 ≥ 5] ≤ Pr[B1 ≥ 3],

2. Pr[B1 ≥ 3 | B2 ≥ 5, B3 ≥ 4] ≤ Pr[B1 ≥ 3 | B2 ≥ 5] ≤ Pr[B1 ≥ 3],

3. Pr[B1 ≥ 3 | B2 ≥ 5, B3 ≥ 4] ≤ Pr[B1 ≥ 3 | B2 ≥ 4, B3 ≥ 3],

4. Pr[B1 + B2 ≥ 5 | B3 +B6 +B17 ≥ 6] ≤ Pr[B1 + B2 ≥ 5],

directly by calculation appears to be a rather formidable matter. Of course, for the
Maxwell–Boltzmann and Bose–Einstein statistics, these are easy deductions from
our results showing that the ocupancy numbers satisfy (−A) as well as (−R). Some
interesting correlation inequalities on the sums of variables, as in the last inequality
above, can also be deduced directly via the full FKG inequality, see [10].

It is shown in [10] that the occupancy numbers in the Fremi–Dirac statistics
also satisfy both the dependence conditions (−A) and (−R); in this case, curiously,
it is much easier to show that (−R) holds than (−A).

4.2 Occupancy and Distributed Edge Coloring

In their analysis of an edge coloring algorithm, Panconesi and Srinivasan [33, 32]
have to analyze the balls and bins experiment. Specifically, they define indicator
variables Ei := 1 iff the ith bin is empty, and seek to stochastically bound the sum
E1 +· · ·+En. The variables Ei are not independent, preventing a direct application
of the CH–bounds. The authors overcome this problem by defining a certain notion
of self–weakening or 1–correlated variables and showing that the CH–bound extends
to sums of such variables. This extension is useful but somewhat ad hoc. Here we
can see clearly that it is no co-incidence that CH-bounds can be applied in their
case.

The same indicator variables for empty bins also underlie results related to the
Satisfiability Threshold in [23].

The analysis in both these papers can be streamlined and simplified. The key
idea is that the variables Ei satisfy in fact the much stronger properties of negative
dependence, negative association and negative regression:

Theorem 46 The empty–bins indicator variables E1, . . . , En satisfy both (−A) as
well as (−R).
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Proof. We note that Ei = [Bi ≤ 0], for i ∈ [n] are non–increasing functions of
disjoint variables. Applying Proposiiton 7(2), we conclude that (E1, · · · , En) also
satisfy (−A).

For (−R). we note that Ei = 0 iff Bi > 0 and Ei = 1 iff Bi = 0 for each i ∈ [n].
Then the (−R) property for the occupancy numbers transfers to E1, . . . , En via
Corollary 25.

One can now apply the CH–bound to get tail estimates for Pr[E1+· · ·+En > s].
Note that in this proof, we avoid any expansion and manipulations of Taylor series,
as in [32, 33]. The Occupancy bounds Theorems 2 and 3 in [23] follow directly as
well.

4.3 Load Balancing

Consider a scenario in which one has to allocate various jobs to available servers,
for example, programs requesting data from disc drives, or user queries to a database
system. It is desirable to perform the allocation dynamically in such a way that
the load is relatively balanced across the servers. Dynamic load balancing is a well-
studied problem and several strategies for load balancing have been proposed and
analyzed. In a recent work, Lauer describes a new dynamic load balancing strategy
[27]. The analysis of this algorithm requires establishing correlation inequalities of
the type mentioned in section § 4.1.

In [1], several parallel greedy strategies are presented for load–balancing. In the
analysis of these algorithms, the authors use a Poisson approximation to stochas-
tically majorise the variables of interest by a set of independent Poisson variables.
The Poisson approximation is simple but incurs a loss by a factor

√
2πem from the

probability for independent variables. By the observation that the events in ques-
tion are negatively associated, we can directly employ the Chernoff bounds getting
the same bounds as if the variables were in fact independent.

