
B
R

IC
S

R
S

-96-13
D

anvy
&

V
estergaard:

A
C

ase
S

tudy
in

Type-D
irected

P
artialE

valuation

BRICS
Basic Research in Computer Science

Semantics-Based Compiling:
A Case Study in Type-Directed
Partial Evaluation

Olivier Danvy
René Vestergaard

BRICS Report Series RS-96-13

ISSN 0909-0878 May 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Semantics-Based Compiling:
A Case Study in Type-Directed Partial Evaluation

Olivier Danvy and René Vestergaard
Aarhus University ∗

{danvy,jrvest}@brics.dk

May 1996

Abstract
We illustrate a simple and effective solution to semantics-based

compiling. Our solution is based on type-directed partial evaluation,
where

• our compiler generator is expressed in a few lines, and is efficient;
• its input is a well-typed, purely functional definitional interpreter

in the manner of denotational semantics;
• the output of the generated compiler is three-address code, in the

fashion and efficiency of the Dragon Book;
• the generated compiler processes several hundred lines of source

code per second.

The source language considered in this case study is imperative, block-
structured, higher-order, call-by-value, allows subtyping, and obeys
stack discipline. It is bigger than what is usually reported in the liter-
ature on semantics-based compiling and partial evaluation.

Our compiling technique uses the first Futamura projection, i.e., we
compile programs by specializing a definitional interpreter with respect
to this program.

Our definitional interpreter is completely straightforward, stack-
based, and in direct style. In particular, it requires no clever staging
technique (currying, continuations, binding-time improvements, etc.),
nor does it rely on any other framework (attribute grammars, annota-
tions, etc.) than the typed λ-calculus. In particular, it uses no other
program analysis than traditional type inference.

The overall simplicity and effectiveness of the approach has en-
couraged us to write this paper, to illustrate this genuine solution to
denotational semantics-directed compilation, in the spirit of Scott and
Strachey.

∗Computer Science Department, Building 540, Ny Munkegade, DK-8000 Aarhus C,
Denmark. Home pages: http://www.brics.dk/~{danvy,jrvest}. Phone: (+45) 89 42
33 69. Fax: (+45) 89 42 32 55. This work is supported by BRICS (Basic Research in
Computer Science, Centre of the Danish National Research Foundation).

1

1 Introduction

1.1 Denotational semantics and semantics-implementation
systems

Twenty years ago, when denotational semantics was developed [27, 45], there
were high hopes for it to be used to specify most, if not all programming
languages. When Mosses developed his Semantics Implementation System
[29], it was with the explicit goal of generating compilers from denotational
specifications.

Time passed, and these hopes did not materialize as concretely as was
wished. Other semantic frameworks are used today, and other associ-
ated semantics-implementation systems as well. Briefly stated, (1) domains
proved to be an interesting area of research per se, and they are studied to-
day quite independently of programming-language design and specification;
and (2) the λ-notation of denotational semantics was deemed untamable
— indeed writing a denotational specification can be compared to writing
a program in a module-less, lazy functional language without automatic
type-checker.

As for semantics-implementation systems, there have been many [1, 14,
20, 26, 29, 31, 34, 35, 37, 41, 43, 46, 47, 48], and they were all quite compli-
cated. (Note: this list of references is by no means exhaustive. It is merely
meant to be indicative.)

1.2 Partial evaluation

For a while, partial evaluation has held some promise for compiling and com-
piler generation, through the Futamura projections [13, 22]. The Futamura
projections state that specializing a definitional interpreter with respect to a
source programs “compiles” this source program from the defined language
to the defining language [38]. This idea has been applied to a variety of inter-
preters and programming-language paradigms, as reported in the literature
[7, 21].

One of the biggest and most successful applications is Jørgensen’s
BAWL, which produces code that is competitive with commercially avail-
able systems, given a good Scheme system [23]. The problem with partial

2

evaluation, however, is the same as for most other semantics-implementation
system: it requires an expert to use it successfully.

1.3 Type-directed partial evaluation

Recently, the first author has developed an alternative approach to partial
evaluation which is better adapted to specializing interpreters and strikingly
simpler [9]. The approach is type-directed and amounts to normalizing a
closed, well-typed program, given its type (see Figure 1). The approach
has been illustrated on a toy programming language, by transliterating a
denotational specification into a definitional interpreter, making this term
closed by abstracting all the (run-time) semantics operators, applying it to
the source program, and normalizing the result.

Type-directed partial evaluation thus merely requires the user to write a
purely functional, well-typed definitional interpreter, to close it by abstract-
ing its semantic operators, and to provide its type. The type is obtained for
free, using ML or Haskell. No annotations or binding-time improvements
are needed.

The point of the experiment with a toy programming language [9] is that
it could be carried out at all. The point of this paper is to show that the
approach scales up to a non-trivial language.

1.4 Disclaimer

We are not suggesting that well-typed, compositional and purely defini-
tional interpreters written in the fashion of denotational semantics are the
way to go always. This method of definition faces the same problems as
denotational semantics. For example, it cannot scale up easily to truly
large languages. Our point is that given such a definitional interpreter,
type-directed partial evaluation provides a remarkably simple and effective
solution to semantics-based compiling.

1.5 This paper

We consider an imperative language with block structure, higher-order
procedures, call-by-value, and that allows subtyping. We write a direct-
style definitional interpreter that is stack-based, reflecting the tradi-

3

t ∈ Type ::= b | t1 × t2 | t1 → t2

reify = λt.λv.↓t v
↓b v = v

↓t1×t2 v = pair(↓t1 fst v, ↓t2 snd v)

↓t1→t2 v = λx1.↓t2 (v@ (↑t1 x1))
where x1 is fresh.

reflect = λt.λe.↑t e
↑b e = e

↑t1×t2 e = pair(↑t1 fst e, ↑t2 snd e)
↑t1→t2 e = λv1.↑t2 (e@ (↓t1 v1))

residualize = statically-reduce ◦ reify

The down arrow is read reify: it maps a static value and
its type into a two-level λ-term [32] that statically reduces to
the dynamic counterpart of this static value. Conversely, the
up arrow is read reflect: it maps a dynamic expression into
a two-level λ-term representing the static counterpart of this
dynamic expression.

In residualize, reify (resp. reflect) is applied to types occur-
ring positively (resp. negatively) in the source type.

N.B. In practice, residual let expressions need to be inserted
to maintain the order of execution, à la Similix [4]. This fea-
ture makes it possible to specialize direct-style programs with
the same advantages one gets when specializing continuation-
passing programs, and is described elsewhere [8].

Figure 1: Type-directed partial evaluation (a.k.a. residualization)

4

tional call/return strategy of Algol 60 [36], and otherwise is completely
straightforward.1 We specialize it and obtain three-address code that is
comparable to what can be expected from a compiler implemented e.g.,
according to the Dragon Book [1].

This experiment is significant for the following reasons:

Semantics-implementation systems: Our source language is realistic.
Our compiler generator is extremely simple (it is displayed in Figure 1). Our
language specification is naturally in direct style and requires no staging
transformations [24]. Our compiler is efficient (several hundred lines per
second). Our target code is reasonable.

We are not aware of other semantics-implementation systems that yield
similar target code with a similar efficiency. In any case, we are not focused
on cycles. Our point here is that the problem of semantics-based compiling
can be stated in such a way that a solution exists that is extremely simple
and yields reasonable results.

Partial evaluation: No other partial evaluator today could take our
direct-style definition and specialize it as effectively and as efficiently.

An online partial evaluator would incur a significant interpretive over-
head. In most likelihood, it would require the definitional interpreter to be
CPS-transformed prior to specialization.

An offline partial evaluator would require binding-time improvements
[21, Chapter 12]. For example, the interpreter should be expressed in
continuation-passing style (CPS). It would necessitate a binding-time anal-
ysis, and then either incur interpretive overhead by direct specialization, or
would require to generate a generating extension, which would be in CPS
and thus less efficient than in direct style. Finally, the target code would be
expressed in CPS.

In summary, similar results could be obtained using traditional partial
evaluation, but not as simply and not as efficiently.

1Being stack-based is of course not a requirement. An unstructured store would also
need to be threaded throughout, but its implementation would require a garbage collector
[27].

5

1.6 Overview

Section 2 describes our source programming language. Based on this de-
scription, it is simple to transcribe it into a definitional interpreter for this
language [38]. We briefly describe this interpreter in Section 3, and display
parts of it in Figure 3. It is well-typed. Given its type and a source pro-
gram such as the one in Figure 4, we can residualize the application of the
interpreter to this program and obtain a residual program such as the one in
Figure 5. Each residual program is a specialized version of the definitional
interpreter. We use the syntax of Scheme [5] to represent this three-address
code, but it is trivial to map it into assembly code.

2 A Block-Structured Procedural Language with
Subtyping

The following programming language is deliberately reminiscent of
Reynolds’s idealized Algol [39], although it uses call-by-value. Our pre-
sentation follows Schmidt’s format for denotational specifications [41]. In
particular, we use strict, destructuring let expressions.

2.1 Abstract Syntax

The language is imperative: its basic syntactic units are commands. It is
block-structured: any command can have local declarations. It is proce-
dural: commands can be abstracted and parameterized. It is higher-order:
procedures can be passed as arguments to other procedures. Finally it is
typed and supports subtyping in that an integer value can be assigned to
a real variable, a procedure expecting a real can be passed instead of a
procedure expecting an integer, etc.

The full language also features functions, but for the sake of conciseness,
we have omitted them here.

6

p, 〈pgm〉 ∈ Pgm —domain of programs
c, 〈cmd〉 ∈ Cmd —domain of commands
e, 〈exp〉 ∈ Exp —domain of expressions
i , 〈ide〉 ∈ Ide —domain of identifiers
d , 〈decl〉 ∈ Decl —domain of declarations
t , 〈type〉 ∈ Type —domain of types
o, 〈btype〉 ∈ BType —domain of base types

〈pgm〉 ::= 〈cmd〉
〈decl〉 ::= Var 〈ide〉 : 〈btype〉 = 〈exp〉

| Proc 〈ide〉 (〈ide〉:〈type〉, ..., 〈ide〉:〈type〉) = 〈cmd〉
〈cmd〉 ::= skip | write 〈exp〉 | read 〈ide〉 | 〈cmd〉 ; 〈cmd〉

| 〈ide〉 := 〈exp〉 | if 〈exp〉 then 〈cmd〉 else 〈cmd〉
| while 〈exp〉 do 〈cmd〉 | call 〈ide〉 (〈exp〉, ..., 〈exp〉)
| block (〈decl〉, ..., 〈decl〉) in 〈cmd〉

〈exp〉 ::= 〈lit〉 | 〈ide〉 | 〈exp〉 〈op〉 〈exp〉
〈lit〉 ::= 〈bool〉 | 〈int〉 | 〈real〉
〈op〉 ::= + | × | − | < | = | and | or

〈btype〉 ::= Bool | Int | Real
〈type〉 ::= 〈btype〉 | Proc (〈type〉, ..., 〈type〉)

For simplicity, we make the syntactic domain of booleans, integers, and reals
coincide with the corresponding semantic domains, i.e., with IB , IN , and IR,
respectively.

2.2 Semantic values

The language is block structured, procedural, and higher-order. Since it
is also typed, we define the corresponding domain of values D inductively,
following its typing structure.

At base type, DBool = IB , DInt = IN , and DReal = IR. At higher type,
we can try to define a procedure as a function mapping a tuple of values into
a store transformer (whose co-domain is lifted, to account for divergence or
errors).

DProc(t1, ..., tn) = (Dt1 × ...×Dtn)→ Sto→ Sto⊥

Our implementation, however, is stack-based, and so we want to pass
parameters on top of the stack. This suggests to define DProc(t1, ..., tn) as

7

a store transformer, whose elements are functions accepting a stack whose
top frame contains parameters of an appropriate type.

The language, however, is also block-structured and lexically scoped, and
so we also need to index the denotation of procedures with their free vari-
ables (what Reynolds calls their “store shape”). Several such constructions
exist, e.g., by Oles [33], and by Even and Schmidt [10], but they are quite
complicated.

Fortunately, constructive type theory tells us that an inductively defined
domain, such as D, is isomorphic to the product of (1) a well-ordering ac-
counting for the induction and (2) a possibly larger other domain [19].2 Ac-
cordingly, we choose our well-ordering to be isomorphic to the type structure
of our language (as defined by its BNF), and we choose the larger domain
to be a store transformer.

DProc(t1, ..., tn) = {Proc(t1, ..., tn)} × Access× (Sto→ Sto⊥)

The first element is the type tag of the procedure; the second element
accounts for the store shape of the procedure: it is the well-known static
link (access link) of Algol implementations; and the third component is the
store transformer.

We use this domain construction to define our storable values, expressible
values, and denotable values.

2.2.1 Storable values

The store can hold untagged booleans, integers, reals, and procedures. It is
accessed with typed operators.

StoVal = V alBool + V alInt + V alReal + V alProc(t1, ..., tn)

V alBool = IB

V alInt = IN

V alReal = IR

V alProc(t1, ..., tn) = Access× (Sto→ Sto⊥)

It is the duty of the interpreter to set up a proper access link and to
stack up proper actual parameters before calling procedures.

2The case in point is Nordström’s construction of “multilevel functions” [18].

8

2.2.2 Expressible values

We define expressible values (the result of evaluating an expression) to be
storable values.

2.2.3 Denotable values

A denotable value (held in the environment) is a reference to the stack,
paired with the type of the corresponding stored value.

DenVal = Index×Type

2.3 Stack architecture

The stack holds a sequence of activation records which are statically (for the
environment) and dynamically (for the continuation) linked via base point-
ers, as is traditional in Algol-like languages [1, 36]. An activation record
is pushed at each procedure call, and popped at each procedure return. A
block (of bindings) is pushed whenever we enter the scope of a declara-
tion, and popped upon exit of this scope. This block extends the current
activation record.

Procedures are call-by-value: they are passed the (expressible) values of
their arguments on the stack [1, 36]. Calling a procedure is thus achieved
as follows:

1. the static link of the procedure, the current base pointer (i.e., the
dynamic link of the callee) and the values of all actual parameters are
pushed;

2. a new activation record is created by updating the current base pointer
to the location immediately above the pushed dynamic link; and

3. the procedure is called.

Upon return, the activation record is popped. This restores the base pointer
and thus the static and dynamic links.

Call-by-name would be similarly implemented.
The storable values held on the stack are addressed through the double

index of denotable values: the first index specifies the activation record in

9

which the corresponding variable was declared, starting from the top of the
stack; and the second index specifies the entry in the record.

2.4 Semantic algebras

Store: Sto. The global store pairs a push-down stack and i/o channels.
The stack was described above. The i/o channels enable the program to
read and write values of base type.

The store is addressed through the following type-indexed operators.

Lookupt : (Index × Sto)→ Valt
Updatet : (Index ×Valt × Sto)→ Sto

Pusht : V alt × Sto → Sto
PopBlock : Sto × IN → Sto

where Lookupt , Pusht , and Updatet construct and deconstruct StoVal-
values and the IN -argument of PopBlock is the size of the block to pop
off the stack.

Environment: The environment maps identifiers to denotable values.

Truth values: IB.

Conj : IB × IB → IB ReadBool : Sto → Sto × IB
Disj : IB × IB → IB WriteBool : Sto × IB → Sto
EqBool : IB × IB → IB

Integers: IN .

AddInt : IN × IN → IN IntToReal : IN → IR
SubInt : IN × IN → IN ReadInt : Sto → Sto × IN
MulInt : IN × IN → IN WriteInt : Sto × IN → Sto
LessInt : IN × IN → IB EqInt : IN × IN → IB

Reals: IR.

AddReal : IR × IR → IR ReadReal : Sto → Sto × IR
SubReal : IR × IR → IR WriteReal : Sto × IR → Sto
MulReal : IR × IR → IR EqReal : IR × IR → IB
LessReal : IR × IR → IB

10

Procedures: IP.

UpdateBasePointer : Sto × IN → Sto
PushBasePointer : Sto → Sto

CurrentAccessLink : Sto → Access
PushAccessLink : Access × Sto → Sto

PopFrame : Sto → Sto

where UpdateBasePointer updates the current base pointer to the location
with offset n ∈ IN from the stack top. PopFrame behaves as PopBlock but
restores the old base pointer at the same time.

Misc. (for the denotation of while loops and conditional expressions)

Fix : ((Sto→ Sto)→ Sto → Sto)→ Sto → Sto
Test : IB × Sto × Sto → Sto

Size of types: Following the definition of V alt we define | · | to be the
size of values of type t . The size of a value of base type is 1. The size of
procedures is 2: one location for the code pointer, and another for the access
link.

|o | = 1

|Proc(t1, ..., tn) | = 2

2.5 Typing, subtyping, and coercions

The language is typed: any type mismatch yields an error. In addition, sub-
typing is allowed: any context expecting a value of type t (i.e., assignments
and parameter passing) accepts an expressible value whose type is a subtype
of t. The subtyping relation ≤ is defined to be the least reflexive relation
such that:

Int ≤ Real
t ′1 ≤ t1 ... t ′n ≤ tn

Proc(t1, ..., tn) ≤ Proc(t ′1, ..., t ′n)

The typing rules of the language are the obvious ones. (We omit them
for conciseness.) The coercion functions are defined in appendix.

Coercet
t ′ : V alt ′ → V alt ∀t ′, t . t ′ ≤ t

11

2.6 Stackability

We want the language to obey a stack discipline. Stack discipline can only
be broken when values may outlive the scope of their free variables. This can
only occur when an identifier i of higher type is updated with the value of
an identifier j which was declared in the scope of i. We thus specify that at
higher type, i must be local to j. To this end, we define the binary relation
≤Index (read “is local to”) as follows.

〈i1, i2〉 ≤Index 〈j1, j2〉 ⇔def i1 < j1 ∨ (i1 = j1 ∧ i2 ≥ j2)

This relation could be refined by considering relative lexical positions in the
same block, and otherwise is traditional [3].

2.7 Valuation functions

The main valuation functions are displayed in Figure 2. The other ones are
shown in appendix.

3 A Definitional Interpreter and its Residualiza-
tion

We have transcribed the denotational specification of Section 2 into a def-
initional interpreter which is compositional and purely functional [38, 44].
We make this interpreter a closed term by abstracting all its free variables
at the outset (i.e., the semantic operators fix, test, etc.). Figure 3 displays
the skeleton of the interpreter.

We can then residualize the application of this definitional interpreter
to any source program, with respect to the codomain of the definitional
interpreter, i.e., with respect to the type of the meaning of a source program.
The result is a textual representation of the dynamic semantics of the source
program, i.e., of its step-by-step execution without interpretive overhead.
Figure 4 displays such a source program. Figure 5 displays the resulting
target program, unedited (except for the comments).

The source program of Figure 4 illustrates block structure, non-local
variables, higher-order procedures, and subtyping. The body of Procedure

12

C : Cmd → Env → Sto → Sto⊥
C[[skip]] ρ σ = σ

C[[write e]] ρ σ = let injo(v) = E [[e]] ρ σ in Writeo〈σ, v〉
C[[read i]] ρ σ = let 〈ι, o〉 = ρ i

〈σ′, v〉 = Reado σ
in Updateo〈ι, v , σ′〉

C[[c1 ; c2]] ρ σ = let σ′ = C[[c1]] ρ σ in C[[c2]] ρ σ′

C[[i1 := i2]] 〈ρ1, ρ2〉 σ = let 〈ι1, t1〉 = ρ2 i1
〈ι2, t2〉 = ρ2 i2

in if ι1 ≤Index ι2 ∨ | t1 | = | t2 | = 1
then let v = Lookupt2〈ι2, σ〉

in Updatet1〈ι1, Coercet1
t2v , σ〉

else wrong “not stackable”
C[[i := e]] 〈ρ1, ρ2〉 σ = let 〈ι, t〉 = ρ2 i

injt ′(v ′) = E [[e]] 〈ρ1, ρ2〉 σ
in Updatet〈ι, Coercet

t ′v
′, σ〉

C[[if b then c1 else c2]] ρ σ = let injBool(v) = E [[b]] ρ σ
in Test 〈v , C[[c1]] ρ σ, C[[c2]] ρ σ〉

C[[while b do c]] ρ σ = ((Fix λf.λσ.let injb(v) = E [[b]] ρ σ
in Test 〈v, f (C[[c]] ρ σ), σ〉)

σ)
C[[call i (e1, ..., en)]] ρ σ = let 〈ι,Proc(t1, ..., tn)〉 = ρ i

〈a, p〉 = LookupProc(t1, ..., tn)〈ι, σ〉
σ0 = PushAccessLink 〈a, σ〉
σ1 = PushBasePointer σ0
injt ′1(v ′1) = E [[e1]] ρ σ1

σ2 = Pusht1〈Coercet1
t ′1

v ′1, σ1〉
...
injt ′n(v ′n) = E [[en]] ρ σn
σn+1 = Pushtn〈Coercetn

t ′n
v ′n, σn〉

σ′ = UpdateBasePointer 〈σn+1, n〉
σ′′ = p σ′

in PopFrame σ′′

C[[block (d1, ..., dn) in c]] ρ σ = let 〈ρ′, σ′〉 = D[[(d1, ..., dn)]] ρ σ
σ′′ = C[[c]] ρ′ σ′

in PopBlock〈σ′′, n〉

Figure 2: Valuation functions for commands

13

(define meaning
(lambda (p)
(lambda (fix test ...)

(lambda (s)
(letrec ([meaning-program (lambda (p s) ...)]

[meaning-command
(lambda (c r s)
(case-record c

...
[(Assign i1 e)
(case-record e
[(Ide i2)
(let ([(Pair x1 t1) ((cdr r) i1)]

[(Pair x2 t2) ((cdr r) i2)])
(if (or (is-local? x1 x2)

(and (is-base-type? t1)
(is-base-type? t2)))

(update t1
x1
(coerce t2

t1
(lookup t2 x2 s))

s)
(wrong "not stackable")))]

[else
(let ([(Pair x1 t1)

((cdr r) i1)]
[(ExpVal t2 v2)
(meaning-expression e r s)])

(update t1 x1 (coerce t2 t1 v2) s))])]
...))]

[meaning-expression (lambda (e r s) ...)]
[meaning-operator (lambda (op v1 v2) ...)]
[meaning-declarations (lambda (ds r s) ...)]
[meaning-declaration (lambda (d r s) ...)])

(meaning-program p s))))))

Figure 3: Skeleton of the definitional interpreter

14

block Var x : Int = 100
Proc print (y : Real) = write y
Proc p (q : Proc(Int), y : Int) = call q (x+ y)

in call p (print, 4)

Figure 4: Sample source program

(lambda (fix test int-to-real conj disj eq-bool
read-int read-real read-bool
write-int write-real write-bool
add-int mul-int sub-int less-int eq-int
add-real mul-real sub-real less-real eq-real
push-int push-real push-bool
push-proc push-func push-al
push-base-pointer pop-block
update-base-pointer pop-frame
lookup-int lookup-real lookup-bool
lookup-proc lookup-func
update-int update-real update-bool
update-proc update-func
current-al lookup-al update-al)

(lambda (s)
(let* ([s (push-int 100 s)] ;;; decl. of x

[a0 (current-al s)]
[s (push-proc

(lambda (s) ;;; decl. of print (code pointer)
(let ([r1 (lookup-real 0 0 s)])

(write-real s r1)))
s)]

[s (push-al a0 s)] ;;; decl. of print (access link)
...

Figure 5: Sample target program (specialized version of Figure 3 with re-
spect to Figure 4)

15

...
[a2 (current-al s)]
[s (push-proc

(lambda (s) ;;; decl. of p (code pointer)
(let* ([p3 (lookup-proc 0 0 s)]

[a4 (lookup-al 0 1 s)]
[i5 (lookup-int 1 0 s)]
[i6 (lookup-int 0 2 s)]
[i7 (add-int i5 i6)]
[s (push-al a4 s)]
[s (push-base-pointer s)]
[s (push-int i7 s)]
[s (update-base-pointer s 1)]
[s (p3 s)])

(pop-frame s)))
s)]

[s (push-al a2 s)] ;;; decl. of p (access link)
[p8 (lookup-proc 0 3 s)]
[a9 (lookup-al 0 4 s)]
[p10 (lookup-proc 0 1 s)]
[a11 (lookup-al 0 2 s)]
[s (push-al a9 s)]
[s (push-base-pointer s)]
[s (push-proc

(lambda (s) ;;; coercion of print (code pointer)
(let* ([i12 (lookup-int 0 0 s)]

[a13 (current-al s)]
[s (push-al a13 s)]
[s (push-base-pointer s)]
[s (push-real (int-to-real i12) s)]
[s (update-base-pointer s 1)]
[s (p10 s)])

(pop-frame s)))
s)]

[s (push-al a11 s)] ;;; coercion of print (access link)
[s (push-int 4 s)]
[s (update-base-pointer s 3)]
[s (p8 s)] ;;; actual call to p
[s (pop-frame s)])

(pop-block s 5))))

Figure 6: Figure 5 (continued and ended)

16

p refers to the two parameters of p and also to the global int-typed vari-
able x. Procedure p expects an int-expecting procedure and an int. It is
passed the real-expecting procedure print, which is legal in the present sub-
typing discipline. Procedure print needs to be coerced into an int-expecting
procedure, which is then passed to Procedure p.

The residual program of Figure 5 is a specialized version of the defini-
tional interpreter of Figure 3 with respect to the source program of Figure 4.
It is a flat Scheme program threading the store throughout and reflecting the
step-by-step execution of the source program. The static semantics of the
source program, i.e., all the interpretive steps that only depend on the text
of the source program, has been processed at partial-evaluation time: all the
location offsets are solved and all primitive operations are properly typed.
The coercion, in particular, has been residualized as a call to an interme-
diate procedure coercing its int argument to a real and calling Procedure
print .

The target language of this partial evaluator is reminiscent of
continuation-passing style without continuations, otherwise known as
nqCPS, A-normal forms [11], or monadic normal forms [17], i.e., for all
practical purposes, three-address code, as in the Dragon book [1]. It can be
indifferently considered as a Scheme program or be translated into assembly
language.

4 Assessment

4.1 The definitional interpreter

Our definitional interpreter has roughly the same size as the denotational
specification of Section 2: 530 lines of Scheme code and less than 16 Kb.
This however also includes the treatment of functions, which we have elided
here.

The semantic operations occupy 120 lines of Scheme code and about 3.5
Kb.

17

4.2 Compiler generation

Generating a compiler out of an interpreter, in type-directed partial evalua-
tion, amounts to specializing the type-directed partial evaluator with respect
to the type of the interpreter (applied to a source program) [9, Section 2.4].
The improvement this yields is negligible in practice.

abstract
syntax

tree

three
address

code

Scheme

4.3 Compiling efficiency

We have constructed a number of source programs of varying size (up to
18,000 lines), and have observed that on the average, compiling takes place
at about 400 lines per second on a SPARC station 20 with two 75 Mhz pro-
cessors running Solaris 2.4, using R. Kent Dybvig’s Chez Scheme Version
4.1u. On a smaller machine, a SPARC Station ELC with one 33 Mhz pro-
cessor running SunOS 4.1.1, about 100 lines are compiled per second, again
using Chez Scheme.

4.4 Efficiency of the compiled code

The compiled code is of standard, Dragon-book quality [1]. It accounts
for the dynamic interpretation steps of the source program. An optimizing
interpreter would yield optimized code.

4.5 Interpreted vs. compiled code

Compiled code runs consistently four times faster than interpreted code, on
the average, in Scheme. This is consistent with traditional results in partial
evaluation [7, 21].

18

5 Related work

5.1 Semantics-implementation systems

Our use of type-directed partial evaluation to specialize a definitional inter-
preter very precisely matches the goal of Mosses’s Semantics Implementation
System [29], as witnessed by the following recent quote [30]:

“SIS [...] took denotational descriptions as input. It trans-
formed a denotational description into a λ-expression which,
when applied to the abstract syntax of a program, reduced to
a λ-expression that represented the semantics of the program in
the form of an input-output function. This expression could be
regarded as the ‘object code’ of the program for the λ-reduction
machine that SIS provided. By applying this code to some in-
put, and reducing again, one could get the output of the program
according to the semantics.”

When SIS was developed, functional languages and their programming en-
vironment did not exist. Today’s definitional interpreters can be (1) type-
checked automatically and (2) interactively tested. Correspondingly, today’s
λ-reduction machines are simply Scheme, ML, or Haskell systems. Alterna-
tively, though, we can translate our target three-address code directly into
assembly language.

SIS was the first semantics-implementation system, but as mentioned
in Section 1, it was followed by a considerable number of other systems.
All of these systems are non-trivial. Some of them are definitely on the
sophisticated side. None of them are so simple that they can, in a type-
directed fashion and in a few lines, as in Figure 1,

1. take a well-typed, runnable, unannotated definitional interpreter in
direct style, as in Figure 3, together with a source program in Figure
4; and

2. produce a textual representation of its dynamic semantics, as in Figure
5.

19

5.2 Compiler derivation

Deriving compilers from interpreters is a well-documented exercise by now
[12, 28, 48]. These derivations are significantly more involved than the
present work, and require significant more handcraft and ingenuity. For
example, the source interpreter usually has to be expressed in continuation-
passing style.

5.3 Partial evaluation

The renaissance of partial evaluation we see in the 90s originates in Jones’s
Mix project [22], which aimed to compile by interpreter specialization and
to generate compilers by self-application. This seminal work has paved the
way for further work on partial evaluation, namely with offline strategies
and binding-time improvements [7, 21]. Let us simply mention two such
works.

Definitional interpreter for an imperative language: In the pro-
ceedings of POPL’91 [6], Consel and Danvy reported the successful com-
pilation and compiler generation for an imperative language that is much
simpler than the present one (procedureless and stackless). The quality of
the residual code was comparable, but a full-fledged partial evaluator was
used, including source annotations, and so were several non-trivial binding-
time improvements, most notably continuations.

Definitional interpreter for a lazy language: In the proceedings of
POPL’92 [23], Jørgensen reported the successful compilation and compiler
generation for a lazy language of the scale of a commercialized product. The
target language was Scheme. The quality of the result was competitive, given
a good Scheme system. Again, a full-fledged partial evaluator was used,
including source annotations, and so was a veritable arsenal of binding-time
improvements, including continuations.

This work: In our work, we use a very simple partial evaluator (displayed
in Figure 1), no annotations, no binding-time analysis, no binding-time im-
provements, and no continuations. Our results are of Dragon-book quality.

20

6 Conclusion

We hope to have shown that type-directed partial evaluation of a definitional
interpreter does scale up to a realistic example with non-trivial programming
features. We would also like to point out that our work offers evidence that
Scott and Strachey were right, each in their own way, when they developed
Denotational Semantics: Strachey in that the λ-calculus provides a proper
medium for encoding at least traditional programming languages, as illus-
trated by Landin [25]; and Scott for organizing this encoding with types and
domain theory. The resulting format of denotational semantics proves ideal
to apply a six-lines λ-calculus normalizer (using a higher-order functional
language) and obtain the front-end of a semantics-based compiler towards
three-address code — a strikingly concise and elegant solution to the old
problem of semantics-based compiling.

7 Limitations

Modern programming languages (such as ML) have more type structure
than Algol-like languages. They are beyond the reach of the current state-
of-the-art of type-directed partial evaluation, which is simply typed. Higher
type systems are necessary — a topic for future work.

Acknowledgements

Grateful thanks to Nevin Heintze, Julia L. Lawall, Karoline Malmkjær, Pe-
ter D. Mosses, and Peter O’Hearn for discussions and comments. Many
years ago, David Schmidt pointed out to the first author the relevance of
constructive type theory for inductively defined domains.

The diagram of Section 4 was drawn with Kristoffer Rose’s XY-pic pack-
age.

A Valuation functions
P : Pgm → Sto → Sto⊥

P [[c]] σ = C[[c]] 〈0,⊥〉 σ

21

D : Dcls → Env → Sto → (Env × Sto)⊥
D[[(d1, ..., dn)]] ρ σ
= let 〈ρ1, σ1〉 = D′[[d1]] ρ σ

...
〈ρn, σn〉 = D′[[dn]] ρn−1 σn−1

in 〈ρn, σn〉

D′ : Decl → Env → Sto → (Env × Sto)⊥
D′[[Var i :Bool = e]] 〈ρ1, ρ2〉 σ
= let injBool(v) = E [[e]] 〈ρ1, ρ2〉 σ

in 〈〈ρ1 + 1, [i 7→ 〈〈0, ρ1〉, Bool〉]ρ2〉, PushBool〈v , σ〉〉
D′[[Var i :Int = e]] 〈ρ1, ρ2〉 σ
= let injInt(v) = E [[e]] 〈ρ1, ρ2〉 σ

in 〈〈ρ1 + 1, [i 7→ 〈〈0, ρ1〉, Int〉]ρ2〉, PushInt〈v , σ〉〉
D′[[Var i :Real = e]] 〈ρ1, ρ2〉 σ
= let v = case E [[e]] 〈ρ1, ρ2〉 σ of

injInt(v)⇒ IntToReal v
[] injReal(v)⇒ v
end

in 〈〈ρ1 + 1, [i 7→ 〈〈0, ρ1〉, Real〉]ρ2〉, PushReal〈v , σ〉〉
D′[[Proc i (i1: t1, ..., in: tn) = c]] 〈ρ1, ρ2〉 σ
= let ρ′ = 〈Σn−1

i=1 | ti |, [in 7→ 〈〈0,Σn−1
i=1 | ti |〉, tn〉]...[i1 7→ 〈〈0, 0〉, t1〉]ρ+

2 〉
v = 〈CurrentAccessLink σ, λ σ . C[[c]] ρ′ σ〉
σ′ = Pushv 〈v , σ〉

in 〈〈ρ1 + 2, [i 7→ 〈〈0, ρ1〉, Proc(t1, ..., tn)〉]ρ2〉, σ′〉

E : Exp → Env → Sto → ExpVal⊥
E [[n]] ρ σ = injInt(n)
E [[r]] ρ σ = injReal(r)
E [[b]] ρ σ = injBool(b)
E [[i]] ρ σ = let 〈ι, t〉 = ρ i in injt(Lookupt〈ι, σ〉)

E [[e1 op e2]] ρ σ = O[[op]] 〈E [[e1]] ρ σ, E [[e2]] ρ σ〉

22

O : Op→ (ExpVal × ExpVal)→ ExpVal⊥
O[[+]] 〈injInt(v1), injInt(v2)〉 = injInt(AddInt〈v1, v2〉)

O[[+]] 〈injReal(v1), injReal(v2)〉 = injReal(AddReal〈v1, v2〉)
O[[+]] 〈injInt(v1), injReal(v2)〉 = injReal(AddReal〈IntToReal v1, v2〉)
O[[+]] 〈injReal(v1), injInt(v2)〉 = injReal(AddReal〈v1, IntToReal v2〉)

...

B Coercions

The coercion functions

Coercet
t ′ : V alt ′ → V alt ∀t ′, t . t ′ ≤ t

are the Store-based ≤-extension of IntToReal defined by

Coercet
tv = v

CoerceReal
Int v = IntToReal v

CoerceProc(t1, ..., tn)
Proc(t ′1, ..., t

′
n)〈a, p〉

= 〈a, λ σ . let σ0 = PushAccessLink 〈a, σ〉
σ1 = PushBasePointer σ0

v′1 = Coercet ′1
t1 (Lookupt1〈〈0, 0〉, σ1〉)

σ2 = Pusht ′1
〈v′1, σ1〉

...
v′n = Coercet ′n

tn (Lookuptn〈〈0,Σn−1
i=1 | ti |〉, σn〉)

σn+1= Pusht ′n〈v
′
n, σn〉

σ′ = UpdateBasePointer 〈σn+1, n〉
σ′′ = p σ′

in PopFrame σ′′〉

In essence, a coercion at higher type simulates an intermediate procedure
or function that coerces its arguments or result as required by the types
[40, 42]. In that sense, the type-directed partial evaluator of Figure 1 is
simply a coercion from static to dynamic [9].

23

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques and Tools. Addison-Wesley, 1986.

[2] France E. Allen, editor. Proceedings of the 1982 Symposium on Com-
piler Construction, SIGPLAN Notices, Vol. 17, No 6, Boston, Mas-
sachusetts, June 1982. ACM Press.

[3] Daniel M. Berry. Block structure: Retention or deletion? (extended
abstract). In Conference Record of the Third Annual ACM Symposium
on Theory of Computing, pages 86–100, Shaker Heights, Ohio, May
1971.

[4] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science
of Computer Programming, 16:151–195, 1991.

[5] William Clinger and Jonathan Rees (editors). Revised4 report on
the algorithmic language Scheme. LISP Pointers, IV(3):1–55, July-
September 1991.

[6] Charles Consel and Olivier Danvy. Static and dynamic semantics pro-
cessing. In Robert (Corky) Cartwright, editor, Proceedings of the Eigh-
teenth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 14–24, Orlando, Florida, January 1991. ACM Press.

[7] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation.
In Susan L. Graham, editor, Proceedings of the Twentieth Annual ACM
Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[8] Olivier Danvy. Pragmatics of type-directed partial evaluation. In
Olivier Danvy, Robert Glück, and Peter Thiemann, editors, Partial
Evaluation, Lecture Notes in Computer Science, Dagstuhl, Germany,
February 1996. To appear.

[9] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr.,
editor, Proceedings of the Twenty-Third Annual ACM Symposium on
Principles of Programming Languages, pages 242–257, St. Petersburg
Beach, Florida, January 1996. ACM Press.

24

[10] Susan Even and David A. Schmidt. Category-sorted algebra-based ac-
tion semantics. Theoretical Computer Science, 77:73–96, 1990.

[11] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In David W. Wall, edi-
tor, Proceedings of the ACM SIGPLAN’93 Conference on Programming
Languages Design and Implementation, SIGPLAN Notices, Vol. 28,
No 6, pages 237–247, Albuquerque, New Mexico, June 1993. ACM
Press.

[12] Daniel P. Friedman, Mitchell Wand, and Christopher T. Haynes. Es-
sentials of Programming Languages. The MIT Press and McGraw-Hill,
1991.

[13] Yoshihito Futamura. Partial evaluation of computation process – an
approach to a compiler-compiler. Systems, Computers, Controls 2, 5,
pages 45–50, 1971.

[14] Harald Ganzinger, Robert Giegerich, Ulrich Mönke, and Reinhard Wil-
hem. A truly generative semantics-directed compiler generator. In Allen
[2], pages 172–184.

[15] Harald Ganzinger and Neil D. Jones, editors. Programs as Data Ob-
jects, number 217 in Lecture Notes in Computer Science, Copenhagen,
Denmark, October 1985.

[16] Susan L. Graham, editor. Proceedings of the 1984 Symposium on
Compiler Construction, SIGPLAN Notices, Vol. 19, No 6, Montréal,
Canada, June 1984. ACM Press.

[17] John Hatcliff and Olivier Danvy. A generic account of continuation-
passing styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-
First Annual ACM Symposium on Principles of Programming Lan-
guages, pages 458–471, Portland, Oregon, January 1994. ACM Press.

[18] Bengt Nordström. Multilevel functions in martin-Löf’s type theory. In
Ganzinger and Jones [15], pages 206–221.

[19] Bengt Nordström, Kent Petersson, and Jan Smith. Programming and
Martin-Löf’s Type Theory. International Series on Monographs on
Computer Science No. 7. Oxford University Press, 1990.

25

[20] Neil D. Jones, editor. Semantics-Directed Compiler Generation, num-
ber 94 in Lecture Notes in Computer Science, Aarhus, Denmark, 1980.

[21] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalu-
ation and Automatic Program Generation. Prentice Hall International
Series in Computer Science. Prentice-Hall, 1993.

[22] Neil D. Jones, Peter Sestoft, and Harald Søndergaard. MIX: A self-
applicable partial evaluator for experiments in compiler generation.
LISP and Symbolic Computation, 2(1):9–50, 1989.

[23] Jesper Jørgensen. Generating a compiler for a lazy language by partial
evaluation. In Andrew W. Appel, editor, Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Programming Languages,
pages 258–268, Albuquerque, New Mexico, January 1992. ACM Press.

[24] Ulrik Jørring and William L. Scherlis. Compilers and staging transfor-
mations. In Mark Scott Johnson and Ravi Sethi, editors, Proceedings of
the Thirteenth Annual ACM Symposium on Principles of Programming
Languages, pages 86–96, St. Petersburg, Florida, January 1986.

[25] Peter J. Landin. A correspondence between Algol 60 and Church’s
lambda notation. Communications of the ACM, 8:89–101 and 158–165,
1965.

[26] Peter Lee. Realistic Compiler Generation. MIT Press, 1989.

[27] Robert E. Milne and Christopher Strachey. A Theory of Programming
Language Semantics. Chapman and Hall, London, and John Wiley,
New York, 1976.

[28] Lockwood Morris. The next 700 formal language descriptions. In Car-
olyn L. Talcott, editor, Special issue on continuations (Part I), LISP
and Symbolic Computation, Vol. 6, Nos. 3/4, pages 249–258. Kluwer
Academic Publishers, December 1993.

[29] Peter D. Mosses. SIS — semantics implementation system, reference
manual and user guide. Technical Report MD-30, DAIMI, Computer
Science Department, Aarhus University, Aarhus, Denmark, 1979.

[30] Peter D. