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Abstract

Type-directed partial evaluation stems from the residualization of
static values in dynamic contexts, given their type and the type of their
free variables. Its algorithm coincides with the algorithm for coercing
a subtype value into a supertype value, which itself coincides with
Berger and Schwichtenberg’s normalization algorithm for the simply
typed λ-calculus. Type-directed partial evaluation thus can be used to
specialize a compiled, closed program, given its type.

Since Similix, let-insertion is a cornerstone of partial evaluators for
call-by-value procedural languages with computational effects (such
as divergence). It prevents the duplication of residual computations,
and more generally maintains the order of dynamic side effects in the
residual program.

This article describes the extension of type-directed partial eval-
uation to insert residual let expressions. This extension requires the
user to annotate arrow types with effect information. It is achieved by
delimiting and abstracting control, comparably to continuation-based
specialization in direct style. It enables type-directed partial evalua-
tion of programs with effects (e.g., a definitional lambda-interpreter for
an imperative language) that are in direct style. The residual programs
are in A-normal form. A simple corollary yields CPS (continuation-
passing style) terms instead. We illustrate both transformations with
two interpreters for Paulson’s Tiny language, a classical example in
partial evaluation.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
†Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark. Phone: (+45) 89 42 33

69. Fax: (+45) 89 42 32 55. Home page: http://www.brics.dk/~danvy.
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1 Introduction

1.1 Background

During partial evaluation [11, 27], parts of a program are evaluated and
parts are reconstructed. The parts that are reconstructed yield residual
expressions forming the residual program. The parts that are evaluated
yield static values. Either of two things can happen to a static value: it may
be consumed statically or it may be residualized, i.e., it may be turned into
a residual expression whose evaluation will yield a corresponding dynamic
value. Sometimes, during partial evaluation, a static value can be both
consumed statically and residualized.
For example, in the following binding-time annotated Scheme program [8],

(lambda (a b c d)
(let ([r (gensym! "x")])

‘(lambda (,r)
,(if (< a b)

‘(r ,(- c) ,c)
d))))

a, b, c, and d denote static integers. The static integers denoted by a and
b are consumed statically in the test; the static integer denoted by d is
residualized; and the static integer denoted by c is both consumed statically
(it is negated) and residualized.

Applying the procedure above to 1, 2, 3, and 4 yields the residual pro-
gram:

(lambda (x6)
(x6 -3 3))

where x6 is a fresh variable.
Had the binding-time analysis been more conservative, and required that

static values be exclusively consumed or exclusively residualized, the residual
program would be less specialized — namely it would read as follows.

(lambda (x6)
(x6 (- 3) 3))

At base type, contemporary partial evaluators do not make this approxi-
mation, and thus they allow this double status of static values (i.e., consum-
able and residualizable). At higher type, however, offline partial evaluators
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with monovariant binding-time analyses do make this approximation [27].
Lacking a residualization function at higher type, they do not allow the
double status of static values. Instead, they favor residualization. Thus the
binding-time analysis dynamizes the offending values, and the specializer
yields underspecialized programs. Better specialization requires the users to
“improve the binding times” of their source programs [27, Chapter 12].

This residualization function operating at higher types forms the starting
point of “type-directed partial evaluation” [13].

1.2 Type-directed partial evaluation

Type-directed partial evaluation stems from the desire to residualize arbi-
trary static values in dynamic contexts. Residualizing static values requires
knowing the type structure of these values. If these values are higher-order,
residualization also requires the type structure of their free variables. Its
algorithm parallels the one for source binding-time improvements at higher
type [17, 18], and coincides with the coercion algorithm in type systems
with subtypes [25, 26], and with a normalization algorithm in proof the-
ory [1] and logical frameworks [35]. This last coincidence suggests that it
is possible to specialize compiled programs, by interpreting static expres-
sions as executable code and dynamic expressions as code constructors. We
have named this process “type-directed partial evaluation”: the specializa-
tion of compiled code into the text of its (long βη) normal form [13]. A
type-directed partial evaluator is thus unconventional in that it does not
process the text of a source program, but its compiled (higher-order) value.
The normalization effect is not obtained by symbolic interpretation — it
happens en passant in the residualization algorithm.

We have described the principles and applications of type-directed partial
evaluation elsewhere [13]. In this paper, we investigate some more pragmatic
aspects, and merely assume from the reader some rudimentary knowledge
of partial evaluation [11, 27] and of the Scheme programming language [8].

1.3 Computation duplication

A type-directed partial evaluator encounters the same problem as all other
partial evaluators for call-by-value programs: computation duplication. For
example, consider the following procedure (where the type constructor =>

accounts for Scheme’s uncurried procedures, and where a, b, and c denote
base types).
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(define foo ;;; ((a -> b) a ((b b) => c)) => c
(lambda (f a k)

((lambda (v) (k v v)) (f x))))

Let us residualize the value of foo. (Its source text is unavailable: it has
been compiled away.)

> (residualize foo ’(((a -> b) a ((b b) => c)) => c))
(lambda (x0 a1 x2)
(x2 (x0 a1) (x0 a1)))

>

A computation is duplicated: that of the application of the first argument of
foo to its second. Sometimes this duplication is of no consequence, e.g., if the
function denoted by the first argument of foo is pure (i.e., side-effect free),
total, and inexpensive. In general, however, both computation duplication
and code duplication are not wanted.

The point of this paper is to remedy this situation. We extend the
language of types handled by type-directed partial evaluation to account
for impure procedures, whose application should not be duplicated. Our
treatment is standard [7] — we insert a residual let expression.

1.4 Let insertion

Let us residualize the value of foo again. This time, we specify that its first
argument might perform a side effect (indicated by an annotated arrow -!>).

> (residualize foo ’(((a -!> b) a ((b b) => c)) => c))
(lambda (x0 a1 x2)
(let ([b3 (x0 a1)])

(x2 b3 b3)))
>

A residual let expression has been inserted.
This let insertion naturally scales up, yielding residual programs in “CPS

without continuations” (a.k.a. “nqCPS”, “A-normal forms” [22], “monadic
normal forms” [24], etc.), as illustrated below.

> (residualize (lambda (f x k)
((lambda (v) (k v v)) (f (f x))))

’(((b -!> b) b ((b b) => c)) => c))
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(lambda (x0 b1 x2)
(let* ([b3 (x0 b1)]

[b4 (x0 b3)])
(x2 b4 b4)))

>

Residual let expressions can also retain dynamic computations whose
result is unused, as illustrated below.

> (residualize (lambda (f x y)
((lambda (v) y) (f (f x))))

’(((b -!> b) b c) => c))
(lambda (x0 b1 c2)
(let* ([b3 (x0 b1)]

[b4 (x0 b3)])
c2))

>

The reader should keep in mind that inserting let expressions is some-
thing of a challenge, since in contrast to all other existing partial evaluators,
we have no access to the text of the source program. In the interactions
above, residualize is not a macro — it is a Scheme procedure and thus it
processes (compiled) Scheme expressible values.

1.5 Overview

The rest of this paper is structured as follows. We first start with a side
issue about naming residual variables (Section 2). This side issue is prag-
matically trivial, but solving it does improve the readability of residual pro-
grams. Thus equipped, we review the problem of residual computational
effects in partial evaluation, and its solutions (Section 3). We then apply
Section 3 to type-directed partial evaluation (Section 4). This makes it pos-
sible to specialize both a direct-style and a continuation-style interpreter for
Paulson’s Tiny language (Section 5). As a corollary of Section 4, we outline
the CPS transformation of compiled programs in normal form (Section 6).
After a comparison with related work (Section 7), we conclude (Section 8).

2 What is in a name?

Under lexical scope, names of local variables do not matter. In practice,
though, they contribute to program readability, and thus programmers usu-
ally pick “meaningful” identifiers. One reason why automatically generated
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programs are hard to read is precisely because they have uninformative
identifiers. Our strategy for picking residual names is type-directed.

2.1 Implicit naming

The two special forms define-base-type and define-compound-type are used
to declare types. By default, variables of declared types are named after the
first letter of the declared type name, catenated with a gensym-generated
number. Undeclared variables of compound types start with the letter x

followed with a gensym-generated number. We refer to these letters as
name stubs.

Let us illustrate implicit naming with the first Scheme session of Section
1.

> (define-base-type a)
> (define-base-type b)
> (define-base-type c)
> (define-compound-type fun-from-a-to-b (a -> b))
> (define-compound-type Bar

((fun-from-a-to-b a ((b b) => c)) => c))
> (residualize (lambda (f a k)

((lambda (v) (k v v)) (f x)))
’Bar)

(lambda (f0 a1 x2)
(x2 (f0 a1) (f0 a1)))

>

In this session, a is declared as a base type, and gives rise to the residual
variable a1 (the corresponding name stub is a); fun-from-a-to-b is declared
as a compound type, and gives rise to the residual variable f0 (the corre-
sponding name stub is f); and the residual variable x2 was generated out of
the anonymous type (b b) => c (the corresponding name stub is x).

The definition of declared types is substituted for each later occurrence
of their name. So for example, the type denoted by Bar is textually the same
as the type specified in the first Scheme session of Section 1, modulo the
name stubs.

2.2 Explicit naming

Users can specify name stubs in the declaration of a type. Daring users can
also specify a full name with a directive alias. This may come in handy
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if no name clash is expected. Name clashes do not occur when there is
only one instance of a variable of a declared type. This can happen either
statically (the variable is declared at the outset of a residual program) or
dynamically (all variables of this type denote a single-threaded value [36]).
Both instances are illustrated in Section 5.

2.3 An example

The type (b (c -> b) c) => b denotes an uncurried Scheme procedure with
three arguments. We associate the name stub “Y” to the (base) type of the
first argument, the name stub “foo” to the (compound) type of the second
argument, and the name “Juliet” to the (base) type of the third argument
— assuming case sensitivity.

> (define-base-type b "Y")
> (define-base-type c "Juliet" alias)
> (define-compound-type f (c -> b) "foo")
> (define-compound-type g ((b f c) => b))
> (residualize (lambda (x y z) (y z)) ’g)
(lambda (Y0 foo1 Juliet) (foo1 Juliet))
>

2.4 Summary

Explicit names and name stubs in the types determine the names of residual
variables in residual programs.

3 Sound call unfolding under call-by-value

To propagate constants across procedure boundaries, a partial evaluator
unfolds calls. Not all parameters may be static, however, and thus under
call-by-value, call unfolding is unsound in general. Against this backdrop,
and to tame partially static structures, Torben Mogensen suggested to in-
sert a residual let expression for each dynamic parameter, and to pass on
the residual identifier naming the dynamic argument instead of the argu-
ment itself [31]. As illustrated in Section 1, under call-by-value, let-declared
identifiers can be duplicated without compromising the dynamic semantics
of source programs.

This simple solution, put at the core of Similix, before it even had par-
tially static values, has scaled up remarkably well, e.g., to solve the thorny
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problem of automating call unfolding [37], and also to treat dynamic side-
effects soundly [7]. Doubled with a variable-splitting mechanism [32], it
provides a simple and elegant treatment of both partially static values and
higher-order values [4].

In the next section, we adapt this let-insertion technique to type-directed
partial evaluation.

4 The particular case of type-directed partial eval-
uation

Lacking access to the source code, it is impossible to insert residual let
expressions at call sites — they are compiled, along with the rest of the
source program. However, the only dynamic expressions that should not be
duplicated are residual calls to procedures that may perform side effects.
Therefore it it sufficient to name these residual calls and return the corre-
sponding (fresh) identifiers to the current context. This follows the spirit of
lightweight symbolic values [30], where the only dynamic expressions in the
data flow are residual identifiers.

Thus we choose (1) to annotate the type of procedures that may perform
side effects, (2) to insert a residual let expression naming their result when
one of their calls is unfolded, and (3) to return the residual name to the
context of this call. Point (3) requires us to relocate the context of the call
in the body of the let expression. This relocation is achieved by abstracting
delimited control, for example with shift and reset [14, 15, 19]. This approach
is similar to the strategy for continuation-based partial evaluation [6, 29].

The complete specification of type-directed partial evaluation is shown in
Figure 1, using the two-level λ-calculus [33], and in Figure 2, using Scheme.
Overlined λ’s and @’s denote ordinary λ-abstractions and applications. Un-
derlined λ’s and @’s denote the corresponding (hygienic) syntax construc-
tors. The domains Value and Expr are defined inductively, following the
structure of types, and starting from the same set of (dynamic) base types.
TLT is the domain of (well-typed) two-level terms; it contains both Value
and Expr.

The down arrow is read reify: it maps a static value and its type into a
two-level λ-term that statically reduces to the dynamic counterpart of this
static value. Reify is applied to types occurring positively in the source type.
Conversely, the up arrow is read reflect: it maps a dynamic expression and
its type into a two-level λ-term representing the static counterpart of this
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t ∈ Type ::= b | t1 × t2 | t1 → t2 | t1 !→ t2

v ∈ Value ::= c | x | λx : t.v | v0 @ v1 |
pair(v1, v2) | fst v | snd v |
shift k : t1 → t2 in let x : t1 = e0 @ e1 in resett2 k@ v

e ∈ Expr ::= c | x | λx : t.e | e0 @ e1 |
pair(e1, e2) | fst e | snd e | resett e

reify = λt.λv : t.↓t v
: Type→ Value→ TLT

↓b v = v

↓t1×t2 v = pair(↓t1 fst v, ↓t2 snd v)

↓t1→t2 v = λx1 : t1.resett2 ↓t2 (v@ ↑t2t1 x1)

↓t1
!→t2 v = λx1 : t1.resett2 ↓t2 (v@ ↑t2t1 x1)

where x1 is fresh.

reflect = λt′.λt.λe : t.↑t′t e
: Type→ Type→ Expr→ TLT

↑tb e = e

↑tt1×t2 e = pair(↑tt1 fst e, ↑tt2 snd e)
↑tt1→t2 e = λv1 : t1.↑tt2 (e@ ↓t1 v1)
↑t
t1

!→t2
e = λv1 : t1.shift κ : t2 → t in let x2 : t2 = e@↓t1 v1

in resett (κ@ ↑tt2 x2)
where x2 is fresh.

Reset and reflect are annotated with the type of the value expected by the
delimited context.

residualize = statically-reduce ◦ reify
: Type→ Value→ Expr

Figure 1: Type-directed residualization with let insertion
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(define-record (Base name stub))
(define-record (Prod type type stub))
(define-record (Func type type stub))
(define-record (Proc type type stub))

(define residualize
(lambda (v t)
(letrec ([reify

(lambda (t v)
(case-record t

[(Base name stub) v]
[(Prod t1 t2 stub) ‘(cons ,(reify t1 (car v))

,(reify t2 (cdr v)))]
[(Func t1 t2 stub)
(let ([x1 (elaborate-new-name t1)])

‘(lambda (,x1)
,(Reset (reify t2 (v (reflect t1 x1))))))]

[(Proc t1 t2 stub)
(let ([x1 (elaborate-new-name t1)])

‘(lambda (,x1)
,(Reset (reify t2 (v (reflect t1 x1))))))]))]

[reflect
(lambda (t e)

(case-record t
[(Base name stub) e]
[(Prod t1 t2 stub) (cons (reflect t1 ‘(car ,e))

(reflect t2 ‘(cdr ,e)))]
[(Func t1 t2 stub)
(lambda (v1)

(reflect t2 ‘(,e ,(reify t1 v1))))]
[(Proc t1 t2 stub)
(lambda (v1)

(let ([q2 (elaborate-new-name t2)])
(Shift k

‘(let ([,q2 (,e ,(reify t1 v1))])
,(Reset

(k (reflect t2 q2)))))))]))])
(begin (reset-gensym!) (reify (parse-type t) v)))))

Figure 2: Type-directed partial evaluation with let insertion in Scheme
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dynamic expression. Reflect is applied to types occurring negatively in the
source type.

The generation of residual calls (to pure procedures) reads as follows
[13].

↑t1→t2 e = λv1 : t1.↑t2 (e@↓t1 v1)

As illustrated in Section 1, we cannot let residual calls to impure pro-
cedures flow uncontrolled in the residualization context. Instead, we want
(a) to insert a residual let expression naming this residual call and (b) let
the freshly declared identifier flow instead. This requires us to abstract the
residualization context of impure calls and to relocate it in the body of a
residual let expression. (N.B. The residualization context is constructed
with the static applications in the definition of reify.) We abstract it with
shift, generate a residual let expression naming the residual call with a fresh
name, and restore the context in the body of the let expression, providing
it with the fresh name, appropriately eta-expanded.

↑
t1

!→t2
e = λv1 : t1.shift κ in let x2 : t2 = e@↓t1 v1 in reset (κ@ ↑t2 x2)

This technique of abstracting delimited control in a program transformation
is getting to be standard by now. It originates in the specification of “one-
pass” CPS transformations [14, 15] and is also used today in continuation-
based partial evaluation [6, 29]. We illustrate it further in appendix.

Figure 1 is a conservative extension of the original specification [13] —
remembering the algebraic property of reset [14, 15]:

Property 1 For any expression e with no occurrence of shift, reset(e) = e.

In the presence of procedures that may perform side effects, and as il-
lustrated in Section 5, the result of type-directed partial evaluation contains
series of flat let expressions. These are characteristic of nqCPS.

5 An example: Paulson’s Tiny interpreter

Paulson’s Tiny language [34] is a classical example in partial-evaluation cir-
cles [4, 7, 10, 27, 32]. Its BNF reads as follows (see Figure 8).

〈pgm〉 ::= block 〈decl〉∗ in 〈cmd〉 end

〈decl〉 ::= 〈ide〉∗
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〈cmd〉 ::= skip |
〈cmd〉 ; 〈cmd〉 |
〈ide〉 := 〈exp〉 |
if 〈exp〉 then 〈cmd〉 else 〈cmd〉 |
while 〈exp〉 do 〈cmd〉 end

〈exp〉 ::= 〈int〉 | 〈ide〉 | 〈exp〉 〈op〉 〈exp〉 | read

〈op〉 ::= + | − | × | = | ≥

It is a simple exercise to write the corresponding definitional interpreter
in direct style (see Figure 3) or in continuation style (see Figure 4). One
can then apply it to, e.g., the factorial program

block res, val, aux
in val := read ; aux := 1 ;

while val > 0 do
aux := aux * val ; val := val - 1

end ;
res := aux

end

and residualize the result with either of

(residualize (meaning-d fac) ’Type-d)

(residualize (meaning-c fac) ’Type-c)

where meaning-d and type-d are defined in Figures 3 and 9, meaning-c and
type-c are defined in Figures 4 and 10, and fac denotes the parsed factorial
program. Figures 5 and 6 display the corresponding residual programs.

The residual program of Figure 5 is a direct-style Scheme program in
A-normal form, threading the store throughout. The residual program of
Figure 6 is a continuation-passing Scheme program, also threading the store
throughout. In both programs, the while loop has been mapped into a fixed-
point declaration (reflecting the semantics of while loops in both Tiny inter-
preters). All the location offsets have been computed at partial-evaluation
time.

The following four facts are worth noting.

1. These residual programs have been generated straight out of the two
interpreters of Figures 3 and 4, i.e., with no post-processing.
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(define meaning-d
(lambda (p)
(lambda (add sub mul equ gt read fix true? lookup update)

(lambda (s)
(letrec ([meaning-prog ...]

[meaning-decl ...]
[meaning-comm
(lambda (c r s)
(case-record c

[(Skip) s]
[(Sequence c1 c2)
(meaning-comm c2 r (meaning-comm c1 r s))]

[(Assign i e)
(update (r i) (meaning-expr e r s) s)]

[(Conditional e c-then c-else) ...]
[(While e c)
((fix (lambda (while)

(lambda (s)
(true? (meaning-expr e r s)

(lambda (s)
(while
(meaning-comm c r s)))

(lambda (s) s)
s)))) s)]))]

[meaning-expr
(lambda (e r s)
(case-record e

[(Literal l) l]
[(Boolean b) b]
[(Identifier i) (lookup (r i) s)]
[(Primop op e1 e2) ((meaning-prim op)

(meaning-expr e1 r s)
(meaning-expr e2 r s))]

[(Read) (read)]))]
[meaning-prim
(lambda (op)
(case op

[(+) add] [(-) sub] [(*) mul] ...))])
(meaning-progr p s))))))

Figure 3: Direct-style Scheme interpreter for Tiny (valuation functions)
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(define meaning-c
(lambda (p)
(lambda (add sub mul equ gt read fix true? lookup update)

(lambda (s k)
(letrec ([meaning-prog ...]

[meaning-decl ...]
[meaning-comm
(lambda (c r s k)
(case-record c

[(Skip) (k s)]
[(Sequence c1 c2)
(meaning-comm c1 r s (lambda (s)
(meaning-comm c2 r s k)))]

[(Assign i e)
(meaning-expr e r s (lambda (v)
(update (r i) v s k)))]

[(Conditional e c-then c-else) ...]
[(While e c)
((fix (lambda (while)

(lambda (s k)
(meaning-expr e r s (lambda (v)
(true? v

(lambda (s k)
(meaning-comm c r s
(lambda (s)

(while s k))))
(lambda (s k) (k s))

s k)))))) s k)]))]
[meaning-expr
(lambda (e r s k)
(case-record e

[(Literal l) (k l)]
[(Boolean b) (k b)]
[(Identifier i) (lookup (r i) s k)]
[(Primop op e1 e2) ...]
[(Read) (read k)]))]

[meaning-prim ...])
(meaning-prog p s k))))))

Figure 4: Continuation-style Scheme interpreter for Tiny (valuation func-
tions)
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(lambda (add sub mul equ gt read fix true? lookup update)
(lambda (s)
(let* ([n0 (read)]

[s (update 1 n0 s)]
[s (update 2 1 s)]
[s ((fix (lambda (while1)

(lambda (s)
(let* ([n2 (lookup 1 s)]

[n3 (gt n2 0)])
(true? n3

(lambda (s)
(let* ([n4 (lookup 2 s)]

[n5 (lookup 1 s)]
[n6 (mul n4 n5)]
[s (update 2 n6 s)]
[n7 (lookup 1 s)]
[n8 (sub n7 1)]
[s (update 1 n8 s)])

(while1 s)))
(lambda (s) s)
s))))) s)]

[n9 (lookup 2 s)])
(update 0 n9 s))))

This residual program is a specialized version of the Tiny inter-
preter of Figure 3 with respect to the factorial source program.
It is also the textual direct-style version of the residual program
of Figure 6.

Figure 5: Direct-style residual factorial program

2. The two interpreters were compiled with an ordinary Scheme com-
piler, and the residual programs thus were generated without the usual
symbolic interpretation of a partial evaluator (generating extensions
nonwithstanding).

3. Thanks to the naming scheme of Section 2, both residual programs
are also straightforward to read. Specifically, in Figures 9 and 10,

• the type of expressible values is declared with the name stub n,
to reflect that the corresponding variables are of integer type;
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(lambda (add sub mul equ gt read fix true? lookup update)
(lambda (s k)
(read (lambda (n0)
(update 1 n0 s (lambda (s)
(update 2 1 s (lambda (s)
((fix (lambda (while1)

(lambda (s k)
(lookup 1 s (lambda (n2)
(gt n2 0 (lambda (n3)
(true? n3

(lambda (s k)
(lookup 2 s (lambda (n4)
(lookup 1 s (lambda (n5)
(mul n4 n5 (lambda (n6)
(update 2 n6 s (lambda (s)
(lookup 1 s (lambda (n7)
(sub n7 1 (lambda (n8)
(update 1 n8 s (lambda (s)
(while1 s (lambda (s) (k s))))))))))))))))))

(lambda (s k) (k s))
s
(lambda (s) (k s)))))))))) s (lambda (s)

(lookup 2 s (lambda (n9)
(update 0 n9 s (lambda (s) (k s)))))))))))))))

This residual program is a specialized version of the Tiny inter-
preter of Figure 4 with respect to the factorial source program.
It is also the textual CPS version of the residual program of
Figure 5.

Figure 6: Continuation-style residual factorial program

• the domain of the semantic operator fix is declared with the
name stub while, to single out the denotation of source while
loops;

• the type of the semantic operator lookup is declared with an alias,
since it is declared globally to the definitional interpreter;

• the types of the store and of the continuation are declared with an
alias, since both are single-threaded in the definitional interpreter.
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4. Matching the fact that Figure 4 is the CPS counterpart of Figure 3 [16],
Figure 6 is the textual CPS counterpart of Figure 5. This property
usually holds modulo renaming, using e.g., Schism or Similix [5, 9].

The following diagram summarizes the situation. Rd denotes the resid-
ualizing function of Figure 1. C denotes the CPS transformation. Tinyd and
Tinyc denote the text of the direct-style and of the continuation-style Tiny
interpreters, respectively. [[Tinyd]] and [[Tinyc]] denote their meaning (i.e.,
compiled code). Finally, fac denotes the source factorial program.

Tinyd (Figure 3) [[Tinyd]] fac Figure 5

Tinyc (Figure 4) [[Tinyc]] fac Figure 6

C
��

Rd //

C
��

Rd
//

6 Corollary: CPS transformation of compiled pro-
grams

It is very simple to translate nqCPS terms into CPS [12, 23, 28]. Let ex-
pressions, for example, in the context of a continuation k, are essentially
desugared as follows:

〈[let v = f@x in e]〉 k = f@x@(λv.〈[e]〉 k)

This makes it simple to adapt Figure 1 to produce CPS terms. The
corresponding program is available through the author’s home page.1 It
can be used to perform the following experiment: residualizing the direct-
style Tiny interpreter of Figure 3 with respect to the factorial program
now yields a continuation-style residual program. This continuation-style
residual program textually coincides with the ordinary residualization of
the continuation-style Tiny interpreter of Figure 4, provided we relax the
alias definition of the compound type CCont in Figure 10.

The following diagram extends the diagram of Section 5 and summarizes
the situation. Rc denotes the new residualizing function.

1http://www.brics.dk/~danvy
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Tinyd (Figure 3) [[Tinyd]] fac Figure 5

Tinyc (Figure 4) [[Tinyc]] fac Figure 6

C
��

Rd //

Rc
NNNNNNNNNNNNNNN''

C
��

Rd
Rc //

In particular, since all types in the continuation-style Tiny interpreter are
pure, residualizing it with either Rd or Rc yields the same result.
Rc, however, is not the CPS counterpart ofRd. Furthermore, it does not

make sense to CPS transformRd as defined in Figure 1 and 2 because source
programs in general are in direct style.2 This makes it a true necessity here
to abstract delimited control.

7 Related work

7.1 Partial evaluation

Section 1 has already situated type-directed partial evaluation among related
work: it stems from the need to residualize static values in dynamic contexts
at higher type; its algorithm coincides with the algorithm for higher-order
coercions [25, 26], and also with Berger and Schwichtenberg’s normalization
algorithm for the simply typed λ-calculus [1]. This coincidence of algorithms
shows that there is as much computational power in residualization as in an
offline monovariant partial evaluator for the λ-calculus. In particular, and
this is the whole point of type-directed partial evaluation, picking a par-
ticular representation of staticness (compiled syntax constructions) and of
dynamicness (compiled syntax constructors) makes it possible to specialize
closed compiled programs, given their type.3

The two-level λ-calculus has appeared ideal to express the residualization
algorithm. Other unexplored developments include subtyping in the two-
level λ-calculus [33].

2CPS-transforming higher-order programs assumes that their higher-order arguments
are also CPS-transformed.

3One of the referees encouraged us to stress the distinction between constructions and
constructors: a constructor generates a construction. This distinction proves essential in
the context of program-generating programs.
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7.2 Logical frameworks

Users of Frank Pfenning’s Elf system [35] are also provided with the ability
to associate name stubs to types. The reason is the same as here: readability
of generated code in the presence of higher-order abstract syntax.

7.3 Out of control: let insertion vs. disjoint sums

In the POPL’96 proceedings, shift and reset are used to handle disjoint
sums [13, Section 3]. This use clashes with the let insertion of Section 4.
There is, however, a natural hierarchy in these control abstractions, where
the treatment for disjoint sums supersedes the treatment for let insertion.
This is thus a case for shift2 and reset2 [14]. We leave this aspect for future
work.

7.4 An extensional CPS transformation

In his PhD thesis [21], Filinski defines extensional mappings between monadic
values (and programs them in Standard ML). In particular, this makes it
possible to define an extensional CPS transformation, in the particular case
of the identity monad and of the continuation monad. Composing this exten-
sional transformation with residualization appears to yield the same effect as
the CPS transformation of Section 6. The extensional CPS transformation
is dashed in the following diagram, which extends the diagram of Section 6.

Tinyd (Figure 3) [[Tinyd]] fac Figure 5

Tinyc (Figure 4) [[Tinyc]] fac Figure 6

C
��

Rd //

Rc
NNNNNNNNNNNNNNN''

�

�

�

���

C
��

Rd
Rc //

8 Conclusion and issues

We have extended type-directed partial evaluation with two pragmatic fea-
tures: the abilities to have a say in residual identifiers and to insert residual
let expressions. These make it possible to improve the readability of residual
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programs, to ensure sound call unfolding, and to specialize direct-style pro-
grams containing dynamic computational effects. A simple variant makes it
possible to generate residual code in CPS.

These simple steps should contribute to make type-directed partial eval-
uation more practical. Much work remains to formalize it and make it fit
with partial evaluation at large.
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A Abstracting control with shift and reset

In the following expression, the special form Reset denotes a “prompt” [19],
i.e., it delimits the control of its body by supplying it with the identity
continuation. The special form Shift abstracts this delimited control into a
procedure.

(+ 1 (Reset (* 10 (Shift k ...))))

The abstracted continuation reads (lambda (v) (* 10 v)). So for example,
the expression

(+ 1 (Reset (* 10 (Shift k (+ (k 6) (k 4))))))

can also be read as

(+ 1 (let ([k (lambda (v) (* 10 v))])
(+ (k 6) (k 4))))

and evaluates to 101.
In contrast with call/cc, applying an abstracted continuation here does

not “jump out” to yield a final answer. It returns a result at its point of ap-
plication. This functional behavior makes it possible to compose abstracted
continuations [14, 20].
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(define-record (Leaf x))
(define-record (Node left-tree right-tree))

(define flatten
(lambda (t) ;;; Binary-Tree(X) -> List(X)
(letrec ([help (lambda (t)

(case-record t
[(Leaf x)
(Shift k

(cons x (Reset (k ’dummy))))]
[(Node left right)
(begin

(help left)
(help right))]))])

(Reset (begin
(help t)
’())))))

(define flatten-c
(lambda (t k) ;;; (Binary-Tree(X) (List(X) -> Answer)) => Answer
(letrec ([help (lambda (t k)

(case-record t
[(Leaf x)
(cons x (k ’dummy))]
[(Node left right)
(help left (lambda (dummy)

(help right k)))]))])
(k (help t (lambda (dummy) ’()))))))

Figure 7: Flattening a binary tree

The programming technique used to insert let expressions in Section 4
can be used, for example, to flatten binary trees, as illustrated in Figure 7.
The binary tree is traversed depth-first and from left to right, in a delimited
context. At every leaf, the traversal is abstracted and the contents of the leaf
are cons’ed to the result of the traversal. Procedure flatten-c is the CPS
counterpart of Procedure flatten-d. Notice that even though flatten-c is
seemingly in “continuation-passing style”, it is not tail-recursive. This is the
trademark of abstracting delimited control [14, 15, 19].
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(define-record (Program names command))

(define-record (Skip))
(define-record (Sequence command command))
(define-record (Assign name expression))
(define-record (Conditional expression command command))
(define-record (While expression command))

(define-record (Literal constant))
(define-record (Boolean constant))
(define-record (Identifier name))
(define-record (Primop op expression expression))
(define-record (Read))

Figure 8: Abstract syntax for Tiny
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