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Rotations of Periodic Strings and Short
Superstrings

Dany Breslauer∗ Tao Jiang† Zhigen Jiang‡

June 10, 1996

Abstract
This paper presents two simple approximation algorithms for the short-

est superstring problem, with approximation ratios 2 2
3 (≈ 2.67) and 2 25

42
(≈ 2.596), improving the best previously published 23

4 approximation.
The framework of our improved algorithms is similar to that of previous
algorithms in the sense that they construct a superstring by computing
some optimal cycle covers on the distance graph of the given strings, and
then break and merge the cycles to finally obtain a Hamiltonian path, but
we make use of new bounds on the overlap between two strings. We prove
that for each periodic semi-infinite string α = a1a2 · · · of period q, there
exists an integer k, such that for any (finite) string s of period p which is
inequivalent to α, the overlap between s and the rotation α[k] = akak+1 · · ·
is at most p+ 1

2q. Moreover, if p ≤ q, then the overlap between s and α[k]
is not larger than 2

3 (p+q). In the previous shortest superstring algorithms
p+q was used as the standard bound on overlap between two strings with
periods p and q.

1 Introduction

Let S = {s1, . . . , sm} be a set of strings over some alphabet Σ. A common
superstring, or simply superstring, of S is a string s such that each si in S is
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a substring (i.e. a consecutive block) of s. The shortest superstring problem
is to find a superstring of the smallest possible length for any given set of
strings S. The problem has applications in a wide range of areas including
data compression [11, 19] and DNA sequencing [14, 15, 18, 23]. For example,
in shotgun DNA sequencing, a long DNA molecule1 is first cleaved into short
overlapping fragments of roughly 500 bases. Each such short fragment is then
sequenced and a string over the set of nucleotides {A,C,G, T} is obtained.
From hundreds or thousands of these fragments, a biochemist tries to construct
a shortest superstring representing the sequence for the whole DNA molecule.

Since the problem is NP-hard [11] a lot of effort has been taken to find good
approximation algorithms with guaranteed performance. Blum et al. [4] showed
that the problem is MAX SNP-hard and thus does not have a polynomial time
approximation scheme unless P = NP. Tarhio and Ukkonen [20] and Turner
[22] gave several approximation algorithms for the shortest superstring prob-
lem and proved that their algorithms achieve 1

2 -approximation with respect to
the compression measure, or the total overlap between adjacent strings in a su-
perstring. This approximation ratio has been improved to 38

63 by Kosaraju et
al. [13]. Tarhio and Ukkonen conjectured that their GREEDY approximation
algorithm, which repeatedly merges pairs of strings with the maximum over-
lap until only one string is left, 2-approximates also the length of the shortest
superstring. Notice that superstrings have the minimum length if and only if
they induce the maximum total overlap. Such relation, however, does not hold
for approximations, and a good approximation for the length of the shortest
superstring is not necessarily a good approximation for the maximum overlap
in the superstring, and vice versa.

The first constant-approximation algorithm for the length of the shortest
superstring was given by Blum et al. [4], who discovered a 3-approximation
algorithm and proved that the GREEDY algorithm achieves 4-approximation.
Their algorithms and analysis rely on the close relation between the shortest
superstring problem, that was shown by Turner [22] to be reducible to the
traveling salesman problem, and the cycle cover problem. The same relation
was exploited in subsequent papers that continued to improve the approximation
ratio, by Teng and Yao [21] (≈ 2.89), Czumaj et al. [8] (≈ 2.83), Kosaraju et
al. [13] (≈ 2.79) and Armen and Stein [1, 2] (≈ 2.75). Armen and Stein [3]
have also recently obtained a 2 2

3 -approximation algorithm, independently of
our work2. A connection between the approximation ratio and the number of
examples needed to infer a string (or DNA sequence) from randomly drawn
examples in the PAC learning model is given in [15, 12]. This presents an
additional motivation for lowering the approximation ratio.

Here we continue this line of work, and further improve the approximation
ratio to 2 2

3 ≈ 2.67 and to 2 25
42 ≈ 2.596. The improved algorithms are similar

1It is about 1.8 megabases long in the Haemophilus influenzae Rd sequencing project [9].
2Our algorithms and analysis are conceptually and structurally much simpler.
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to the previous algorithms in the sense that they constructs a superstring by
computing some optimal cycle covers on the distance graph of the given input
strings, and then break and merge the cycles to finally obtain a Hamiltonian path
representing some superstring. The key to the improvement are new bounds on
the overlap between two strings. We prove that for each periodic semi-infinite
string α = a1a2 · · · of period q, there exists an integer k, such that for any
(finite) string s of period p which is inequivalent to α, the overlap between s
and the rotation α[k] = akak+1 · · · is at most p + 1

2q. Moreover, if p ≤ q, then
the overlap between s and α[k] is not larger than 2

3(p+ q). (The equivalence of
strings will be defined in Section 2.2.) These bounds are tight. Previously, the
sum of the periods was taken as the standard (tight) bound on overlap between
two strings.

The algorithms and their analysis are actually very simple. We have chosen
to describe both approximation algorithms since they use the bounds on the
overlap between strings in different ways that might give some insight into future
improvements.

We recall some basic definitions and facts in Section 2. The new overlap-
rotation bound is given is Section 3. Section 4 gives the generic shortest super-
string algorithm, and Sections 5-6 give the improved approximation algorithms
and their analysis.

2 Preliminaries

Let S = {s1, . . . , sm} be a set of strings. Without loss of generality, we assume
that the set S is “substring-free” in that no string si ∈ S is a substring of any
other sj ∈ S. Most of the definitions below follow [4].

For two strings s and t, let y be the longest string such that s = xy and
t = yz for some non-empty strings x and z. We call |y| the (amount of) overlap
between s and t, and denote it as ov(s, t). The notion can be easily extended
to the case where t is a semi-infinite string (but s has to be finite). The string
x is called the prefix of s with respect to t, and is denoted pref (s, t). Finally,
we call |pref (s, t)| = |x| the distance from s to t, and denote it as d(s, t).

Given a list of strings si1 , . . . , sir , we define the superstring s = 〈si1 , . . . , sir 〉
to be

pref (si1 , si2)pref (si2 , si3) · · · pref (sir−1 , sir)sir .

That is, s is the shortest string such that si1 , . . . , sir appear in order in s. It is
clear that each shortest superstring for S must be 〈si1 , . . . , sim〉 for some per-
mutation i1, . . . , im of {1, . . . , m}. The length of a shortest superstring of S
is denoted opt(S) and the total overlap between adjacent strings in the short-
est superstring of S is denoted maxov(S). Notice that opt(S) =

∑
si∈S |si| −

maxov(S).
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2.1 Distance graph and cycle covers

The concept of a distance graph is central to all existing approximation algo-
rithms for shortest superstrings. Let GS = (V, E, w) be a directed graph, where
the set of vertices V = {s1, . . . , sm}, the set of edges E = {(si, sj) | 1 ≤ i 6= j ≤
m}, and the weight function w is the distance function d(, ). GS is called the
distance graph of S. If we denote the cost of a minimum weight Hamiltonian
cycle on GS as TSP(GS), then obviously, for any si ∈ S,

TSP(GS) ≤ opt(S) ≤ TSP(GS) + |si|.

In other words, a minimum weight Hamiltonian cycle on GS would be a very
good approximation of a shortest superstring of S. Since TSP is NP-hard and
has no good approximation algorithms, we try to work with a relaxed version
of TSP, the cycle cover problem (also called the assignment problem) defined
below.

Given a directed weighted graph G, a cycle cover is a set of (simple) cycles
such that each vertex is contained in exactly one cycle. The weight of the cycle
cover is the total weight of its cycles. It is well-known that a minimum weight
cycle cover on any directed weighted graph G can be computed in O(n3) time
using the Hungarian algorithm [17].

Let CYC(GS) be the weight of a minimum weight cycle cover of GS . Then
we have CYC(GS) ≤ TSP(GS) ≤ opt(S). Unfortunately, there is no obvious
upper bound on opt(S) in terms of CYC(GS) in general. So we have to look at
the particular structures and properties of strings.

2.2 Periodicity of strings and semi-infinite strings

A string x is a factor of a string s if s = xiy for some positive integer i and prefix
y of x (y may be empty). The factor of a non-empty string s, denoted factor(s),
is the shortest factor of s and the period of s is denoted period(s) = |factor(s)|.
A semi-infinite string s = a1a2 · · · is said to be periodic if s = xs for some
non-empty string x. The shortest such x is called the factor of s. Two (periodic
semi-infinite) strings s, t are equivalent if their factors are cyclic shifts of each
other, i.e. if there are strings x, y such that factor(s) = xy and factor(t) =
yx. Otherwise, they are inequivalent. For each string s, let si denotes the
concatenation of i s’s as well as the sequence of i consecutive s’s, s∞ denote
the semi-infinite string ss · · ·, and s∞ = factor(s)∞ denote the periodic semi-
infinite string that is equivalent to s and begins with s. Note that in general
s∞ 6= s∞. The next lemma is easy to prove.

Lemma 2.1 Suppose that string x is contained in string y and y is contained
in string z. If x and z are equivalent, then y is also equivalent to x and z.

The following facts connecting a cycle in GS and the periodicity of the strings
obtained by breaking the cycle are essentially given in [4]. We rephrase and state
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them here as lemmas without a proof. Let c = si1 , . . . , sir , si1 be a cycle in GS .
Without loss of generality, assume that c has the minimum weight among all
cycles in GS containing si1 , . . . , sir . Denote the weight of c as w(c). Let’s call
〈si1 , . . . , sir〉 the string obtained by breaking the cycle c at sir .

Lemma 2.2 The string 〈si1 , . . . , sir〉 is a substring of factor(〈si1 , . . . , sir〉)si1 =
〈si1 , . . . , sir , si1〉.

Lemma 2.3

factor(〈si1 , . . . , sir〉) = pref (si1 , si2) · · ·pref (sir−1 , sir )pref (sir , si1).

Three corollaries follow immediately:

Corollary 2.4

w(c) = d(si1 , si2) + · · ·+ d(sir−1 , sir) + d(sir , si1) = period(〈si1 , · · · , sir〉).

Corollary 2.5 The strings 〈si1 , . . . , sir〉, . . . , 〈sir , si1 , . . . , sir−1〉 are all equiva-
lent.

Corollary 2.6 factor(〈si1 , . . . , sir , si1〉) = factor(〈si1 , . . . , sir〉). That is, the
string 〈si1 , . . . , sir , si1〉 is equivalent to 〈si1 , . . . , sir〉.

Note that, in general si1 , . . . , sir are not mutually equivalent, nor are si1 and
〈si1 , . . . , sir〉.

Lemma 2.7 Let c′ = sj1 , . . . , sjl, sj1 be another cycle. If 〈si1 , . . . , sir〉 is equiva-
lent to 〈sj1 , . . . , sjl〉, then there exists a third cycle c̃ with weight w(c) containing
all vertices in c and c′.

3 The overlap-rotation lemma

Lothaire’s [16] book provides an excellent overview of combinatorial properties
of periodic strings. Given a string w, we say that w is unbordered if it has no
proper prefix that is also a suffix, i.e. ov(w,w) = 0 and factor(w) = w. Given a
non-trivial factorization w = uv, namely a partition of w with non-empty prefix
u and suffix v, the local factor of the factorization is defined as the shortest non-
empty string that is consistent with both sides of the factorization. That is, the
shortest string that matches the prefix u aligned at its end and also matches the
suffix v aligned at its start. A non-trivial factorization w = uv is called a critical
factorization if its local factor is of the same length as period(w). See Figure 1
for an example. We are now ready to state the so called Critical Factorization
Theorem.
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a | b a a a b a
b a b a

(a)

a b | a a a b a
a a a b a a a b

(b)

a b a | a a b a
a a

(c)

Figure 1: The local factors of the first three non-trivial factorizations of
‘abaaaba’. Note that in some cases the local factor can overflow to either
side; this happens when the local factor is longer than the factorization
prefix or suffix. The factorization (b) is a critical factorization.

Theorem 3.1 (Cesari and Vincent [5, 16]) Given any period(w) − 1 con-
secutive non-trivial factorizations of a string w, at least one is a critical factor-
ization.

The notion of a critical factorization and Critical Factorization Theorem
applies both to finite and infinite strings. The following lemma will be useful.

Lemma 3.2 Let w be an unbordered string with the critical factorization w =
uv. Then,

1. the rotation w′ = vu of w is also unbordered; and

2. vu is a critical factorization of w′.

Proof: To see that w′ is unbordered, assume on the contrary that there is a
string x that is a proper prefix and suffix of w′. But then, x is consistent with
both sides of the critical factorization uv of w, contradicting the definition.

To prove that w′ = vu is a critical factorization, assume on the contrary
that there is a string x that is consistent with both sides of the factorization vu
and that |x| < |w|. Clearly, since w = uv is unbordered, |x| > |v| or |x| > |u|.
Assume without loss of generality that |v| ≤ |u| and therefore, |v| < |x|. Let
x = bv. If |x| ≤ |u|, then letting u = xu′ = bvu′, we get contradiction since vu′

is consistent with both sides of the critical factorization uv of w. If |x| > |u|,
then observing that |b| < |u| and letting u = bv′, where v′ is a prefix of v, we get
a contradiction since v′ is consistent with both sides of the critical factorization
uv of w.

We shall now prove the overlap-rotation lemma, which is the key to the
improved approximation bounds. Given a semi-infinite string α = a1a2 · · ·, we
denote the rotation α[k] = akak+1 · · ·.

Lemma 3.3 Let α be a periodic semi-infinite string. There exists an integer k,
such that for any (finite) string s that is inequivalent to α,

ov(s, α[k]) < period(s) +
1
2

period(α).
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In addition, if period(s) ≤ period(α), then

ov(s, α[k]) <
2
3

(period(s) + period(α)).

Proof: We first show that there exists a suffix α′ of α, such that the leftmost
critical factorization uβ of α′ = uβ has the property that |u| ≤ 1

2period(α). We
then prove that such a suffix α′ satisfies the overlap requirement.

Let xα′ be an arbitrary critical factorization of α = xα′ and let w =
factor(α′). Then it follows that w is unbordered, similarly to the first part
of Lemma 3.2. Let uv be a critical factorization of w = uv. If |u| ≤ 1

2period(α),
then α′ = (uv)∞ is the desired rotation, and otherwise, |v| ≤ 1

2 period(α) and
by Lemma 3.2, the rotation (vu)∞ satisfies the requirements.

If period(s) = period(α), then for any integer k ≥ 1, the overlap ov(s, α[k]) <
period(s). Otherwise, recalling that α′ = uβ is a critical factorization and
|u| ≤ 1

2period(α), we claim that

ov(s, α′) < period(s) + |u| ≤ period(s) +
1
2

period(α).

To see this, assume on the contrary that ov(s, α′) ≥ period(s) + |u|. But then,
there is a string x of length period(s) that is consistent with both sides of
the critical factorization uβ. If period(s) < period(α), then this immediately
contradicts the fact that uβ is a critical factorization. If period(s) > period(α),
then x has also a factor of length period(α), and therefore, x = yhz, for some
y such that |y| = period(α) and z proper prefix of y. If |z| ≥ 1, then we obtain
a contradiction since z is consistent with both sides of the critical factorization
uβ, and otherwise, if |z| = 0, then we contradict the fact the s and α were
inequivalent.

If period(s) ≤ period(α), then since factor(α′) is unbordered, we have that
ov(s, α′) < period(α). Putting the two inequalities together, we have

ov(s, α′) < min{period(s) +
1
2

period(α), period(α)} ≤ 2
3

(period(s) + period(α)).

The proof above is constructive and requires two computations of critical
factorizations, which can be done in time that is linear in period(α) as shown
by Crochemore and Perrin [6, 7]. From now on, let

−→
α denote a rotation of α

satisfying Lemma 3.3, for any periodic semi-infinite string α. The bound in the
last lemma is roughly tight because for any rotation of the semi-infinite string
(0n10n+11)∞, there exists a string with period at most n + 2 which overlaps
with (0n10n+11)∞ by at least 2n+ 2.

4 The generic approximation algorithm

Our algorithms are only slightly different from the ones in [1, 2, 3, 4, 8, 13, 21].
We first outline the general approach and then fill in the details of our new

7



1. Construct the distance graph GS for set S.
2. Find a minimum weight cycle cover C on the graph GS.
3. For each cycle c = si1 , . . . , sir , si1 ∈ C, choose a string tc, such that

for some j
(i) tc contains 〈sij+1 , . . . , sir , si1 , . . . , sij〉, and
(ii) tc is contained in 〈sij , . . . , sir , si1 , . . . , sij−1 , sij〉.

4. Let T be the set of all strings chosen above and construct the distance
graph GT for T .

5. Find a minimum weight cycle cover CC on GT .
6. Break each cycle of CC arbitrarily to obtain a superstring of the

elements in the cycle.
7. Concatenate the strings found at Step 6 arbitrarily to produce a

superstring s̃ of S.

Figure 2: The generic shortest superstring approximation algorithm.

constructions and analysis.
The main steps of the generic shortest superstring algorithm are shown in

Figure 2. (A close variant of the generic algorithm has appeared in [1, 2].) A
key difference between the above algorithm and all the previous algorithms is
Step 3. The previous algorithms all choose one of the strings contained in the
cycle c, whereas here we look for a superstring of the strings in c that is not too
long. The string chosen does not even have to be one of the strings obtained by
breaking c.

As a warm-up, let’s show that this generic algorithm has approximation ratio
3. The following lemma is straightforward and is given in [4, 21]. Again, note
that

〈sij , . . . , sir , si1 , . . . , sij−1 , sij〉 = factor(〈sij , . . . , sir , si1 , . . . , sij−1〉)sij .

Lemma 4.1 opt(T ) ≤ opt(S) + CYC(GS) ≤ 2opt(S).

Hence, we have CYC(GT ) ≤ opt(T ) ≤ 2opt(S). We now need a lemma
which gives an upper bound on the possible overlap between two inequivalent
strings. Different versions of the lemma in terms of discrete periodic functions
or strings from distinct cycles in a minimum weight cycle cover can be found
in [4, 10].

Lemma 4.2 For any inequivalent strings s and t, ov(s, t) ≤ period(s)+period(t).

The strings 〈sij+1 , . . . , sir , si1 , . . . , sij〉 and 〈sij , . . . , sir , si1 , . . . , sij−1 , sij 〉 are
equivalent by Corollary 2.6, and thus, it follows from Lemma 2.1 and Corol-
lary 2.5 that tc is equivalent to 〈si1 , . . . , sir〉. Because C has the minimum
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weight, Lemma 2.7 further implies that the strings in set T are mutually in-
equivalent. Hence Lemma 4.2 applies to the strings in T . Let OV denote the
total overlap represented by the edges broken in Step 6. Then OV is at most
the sum of the periods of the strings in T . By Corollary 2.4,

OV ≤
∑
c∈C

w(c) = CYC(GS).

Putting everything together, we can bound the length of the superstring s̃ as

|s̃| = CYC(GT ) +OV ≤ CYC(GT ) + CYC(GS) ≤ 2opt(S) + opt(S) ≤ 3opt(S).

5 The 22
3-approximation algorithm

Many researchers have tried to improve the performance of the generic algorithm
or its variants by polishing Steps 5 - 7. Teng and Yao [21], Czumaj et al. [8],
and Armen and Stein [1, 2] treat the small cycles (i.e. cycles with two or three
vertices) in CC with special care. Teng and Yao [21] and Czumaj et al. [8] do
so by finding a short path across the small cycles and Armen and Stein [1, 2]
by identifying strings that are not much longer than their factors (called short
periodic strings in their paper) as the bottleneck, and trying to avoid them in
Step 3. Kosaraju et al. [13] find a Hamiltonian path with large overlap instead
of CC in Steps 5-7.

Our algorithm is more similar to Armen and Stein’s in the sense that we
also choose the strings in Step 3 very carefully before going into the next round
of cycle cover computation. (But we do not pay special attention to the small
cycles.) The new idea is to choose strings which are guaranteed not to overlap
with each other by too much. This will imply a reduced OV .

We now show how to choose the string tc in Step 3 of the generic algorithm
so that it satisfies the conditions (i) and (ii) and it has the correct rotation as
prescribed by Lemma 3.3.

Lemma 5.1 For any cycle c = si1 , . . . , sir , si1 ∈ C, there exists a string t such
that for some j,

1. t contains the string 〈sij+1 , . . . , sir , si1 , . . . , sij〉.

2. t is contained in the string 〈sij , . . . , sir , si1 , . . . , sij−1 , sij〉.

3. t∞ =
−−−−−−−−−−→
〈si1 , . . . , sir〉∞.

Proof: Order the strings 〈si1 , . . . , sir〉, . . . , 〈sir , si1 , . . . , sir−1〉 according to their

first appearances in
−−−−−−−−−−→
〈si1 , . . . , sir〉∞. The ordering is unique. Suppose that

〈sij+1 , . . . , sir , si1 , . . . , sij〉 comes first in this ordering and let t be the prefix of

9



1. Construct the distance graph GS for set S.
2. Find a minimum weight cycle cover C on the graph GS.
3. For each cycle c ∈ C, choose a string tc as in Lemma 5.1.
4. Let T be the set of all strings chosen above and construct the distance

graph GT .
5. Find a minimum weight cycle cover CC on GT .
6. For each cycle of CC, break the cycle by deleting an edge that goes

from a string to a string of equal or larger period, to obtain a
superstring of the elements in the cycle.

7. Concatenate the strings arbitrarily to produce a superstring s̃ of S.

Figure 3: The 2 2
3 ≈ 2.67-approximation algorithm.

−−−−−−−−−−→
〈si1 , . . . , sir〉∞ that ends at 〈sij+1 , . . . , sir , si1 , . . . , sij〉 (inclusive). Then t is con-
tained in 〈sij , . . . , sir , si1 , . . . , sij−1 , sij〉. Otherwise, 〈sij , . . . , sir , si1 , . . . , sij−1〉

must appear before 〈sij+1 , . . . , sir , si1 , . . . , sij 〉 in
−−−−−−−−−−→
〈si1 , . . . , sir 〉∞, which is a con-

tradiction to the choice of 〈sij+1 , . . . , sir , si1 , . . . , sij 〉.
The string t chosen above will be denoted as tc. We have shown how each

tc can be found in polynomial time (in fact, in linear time). We now polish the
generic algorithm in Figure 3.

Note that we do not treat the small cycles of CC specially like the other
algorithms do. Instead, we cut the cycles with a bit of care. Clearly, in every
cycle there must be an edge that goes from a string to a string of equal or larger
period.

Theorem 5.2 |s̃| ≤ 2 2
3opt(S) ≈ 2.67opt(S).

Proof: Again, let OV denote the total overlap lost by cutting the edges in
Step 6. Since the strings in T are mutually inequivalent, by Lemma 3.3 and
Corollary 2.4,

OV ≤ 2
3

∑
c∈C

period(tc) =
2
3

∑
c∈C

w(c) =
2
3

CYC(GS) ≤ 2
3

opt(S).

Hence, |s̃| = CYC(GT ) +OV ≤ 2 2
3opt(S).

6 The 225
42-approximation algorithm

The approach followed by the 2 25
42 -approximation algorithm described in this

section is very similar to that in [4, 13]. The main steps of the algorithm resemble
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the generic algorithm and are outlined in Figure 4. The cycle representatives tc
are chosen as in the previous section.

1. Construct the distance graph GS for set S.
2. Find a minimum weight cycle cover C on the graph GS .
3. For each cycle c = si1 , . . . , sir , si1 ∈ C, choose a string tc such that

for some j
(i) tc contains 〈sij+1 , . . . , sir , si1, . . . , sij〉, and
(ii) tc is contained in 〈sij , . . . , sir , si1 , . . . , sij−1 , sij 〉.

4. Let T be the set of all strings chosen above.
Construct a superstring of T using a good overlap approximation
algorithm.

Figure 4: The 2 25
42 ≈ 2.596-approximation algorithm.

The following lemma is a close variant of a lemma proved in [4] and used
in [13].

Lemma 6.1 Let apx(T ) be the length of the superstring of T produced by a δ
overlap approximation algorithm. Then,

apx(T ) ≤ opt(T ) + (1− δ)maxov(T ).

Proof: Recall that opt(T ) =
∑
ti∈T |ti|−maxov(T ). Since the overlap achieved

by the δ overlap approximation algorithm is at least δ maxov(T ), we get that

apx(T ) ≤
∑
ti∈T
|ti| − δ maxov(T ) = opt(T ) + (1− δ)maxov(T ).

We now need an upper bound on the possible overlap maxov(T ). The stan-
dard bound used in all previous papers was maxov(T ) ≤ 2CYC(GS), which
follows from Lemma 4.2. We show next that with our special choice of the cycle
representatives tc in Step 3, we can improve on this bound.

Lemma 6.2 maxov(T ) ≤ 3
2CYC(GS).

Proof: Consider the shortest superstring for T , and assume that it contains
t1, t2, . . ., in this order. Recall that the strings in T are mutually inequivalent.
Therefore, by Lemma 3.3,

ov(ti, ti+1) ≤ period(ti) +
1
2

period(ti+1).
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Summing over all strings ti ∈ T , we get by Corollary 2.4 that,

maxov(T ) =
|T |−1∑
i=1

ov(ti, ti+1) ≤ 3
2

∑
ti∈T

period(ti) =
3
2

CYC(GS).

Putting everything together, and using the 38
63 overlap approximation algo-

rithm of Kosaraju et al. [13] in Step 4, we establish the following theorem.

Theorem 6.3 The algorithm in Figure 4 is a 2 25
42 ≈ 2.596-approximation for

the shortest superstring problem.

Proof: By Lemmas 4.1, 6.1 and 6.2, the superstring produced by the algorithm
has length

apx(T ) ≤ opt(T )+(1− 38
63

)maxov(T ) ≤ 2opt(S)+
25
63

3
2

CYC(GS) ≤ 2
25
42

opt(S).

7 Concluding Remarks

We are still a long way from reaching the conjectured ratio 2 for approximating
shortest superstrings.

Acknowledgement. We thank Maxime Crochemore and Bill Smyth for
many helpful discussions on string combinatorics and for providing useful refer-
ences.

Maxime Crochemore suggested an alternative simple proof of Lemma 3.3
without using the Critical Factorization Theorem. His proof uses properties of
Lyndon words directly, in the spirit of the recent proofs of the Critical Factor-
ization Theorem in [6, 7], and exploiting the fact that the string in question α is
infinite (or long relatively to its period). In particular, fixing an arbitrary total
order on the different symbols of α, if (xy)∞ and (yx)∞ are the lexicographi-
cally minimal and maximal rotations of α, then it easily follows that x−(yx)∞

and y−(xy)∞ are critical factorizations and that both rotations begin with an
unbordered factor.
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