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Abstract
Partial-evaluation folklore has it that massaging one’s source pro-

grams can make them specialize better. In Jones, Gomard, and
Sestoft’s recent textbook, a whole chapter is dedicated to listing
such “binding-time improvements”: nonstandard use of continuation-
passing style, eta-expansion, and a popular transformation called “The
Trick”. We provide a unified view of these binding-time improvements,
from a typing perspective.

Just as a proper treatment of product values in partial evaluation
requires partially static values, a proper treatment of disjoint sums re-
quires moving static contexts across dynamic case expressions. This re-
quirement precisely accounts for the nonstandard use of continuation-
passing style encountered in partial evaluation. Eta-expansion thus
acts as a uniform binding-time coercion between values and contexts,
be they of function type, product type, or disjoint-sum type. For the
latter case, it enables “The Trick”.

In this article, we extend Gomard and Jones’s partial evaluator
for the λ-calculus, λ-Mix, with products and disjoint sums; we point
out how eta-expansion for (finite) disjoint sums enables The Trick; we
generalize our earlier work by identifying that eta-expansion can be
obtained in the binding-time analysis simply by adding two coercion
rules; and we specify and prove the correctness of our extension to
λ-Mix.
Keywords: Partial evaluation, binding-time analysis, program spe-
cialization, binding-time improvement, eta-expansion, static reduction.
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1 Introduction

Partial evaluation is a program-transformation technique for specializing
programs [11, 24]. As such, it contributes to solving the tension between pro-
gram generality (to ease portability and maintenance) and program speci-
ficity (to have them attuned to the situation at hand). Modern partial
evaluators come in two flavors: online and offline.

1.1 Online partial evaluation

An online partial evaluator specializes programs in an interpretive way
[35, 43]. For example, consider the treatment of conditional expressions.
An online partial-evaluation function maps a source program and an envi-
ronment to a disjoint sum: the result is either a static value or a residual
expression.

PE : Exp→ Env→ Val + Exp
PE [[(IF e1 e2 e3)]] ρ = case PE [[e1]] ρ of

inVal(v1)
⇒ if v1|Bool

then PE[[e2]] ρ
else PE [[e3]] ρ

[] inExp(e1)
⇒ inExp(inIF(e1,

case PE [[e2]] ρ of
inVal(v2)⇒ residualize(v2)

[] inExp(e2)⇒ e2
end,
case PE [[e3]] ρ of

inVal(v3)⇒ residualize(v3)
[] inExp(e3)⇒ e3
end))

end

At every step, the partial evaluator must perform a binding-time test, i.e.,
it must check whether each intermediate result is a static value or a residual
expression. In the case of a conditional expression, the test part is partially
evaluated first.

• If its result is a static value, and assuming this value is boolean, we
test it and select the corresponding branch accordingly.
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• If its result is a residual expression, we need to reconstruct the con-
ditional expression, deferring the test and the corresponding branch
selection until run time. To this end, both conditional branches are
(speculatively) processed. Again, the binding time of their result is
tested. If either result is a static value, it is residualized, i.e., turned
into a residual expression that will evaluate to this value at run time.
(In Lisp, residualizing a static value amounts to quoting it.) If either
result is a residual expression, it just fits in the residual conditional
expression.

1.2 Offline partial evaluation

An offline partial evaluator is divided into two stages:

1. a binding-time analysis determining which parts of the source program
are known (the “static” parts) and which parts may not be known (the
“dynamic” parts);

2. a program specializer reducing the static parts and reconstructing the
dynamic parts, thus producing the residual program.

The two stages must fit together such that (1) no static parts are left in the
residual program and (2) no static computation depends on the result of a
dynamic computation [22, 30, 31, 42].

Considering again conditional expressions as above, the net effect of
binding-time analysis is to factor out the binding-time checks. The static
values are classified as static, and the residual expressions are classified as
dynamic. As a rule, binding-time analyses lean toward safety in the sense
that in case of doubt a dynamic classification is safer than a static one.

1.3 This article

We consider offline partial evaluation, but our results also apply to online
partial evaluation.

In an offline partial evaluator, the precision of the binding-time analysis
determines the effectiveness of the program specializer [11, 24]. Informally,
the more parts of a source program are classified to be static by the binding-
time analysis, the more parts are processed away by the specializer.

Practical experience with partial evaluation shows that users need to
massage their source programs to make binding-time analysis classify more
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program parts as static, and thus to make specialization yield better re-
sults. Jones, Gomard, and Sestoft’s textbook [24, Chapter 12] documents
three such “binding-time improvements”: continuation-passing style, eta-
expansion, and “The Trick”.

1.4 Continuation-passing style

Evaluating some expressions reduces to evaluating some of their subexpres-
sions; for example, evaluating a let expression reduces to evaluating its body,
and evaluating a conditional expression reduces to evaluating one of the
conditional branches. Classifying such outer expressions as dynamic forces
these inner expressions to be dynamic as well, even when they are actually
static and the context of the outer expression, given a static value, could be
classified as static. For example, in terms such as

10 + (let x = D in 2 end)

and
10 + (caseD of inleft(t1)⇒ 1 [] inright(t2)⇒ 2 end)

if D is dynamic, both the let and the case expressions need to be recon-
structed. (In the presence of computational effects, e.g., divergence, un-
folding such a let expression statically is unsound, since it would prevent
the computational effect from occurring at run time.) Both the second ar-
guments of + are therefore dynamic, and thus both occurrences of + are
classified to be dynamic as well, even though at run time both expressions
reduce to a value that could have been computed at specialization time.
Against this backdrop, moving the context [10 + [·]] inside the let and the
case expressions makes it possible to classify + to be static and thus to com-
pute the addition at specialization time. This context move can be achieved
either by a source transformation such as the CPS transformation or by de-
limiting the “static” continuation of the specializer and relocating it inside
the reconstructed expression. Both of these continuation-based methods are
documented in the literature [5, 10, 24, 27]. Note that this change in the
specializer requires a corresponding change in the binding-time analysis.

1.5 Eta-expansion

Jones, Gomard, and Sestoft list eta-expansion as an effective binding-time
improvement [24]. In an earlier work [14], we showed that a source eta-
expansion serves as a binding-time coercion for static higher-order values
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in dynamic contexts and for dynamic values in potentially static contexts
expecting higher-order values (see Section 3.1). We proposed and proved
the correctness of a binding-time analysis that generates these binding-time
coercions at points of conflict, instead of taking the conservative solution of
dynamizing both values and contexts.

In the same article [14], we also pointed out that an analog problem
occurs for products and that the analog of eta-expansion for products serves
as a binding-time coercion for static product values in dynamic contexts and
for dynamic values in potentially static contexts expecting product values
(see Section 3.2). We did not, however, present the corresponding binding-
time analysis generating these binding-time coercions at points of conflict,
nor did we consider disjoint sums.

In summary, eta-redexes provide a syntactic representation of binding-
time coercions, either from static to dynamic, or from dynamic to static, at
higher type.

1.6 “The Trick”

In their partial-evaluation textbook [24], Jones, Gomard, and Sestoft doc-
ument a folklore binding-time improvement, referring to it as “The Trick”.
Until now, The Trick has not been formalized. Intuitively, it is used to pro-
cess dynamic choices of static values, i.e., when finitely many static values
may occur in a dynamic context. Enumerating these values makes it pos-
sible to plug each of them into the context, thereby turning it into a static
context and enabling more static computation.

The Trick can also be used on any finite type, such as booleans or char-
acters, by enumerating its elements. Alternatively, one may wish to cut
on the number of static possibilities that can be encountered at a program
point — for example, only finitely many characters (instead of the whole
alphabet) may occur in a regular-expression interpreter [24, Section 12.2].
The Trick is usually carried out explicitly by the programmer (see the while
loop in Jones and Gomard’s Imperative Mix [24, Section 4.8.3]).

This enumeration of static values could also be obtained by program
analysis, for example using Heintze’s set-based analysis [18]. Exploiting the
results of such a program analysis would make it possible to automate The
Trick. In fact, a program analysis determining finite ranges of values that
may occur at a program point does enable The Trick. For example, control-
flow analysis [38] (also known as closure analysis [37]) determines a conser-
vative approximation of which λ-abstractions can give rise to a closure that
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may occur at an application site. The application site can be transformed
into a case-expression listing all the possible λ-abstractions and performing
a first-order call to the corresponding λ-abstraction in each branch. This de-
functionalization technique was proposed by Reynolds in the early seventies
[33], and recently cast in a typed setting [29]. Since the end of the eighties, it
is used by such partial evaluators as Similix to handle higher-order programs
[4]. The conclusion of this is that Jones, Gomard, and Sestoft actually do
use an automated version of The Trick [24, Section 10.1.4, Item (1)], even if
they do not present it as such.

In summary, and according to the literature, The Trick appears as yet
another powerful binding-time improvement. It has not been formalized.

1.7 Overview

In this article we present and prove the correctness of a partial evaluator that
both automates and unifies the binding-time improvements listed above.
Section 2 presents an extension of Gomard and Jones’s λ-Mix which handles
products and disjoint sums properly. Section 3 illustrates the effect of eta-
expansion in this continuation-based partial evaluator. In particular, eta-
expansion of disjoint-sums values does The Trick. Section 4 extends the
binding-time analysis of Section 2 with coercions as eta-redexes. Section 5
proves the correctness of this extended partial evaluator. Section 6 assesses
our results, and Section 7 concludes.

1.8 Notation

Consistently with Nielson and Nielson [30], we use overlining to denote
“static” and underlining to denote “dynamic”. For purposes of annotation,
we use “@” (pronounced “apply”) to denote applications, and we abbreviate
(e0@e1)@e2 by e0@e1@e2 and e0@(λx.e) by e0@λx.e.

A context is an expression with one hole [2].
We assume Barendregt’s Variable Convention [2]: when a λ-term occurs

in this article, all bound variables are chosen to be different from the free
variables. This can be achieved by renaming bound variables.

Eta-expanding a higher-order expression e of type τ1 → τ2 yields the
expression

λv.e@v

where v does not occur free in e [2]. By analogy, “eta-expanding” a product
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expression e of type τ1 × τ2 yields the expression

pair(fst e, snd e)

and “eta-expanding” a disjoint-sum expression e of type τ1 + τ2 yields the
expression

case e of inleft(x1)⇒ inleft(x1) [] inright(x2)⇒ inright(x2) end.

2 An Extension of λ-Mix handling Products and Disjoint
Sums

Our starting point is Gomard and Jones’s partial evaluator λ-Mix, an offline
partial evaluator for the λ-calculus [16, 17, 24]. We extend it to handle
products and disjoint sums. Like Gomard and Jones’s, our binding-time
analysis is monovariant in that it associates one binding-time type for each
source expression. Also like Gomard and Jones, only static terms are typed.

Our partial evaluator provides a proper treatment of disjoint sums, where
a dynamic sum of two static values is not approximated to be dynamic
if its context of use is static. Instead, this context is duplicated during
specialization. Bondorf has given a specification of this technique, but no
proof of correctness [5]. The technique is also used to specify “one-pass”
CPS transformations [13]. Like the CPS transformation, the specification
can be specified both purely functionally or in a more “direct” style, using
control operators [26].

Figure 1 displays the syntax of a λ-calculus with products and disjoint
sums. Figure 2 displays the syntax of a two-level λ-calculus where each
construct, except variables, has two forms: overlined (static) and underlined
(dynamic). A two-level λ-term is said to be completely dynamic if all the
constructs in it are underlined. A binding-time analysis (Section 2.1) maps a
λ-term into a two-level λ-term. Program specialization (Section 2.2) reduces
all the static parts of a two-level λ-term and yields a completely dynamic
λ-term. Erasing its annotations yields the residual, specialized λ-term. This
is summarized in the following diagram:
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e ::= x |
λx.e | e0@e1 | pair(e1, e2) | fst e | snd e |
inleft(e) | inright(e) |
case e of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end

Figure 1: BNF of the λ-calculus

τ ::= d | τ1 → τ2 | τ1 × τ2 | τ1 + τ2

e ::= x |
λx.e | e0@e1 | pair(e1, e2) | fst e | snd e |
λx.e | e0@e1 | pair(e1, e2) | fst e | snd e |
inleft(e) | inright(e) |
case e of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end
inleft(e) | inright(e) |
case e of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end

Figure 2: BNF of the two-level λ-calculus

A ` x : A(x) . x

A[x 7→ τ1] ` e : τ2 . w

A ` λx.e : τ1 → τ2 . λx.w

A[x 7→ d] ` e : d . w
A ` λx.e : d . λx.w

A ` e0 : τ1 → τ2 . w0 A ` e1 : τ1 . w1

A ` e0@e1 : τ2 . w0@w1

A ` e0 : d . w0 A ` e1 : d . w1

A ` e0@e1 : d . w0@w1

Figure 3: Gomard’s binding-time analysis for the pure λ-calculus
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2.1 Binding-time analysis

Figure 3 displays Gomard’s binding-time analysis, restricted to the pure λ-
calculus. Types are finite and generated from the grammar of Figure 2. The
type d denotes the type of dynamic values. The judgment

A ` e : t . w

should be read as follows: under hypothesis A, the λ-term e can be assigned
the type t with the annotated term w. The whole program must be as-
signed the type d, whereas parts of the program can have other types. This
requirement ensures that program specialization can produce a completely
dynamic λ-term. Notice that a λ-term can have several types and several
annotated versions. For example, both

∅ ` λx.x : d . λx.x

and
∅ ` λx.x : d→ d . λx.x

are derivable. Notice also that each τ in Figure 3 can be either d or some
other type.

Figures 4 and 5 display the extension of this binding-time analysis to
products and disjoint sums. The extension to products is straightforward.
In the extension to disjoint sums, the binding time of a case expression is
independent of the binding time of its test, even when this test is dynamic.
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A ` e1 : τ1 . w1 A ` e2 : τ2 . w2

A ` pair(e1, e2) : τ1 × τ2 . pair(w1, w2)

A ` e1 : d . w1 A ` e2 : d . w2

A ` pair(e1, e2) : d . pair(w1, w2)

A ` e : τ1 × τ2 . w

A ` fst e : τ1 . fst w
A ` e : τ1 × τ2 . w

A ` snd e : τ2 . snd w

A ` e : d . w
A ` fst e : d . fstw

A ` e : d . w
A ` snd e : d . sndw

Figure 4: Extension of Gomard’s binding-time analysis to products

A ` e : τ1 + τ2 . w A[x1 7→ τ1] ` e1 : τ . w1 A[x2 7→ τ2] ` e2 : τ . w2

A ` case e of
inleft(x1)⇒ e1

[] inright(x2)⇒ e2
end

: τ . casew of
inleft(x1)⇒ w1

[] inright(x2)⇒ w2
end

A ` e : d . w A[x1 7→ d] ` e1 : τ . w1 A[x2 7→ d] ` e2 : τ . w2

A ` case e of
inleft(x1)⇒ e1

[] inright(x2)⇒ e2
end

: τ . casew of
inleft(x1)⇒ w1

[] inright(x2)⇒ w2
end

A ` e : τ1 . w

A ` inleft(e) : τ1 + τ2 . inleft(w)
A ` e : τ2 . w

A ` inright(e) : τ1 + τ2 . inright(w)

A ` e : d . w
A ` inleft(e) : d . inleft(w)

A ` e : d . w
A ` inright(e) : d . inright(w)

Figure 5: Extension of Gomard’s binding-time analysis to sums
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Static applications: (λx.e)@e1 −→ e[e1/x]

Static decompositions:
fst pair(e1, e2) −→ e1 snd pair(e1, e2) −→ e2

Static projections:
case inleft(e) of

inleft(x1)⇒ e1
[] inright(x2)⇒ e2
end

−→ e1[e/x1] case inright(e) of
inleft(x1)⇒ e1

[] inright(x2)⇒ e2
end

−→ e2[e/x2]

Figure 6: Operational semantics of the two-level λ-calculus — evaluation
rules

Static applications:

(case e0 of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end)@e −→
case e0 of inleft(x1)⇒ e1@e [] inright(x2)⇒ e2@e end

Static decompositions:
fst (case e0 of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end) −→
case e0 of inleft(x1)⇒ fst e1 [] inright(x2)⇒ fst e2 end

snd (case e0 of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end) −→
case e0 of inleft(x1)⇒ snd e1 [] inright(x2)⇒ snd e2 end

Static projections:
case (case e0 of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end) of

inleft(x′1)⇒ e′1
[] inright(x′2)⇒ e′2
end
−→ case e0 of

inleft(x1)⇒ case e1 of inleft(x′1)⇒ e′1 [] inright(x′2)⇒ e′2 end
[] inright(x2)⇒ case e2 of inleft(x′1)⇒ e′1 [] inright(x′2)⇒ e′2 end
end

Figure 7: Operational semantics of the two-level λ-calculus — code-motion
rules
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2.2 Program specialization

Program specialization reduces the static parts of a two-level λ-term. Our
specification of program specialization has the form of an operational seman-
tics. If e and e′ are two-level λ-terms, then e −→ e′ means that e reduces to
e′. Figure 6 displays the three basic evaluation rules, and Figure 7 displays
four “code-motion” rules. We say that a two-level λ-term is in normal form
if it cannot be reduced. Each code-motion rule duplicates the static context
of a dynamic case expression and moves the copies to the branches of the
case expression. This creates new redexes, which fits together with the rule
for binding-time analysis of case expressions of Figure 5. Notice that there
is no rule of the form

e@(case e0 of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end) −→
case e0 of inleft(x1)⇒ e@e1 [] inright(x2)⇒ e@e2 end.

This is because such a rule cannot create redexes unless the left-hand side
is already a redex itself.

The code motion rules in Figure 7 occur variously in logic, proof the-
ory, CPS transformation, deforestation, and partial evaluation. Similarly to
Paulin-Mohring and Werner [32, Section 4.5.4], we use them to move static
values toward static contexts, in the simply typed two-level λ-calculus. For
each context E[·], if e −→ e′, then E[e] −→ E[e′].

Our extension of λ-Mix is correct, as proven in Section 5.

3 Examples

We first briefly summarize how eta-expansion works for functions and prod-
ucts, and then we give two examples of how our partial evaluator does The
Trick.

3.1 Coercions for functions

As illustrated in our earlier work [14], for functions, eta-expansion is useful
in two cases. The first is where a dynamic context E[·], expecting a higher-
order value of type d (one could be tempted to write “of type τ1→τ2” to
clarify that this is a function, but in the present treatment, dynamic terms
are not typed), can be coerced into a static context

λv.[·]@v
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that expects a value of type τ1→τ2. The second useful case is where a
dynamic higher-order value e of type d (again, one could be tempted to
write τ1→τ2) can be coerced into a static value

λv.e@v

of type τ1→τ2 that will fit into a static context.

3.1.1 A concrete example: Church numerals

Church numerals [2] are defined with a λ-representation for the number zero
and with a λ-representation for the successor function:

zero = λs.λz.z

succ = λn.λs.λz.s@(n@s@z)

Suppose we want to specialize succ with respect to a given numeral, say
the one corresponding to 2, i.e., succ@(succ@zero). A standard binding-
time analysis does not allow source arguments to be higher order [24]. Our
binding-time analysis, however, will produce the following two-level, eta-
expanded term (the eta-redex is boxed):

(λn.λs.λz.s@(n@ (λv.s@v) @z))@λs.λz.s@(s@z)

The following Scheme session illustrates Church numerals and their resid-
ualization.

> (define zero (lambda (s) (lambda (z) z)))
> (define succ

(lambda (n) (lambda (s) (lambda (z) (s ((n s) z))))))
> (define succ-gen

(lambda (n)
(let* ([s (gensym! "s")]

[z (gensym! "z")])
‘(lambda (,s)

(lambda (,z)
(,s ,((n (lambda (v) ‘(,s ,v))) z)))))))

> (succ-gen (succ (succ zero)))
(lambda (s0) (lambda (z1) (s0 (s0 (s0 z1)))))
> (((lambda (s0) (lambda (z1) (s0 (s0 (s0 z1))))) 1+) 0)
3
>

13



Procedure succ-gen is the generating extension of Procedure succ, i.e.,
its associated program specializer [24]. Applying succ-gen to the static
data gives the same result as specializing succ with respect to the static
data. In the definition of succ-gen, binding-time information is encoded
with Scheme’s quasi-quote (backquote) and unquote (comma) [7].

3.2 Coercions for products

A similar situation occurs for partially static values: whenever such a value
occurs in a dynamic context, the value is dynamized, and conversely, when-
ever a partially static context receives a dynamic value, the context is dy-
namized as well. Let us consider pairs. A static pair p of type d×d can be
coerced to

pair(fst p, snd p)

which has type d. A dynamic pair p of type d can be coerced to

pair(fst p, sndp)

which has type d×d.
For example, if the following expression occurs in a dynamic context

fst e

where e has type (d→ d)× d, the result of binding-time analysis reads

fst e

where e has type d. If we eta-expand the result, it will read:

fst (pair(λx.(fst e)@x, snd e)).

This term has type d, which matches the type of its context, and the partially
static pair e remains partially static, thanks to the coercion.

Conversely, if the value of two expressions e (of type d) and e′ (of type
d × d) can occur in the same context, binding-time analysis classifies e′ to
be dynamic and, as a by-product, dynamizes this context. Again, e could
be eta-expanded to read

pair(fst e, snd e).

This term has type d × d, which avoids dynamizing the context and thus
makes it possible to keep e′ a static pair, thanks to the coercion. (Note that
the alternative of eta-expanding e′ into pair(fst e′, snd e′) would not be a
binding-time improvement, since it would dynamize the present context.)
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3.3 Coercions for disjoint sums

The same coercions apply to disjoint sums. In the following, we give two
examples of how The Trick can be achieved by eta-expansion in the pres-
ence of our new rules for binding-time analysis and transformation of case
expressions.

3.3.1 Static injection in a dynamic context

The following expression is partially evaluated in a context where f is dy-
namic.

(λv.f@(case v of inleft(a)⇒ a+ 20 [] inright(b)⇒ ... end)@v)@inleft(10)

Assume this β-redex will be reduced. Notice that v occurs twice: once as
the test part of a case expression, and once as the argument of the application
of f to the case expression. Since f is dynamic, its application is dynamic,
and the application of that expression is dynamic as well. Thus the binding-
time analysis classifies v to be dynamic, since it occurs in a dynamic context,
and in turn both the case expression and inleft(10) are also classified as
dynamic. Overall, binding-time analysis yields the following two-level term.

(λv.f@(case v of inleft(a)⇒ a+ 20 [] inright(b)⇒ ... end)@v)@inleft(10)

In this term, both f and v have type d.
After specialization (i.e., reduction of static expressions and reconstruc-

tion of dynamic expressions) the residual term (call it (a)) reads as follows.

f@(case inleft(10) of inleft(a)⇒ a+ 20 [] inright(b)⇒ ... end)@inleft(10)

The fact that inleft(10), a partially static value, occurs in the dynamic
context f@(case v of inleft(a)⇒ a+ 20 [] inright(b)⇒ ... end)@[·] “pollutes”
its occurrence in the potentially static context case [·] of inleft(a) ⇒
a+ 20 [] inright(b)⇒ ... end, so that neither is reduced statically.

Note that since v is dynamic and occurs twice, a cautious binding-time
analysis would reclassify the outer application to be dynamic: there is usu-
ally no point in duplicating residual code. In that case, the expression is
totally dynamic and so is not simplified at all.

In this situation, a binding-time improvement is possible, since inleft(10)
will occur in a dynamic context. We can coerce this occurrence by eta-
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expanding the dynamic context (the eta-redex is boxed).

(λv.f@(case v of inleft(a)⇒ a+ 20 [] inright(b)⇒ ... end)
@
case v of inleft(a)⇒ inleft(a) [] inright(b)⇒ inright(b) end )

@
inleft(10)

Binding-time analysis now yields the following two-level term.

(λv.f@(case v of inleft(a)⇒ a+ 20 [] inright(b)⇒ ... end)
@
case v of inleft(a)⇒ inleft(a) [] inright(b)⇒ inright(b) end)

@
inleft(10)

Here, v is not approximated to be dynamic: it has the type Int+ t, for some
t.

Specialization yields the residual term

f@30@inleft(10)

which is more reduced than the residual term (a) above.
Let us now illustrate the dual case, where a dynamic injection in a po-

tentially static context dynamizes this context.

3.3.2 Dynamic injection in a static context

The following expression is partially evaluated in a context where d is dy-
namic.

(λf. ... f@d ... f@inleft(λx.x) ...)
@
λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end

Assume this β-redex will be reduced. Notice that f occurs twice: it is
applied both to a static value and to a dynamic value. The binding-time
analysis of Figures 3, 4, and 5 thus approximates its argument to be dynamic
and yields the following two-level term.

(λf. ... f@d ... f@inleft(λx.x) ...)
@
λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end
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In this term, f has type d.
Specialization yields the following residual term (call it (b)).

...
(λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end)@d
...
(λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end)@inleft(λx.x)
...

The fact that d, a dynamic value, occurs in the potentially static context
f@[·] dynamizes this context, which in turn, dynamizes inleft(λx.x).

In this situation, a binding-time improvement is possible to make
inleft(λx.x) occur in a static context always. We can coerce the bother-
ing occurrence of d by eta-expanding it (the eta-redex is boxed).

λf. ...

f@ case d of inleft(a)⇒ inleft(a) [] inright(b)⇒ inright(b) end
...
f@inleft(λx.x)
...

@
λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end

This eta-expansion enables The Trick. Even though d is not statically
known, its type tells us that it is either some dynamic value a or some
dynamic value b. Program specialization automatically does The Trick, by
plugging these values into the enclosing context (see Figure 7).

But this is not enough because now λx.x will be dynamized by the
newly introduced occurrence of a. Indeed, binding-time analysis yields the
following two-level term.

λf. ...
f@case d of inleft(a)⇒ inleft(a) [] inright(b)⇒ inright(b) end
...
f@ inleft(λx.x)
...

@
λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end

In this term, f has type (d+ t)→ d, for some t.
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Specialization moves the context of the dynamic case expression in each
of its branches and produces the following residual term (call it (c)).

...
case d of inleft(a)⇒ a@10 [] inright(b)⇒ ... end
...
(λx.x)@10
...

This residual term (c) is more reduced than the residual term (b) above.
However, the fact that a, a dynamic value, occurs in the potentially

static context [·]@10 dynamizes this context, which in turn dynamizes λx.x.
Fortunately, we already solved that problem in Section 3.1, using eta-

expansion. The new eta-redex is boxed.

λf. ...

f@case d of inleft(a)⇒ inleft( λz.a@z ) [] inright(b)⇒ inright(b) end
...
f@inleft(λx.x)
...

@
λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end

Binding-time analysis now yields the following two-level term.

λf. ...
f@case d of inleft(a)⇒ inleft(λz.a@z) [] inright(b)⇒ inright(b) end
...
f@inleft(λx.x)
...

@
λv.case v of inleft(a)⇒ a@10 [] inright(b)⇒ ... end

Here, f has type ((d→ d) + t) → d, for some t. Thus neither inleft(λx.x)
nor λx.x are approximated to be dynamic.

Specialization yields the following residual term.

...
(case d of inleft(a)⇒ a@10 [] inright(b)⇒ ... end)
...
10
...

This residual term is more reduced than the term (c) above.
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3.3.3 A concrete example: Mix’s pending list

The Trick was first used to program Mix, the first self-applicable partial
evaluator [25]. Mix’s program specializer is polyvariant and operates on
a “pending list”, which is a list of specialization points, subindexed with
static values. When Mix is self-applied, looking up in this list is a dynamic
operation, even though the specialization points are static. The Trick is
used to move the context of this lookup (i.e., the specializer) inside the list
to specialize the specialization points at self-application time.

Holst and Hughes have characterized this use of The Trick as the appli-
cation of one of Wadler’s theorems for free: Reynolds’s Abstraction theorem
in the first-order case [20, 34, 41]. The composition of specialization and list
lookup is replaced by the composition of lookup and map of specialization
over the list. This achieves a binding-time improvement because it enables
the specialization of specialization points at self-application time.

In the context of this article, and since the source program has a fixed
number of specialization points, the pending list has a fixed length, and thus
it can be formalized as a finite disjoint sum. Eta-expansion over this disjoint
sum enables The Trick, through which specialization points are specialized
at self-application time.

3.4 Conclusions

For functions, products, and disjoint sums, eta-redexes act as binding-time
coercions. Also, and as illustrated in the last example, they synergize. In
particular, the first eta-expansion of Section 3.3.2 enables The Trick. Even
though d is unknown, its type tells us that it can be either some (dynamic)
value a or b. Program specialization automatically does The Trick and plugs
these values into the surrounding context (see Figure 7).

4 Binding-Time Analysis with Eta-Expansion

In our earlier work [14], we proposed and proved the correctness of a binding-
time analysis that generates binding-time coercions for higher-order val-
ues at points of conflict, instead of taking the conservative solution of dy-
namizing both values and contexts. We pointed out the analogous need for
binding-time coercions for products, but did not present the correspond-
ing binding-time analysis generating these binding-time coercions at points
of conflict. This binding-time analysis can be obtained by extending the
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A ` e : d . w τ ` z ⇒ m ∅[z 7→ d] ` m : τ . w′

A ` e : τ . w′[w/z]

A ` e : τ . w τ ` z ⇒ m ∅[z 7→ τ ] ` m : d . w′

A ` e : d . w′[w/z]

Figure 8: Extension of Gomard’s binding-time analysis to binding-time co-
ercions

d ` e ⇒ e

τ1 ` x ⇒ x′ τ2 ` e@x′ ⇒ e′

τ1 → τ2 ` e ⇒ λx.e′

τ1 ` fst e ⇒ e1 τ2 ` snd e ⇒ e2

τ1 × τ2 ` e ⇒ pair(e1, e2)

τ1 ` x1 ⇒ e1 τ2 ` x2 ⇒ e2

τ1 + τ2 ` e ⇒ case e of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end

Figure 9: Type-directed eta expansion

binding-time analysis of Figures 3, 4, and 5 with Figures 8 and 9.
Figure 8 displays two general eta-expansion rules. Intuitively, the two

rules can be understood as being able (1) to coerce the binding-time type d
to any type τ and (2) to coerce any type τ to the type d. The combination
of the two rules allows us to coerce the type of any λ-term to any other type.

Eta-expansion itself is defined in Figure 9. It is type-directed, and thus
it can insert several embedded eta-redexes in a way that is reminiscent of
Berger and Schwichtenberg’s normalization of λ-terms [3, 12].

Consider the first rule in Figure 8. Intuitively, it works as follows. We
are given a λ-term e that we would like to assign the type τ . In case we can
only assign it type d and τ 6= d, we can use the rule to coerce the type to be
τ . The first hypothesis of the rule is that e has type d and annotated term w.
The second hypothesis of the rule takes a fresh variable z and eta-expands it
according to the type τ . This creates a λ-term m with type τ . Notice that z
is the only free variable in m. The third hypothesis of the rule annotates m
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under the assumption that z has type d. The result is an annotated term w′

with the type τ and with a hole of type d (the free variable z) where we can
insert the previously constructed w. Thus, w′ makes the coercion happen.
The second rule in Figure 8 works in a similar way.

With this new binding-time analysis, all the examples of Section 3 now
specialize well without binding-time improvement. In particular, no tricks
are required from the partial-evaluation user — they were a tell-tale of too
coarse binding-time coercions in existing binding-time analyses.

For example, consider again the first example in Section 3.2, that is, the
expression fst e. We assume that the judgment

∅ ` e : (d→ d)× d . w

is derivable, i.e., e has type (d→ d)× d with annotated term w. Moreover,
we assume that the expression fst e occurs in a dynamic context, so we need
to assign it type d. The following derivation does that, giving the expected
annotated and eta-expanded version of e.

∅ ` e : d . pair(λx.(fst w)@x, snd w)
∅ ` fst e : d . fst pair(λx.(fst w)@x, snd w)

To derive the hypothesis we use the second rule in Figure 8. We need the
following three judgments:

∅ ` e : (d→ d)× d . w
(d→ d)× d ` z ⇒ pair(λx.(fst z)@x, snd z)
∅[z 7→ (d→ d)× d] ` pair(λx.(fst z)@x, snd z) : d . pair(λx.(fst z)@x, snd z)

The first judgment is given by assumption; the derivation of the other two
are left to the reader.

5 Correctness

We now state and prove that our binding-time analysis is correct with re-
spect to the operational semantics of two-level λ-terms. The statement of
correctness is taken from Palsberg [31] and Wand [42], who proved cor-
rectness of two other binding-time analyses. The proof techniques are well
known; we omit the details.

If w is a two-level λ-term, then ŵ denotes the underlying λ-term.
We first prove a basic property of the operational semantics of two-level

λ-terms. Let −→−→ be the reflexive and transitive closure of −→.
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Theorem 5.1 (5.1 (Church-Rosser)) If e −→−→ e′ and e −→−→ e′′, then
there exists e′′′ such that e′ −→−→ e′′′ and e′′ −→−→ e′′′.

Proof. By the method of Tait and Martin-Löf; the sequence of definitions
and lemmas is standard [2, pp.59–62]. 2

We then prove that if e can be annotated as w, then so can ŵ. This
enables us to simplify the statements and proofs of subsequent theorems.

Theorem 5.2 (5.2 (Simplification)) If A ` e : τ .w, then A ` ŵ : τ .w.

Proof. By induction on the structure of the derivation of A ` e : τ . w.
2

We then prove subject reduction, using a substitution lemma.

Lemma 5.2.1 (5.2.1 (Substitution)) If

A ` ŵ1 : τ . w1 and A′ ` ŵ2 : τ ′ . w2 ,

then
A′′ ` ŵ2[ŵ1/z] : τ ′ . w2[w1/z] ,

where A and A′′ agree on the free variables of w1, where A′ and A′′ agree
on the free variables of w2 except z, and where A′(z) = τ .

Proof. By induction on the structure of the derivation ofA′ ` ŵ2 : τ ′.w2.
2

Theorem 5.3 (5.3 (Subject Reduction)) If A ` ŵ : τ . w and w −→
w′, then A ` ŵ′ : τ . w′.

Proof. By induction on the structure of the derivation of A ` ŵ : τ . w,
using Lemma 5.2.1. 2

Next we prove that if a closed two-level λ-term of type d is reduced to normal
form, then all the components of that normal form are dynamic.

Theorem 5.4 (5.4 (Dynamic Normal Form)) Suppose w is a two-level
λ-term in normal form, and suppose A is an environment such that A(x) = d
for all x in the domain of A. If A ` ŵ : d .w, then w is completely dynamic.
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Proof. By induction on the structure of the derivation of A ` ŵ : d .w.
2

Finally, we prove that typability ensures that no “confusion” between static
and dynamic will occur, for example as in (λx.e)@e1.

Theorem 5.5 (5.5 (No Confusion)) If A ` ŵ : τ .w, then the following
“confused” terms do not occur in w.

(λx.e)@e1

(λx.e)@e1

fst pair(e1, e2)

fst pair(e1, e2)
snd pair(e1, e2)

snd pair(e1, e2)
case inleft(e) of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end
case inleft(e) of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end

case inright(e) of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end

case inright(e) of inleft(x1)⇒ e1 [] inright(x2)⇒ e2 end

Proof. Immediate. 2

Together, Theorems 5.2, 5.3, 5.4, and 5.5 guarantee that if we have
derived A ` e : d . w, then we can start specialization of w and know that

• if a normal form is reached, then all its components will be dynamic,
and

• no confused terms will occur at any point.

We have thus established the correctness of a partial evaluator which au-
tomatically does The Trick. Notice that the correctness statement also holds
without eta-expansion, i.e., for the partial evaluator specified in Section 2.

6 Assessment and Related Work

The two new eta-expansion rules of Figure 8 unify and generalize our earlier
treatment of eta-expansion [14], and they are a key part of our explanation
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of The Trick. Intuitively, the two rules make it possible (1) to coerce the
binding-time type d to any type τ and (2) to coerce any type τ to the
type d. There is no direct rule, however, for coercing for example d → d
to d → (d→ d). Such a rule seems to be definable using some notion of
subtyping.

Our rules for eta-expansion resemble rules for inserting coercions in type
systems with subtyping [19]. The purpose of our rules, however, is not to
change the type of a term to a supertype; two of our coercions can change
the type of a term to any other type.

We have not considered inferring binding-time annotations. This seems
possible, using the technique of Dussart, Henglein, and Mossin [15] — a
future work.

In Jones, Gomard, and Sestoft’s textbook [24], using The Trick requires
the partial-evaluation user to collect static information under dynamic con-
trol (either by hand or by program analysis) and to rewrite the source pro-
gram to exploit it. We represent this statically collected information as a
disjoint sum.

Jones, Gomard, and Sestoft also restrict static values occurring in dy-
namic contexts to be of base type. Values of higher type are dynamized,
thereby making their type a base type, namely dynamic. In contrast, the
binding-time analysis of Section 4 provides a syntactic representation of
binding-time coercions at higher type. This syntactic representation can be
interesting in its own right, in a setting where the binding time “dynamic”
retains a type structure [12].

Polyvariant specializers usually select dynamic conditional expressions as
specialization points [6, 24], thus disabling the code-motion rules of Figure
7. Experience, however, shows that not all dynamic conditional expressions
need be treated as specialization points [28]. For these, the code-motion
rules of Figure 7 can apply.

A polyvariant binding-time analysis, in contrast to our monovariant
binding-time analysis, associates several binding-time descriptions with each
program point [8]. Polyvariance obviates binding-time coercions, by gener-
ating several variants instead of coercing them into a single one. Expe-
rience, however, shows that polyvariance is expensive [1]. Moreover, our
personal experience with Consel’s partial evaluator Schism [9] shows that
eta-expansion can speed up a polyvariant binding-time analysis by reducing
the number of variants.

Finally, our results apply to online partial evaluation in that they pro-
vide guidelines to structure a typed online partial evaluator. Online partial
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evaluators usually keep multiple representations of static values, which ob-
viates the need for residualization functions. They need, however, to be
continuation-based to be able to achieve The Trick.

7 Conclusion

We have specified and proven the correctness of a partial evaluator for a
λ-calculus with products and disjoint sums. The specializer moves static
contexts across dynamic case expressions, and the binding-time analysis
accounts for this move (Section 2). We have demonstrated that in such a
partial evaluator, eta-expansion for disjoint-sum values achieves The Trick,
thus characterizing it as a typing property (Section 3). Our binding-time
analysis automatically inserts binding-time coercions as eta-redexes (Section
4), and thus our partial evaluator both unifies and automates the binding-
time improvements listed in Jones, Gomard, and Sestoft’s textbook [24,
Chapter 12]. Future work includes finding an efficient algorithm for our new
binding-time analysis.
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