4.4 Correlation Inequalities of Farr and McDiarmid

Given a graph with vertex set V and a positive integer k, consider a random
k–coloring of V where each vertex independently chooses a color from the set [k].
For each i ∈ [k], let Si be the random set of vertices colored i. For the special
case when the colors are chosen uniformly from [k], Farr [15] gives the following
correlation inequality:

Pr[
∧
i∈[k]

Stable(Si)] ≤
∏
i∈[k]

Pr[Stable(Si)],

where Stable(S) denotes that S is a stable or independent set in the graph. That
is, the left hand side in the above inequality is the probability that the random
coloring is proper for the graph. The above inequality immediately gives a bound
on the chromatic polynomial of the graph in terms of the stability polynomial, see
[15].
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The inequality is attractive and intuitively plausible though by no means obvi-
ous or easy to prove by direct computation. In this connection, Farr states in the
introduction [15, p. 15]:

I found this surprisingly hard to prove, and indeed the proof given uses
the considerable power of the Ahslwede–Daykin Theorem.

Farr’s proof for the case of uniformly chosen colours, and using the Ahlswede–
Daykin Four Functions Theorem [3] occupies pages 17–19 of his paper and can
be contrasted with the totally elementary and “calculation–free” 5 line proof of a
stronger inequalilty that we give next.

Farr’s correlation inequality is valid even in the case where the colours are not
necessarily chosen uniformly from [k], and can be deduced almost effortlessly from
Proposition 11. Let bin i correspond to colour i for i ∈ [k] and let ball v correspond
to vertex v for v ∈ V . Since each vertex chooses its colour independently of the
others, the balls v, v ∈ V are thrown independently into the bins i, i ∈ [k]. Further,
the indicator Bi,v = 1 iff vertex v is coloured i. Now Stable(Si) is a non–increasing
function of the variables Bi,v, v ∈ V for each i ∈ [k], and the inequality follows from
Proposition 11 and Proposition 7.

McDiarmid [29] gives a general lemma (which was originally proved via his
General Clutter Percolation Theorem) and a proof via Harris’ inequality [20]. The
correlation inequality of Farr is a direct consequence. In McDiarmid’s general
lemma, there is a finite set I, a finite set V and a collection of independent random
variables Xv, v ∈ V taking values in a set containing I. This is easily recognized as
a balls and bins experiment where balls bv, v ∈ V are tossed independently (with
possibly unequal probabilities) into a number of bins and we focus on bins Bi, i ∈ I.
Notice that the variables Xv are related to our indicator variables Bi,k as follows:
Xv = i iff Bi,v = 1. All the applications of McDiarmid’s general lemma can now
be viewed in a much more transparent manner in this framework.

4.5 Simulation of Parallel Computers

Dietzfelbinger and Meyer auf der Heide [8] present several algorithms for the
simulation of parallel random access machines (PRAMS) on more realistic models
called the distributed memory machines. In the analysis of the algorithms for this
simulation, one encounters random variables which are not independent but related
in exactly the manner of the balls and bins experiment. For the purposes of upper
bounds on certain probabilities our results show that these variables may be treated
as if they were independent. Thus their combinatorial lemma A.2 in the appendix
can be obtained directly from our results. We thank Martin Dietzfelbinger for
bringing their work to our attention.
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5 Unresolved Issues

• We conjecture that negative regression implies negative association. This
would be an interesting result in itself. In addition, it could be a very useful
device in establishing negative association. In [11], we give a simple counter–
example to show that the two notions of negative dependence are not the
same.

• Shepp[35, 36] conjectures that there must be a way to apply the FKG inequal-
ity systematically in many different situations. Can one apply it directly to
deduce also the results on association and regression? We also believe there
is a strong connection between the notion of negative association and the
notion of “disjoint occurences of events” in Percolation Theory [20], in par-
ticular the so–called BK–Inequality and its relatives. We have hinted at some
of these relationships in § 2.3.

• Another, rather ambitious, task would be to resolve the following kind of
mixed conditions. We know that Pr[B1 ≥ t1 | B2 ≥ t2] ≤ Pr[B1 ≥ t1]
and also that Pr[B1 ≥ t1 | B3 ≤ t3] ≥ Pr[B1 ≥ t1]. What can one say
about Pr[B1 ≥ t1 | B2 ≥ t2, B3 ≤ t3]? What one would really want is
a calculus of correlations that enables one, in a general way, under certain
circumstances, to combine several such correlations into one. That is, given
Pr[A | B] ≤ Pr[A], and Pr[A | C] ≥ Pr[A], under which circumstances
can one also obtain Pr[A | B,C] ≤ Pr[A]? In this context the work of
Shepp[35, 36] and Winkler [41] might be relevant.
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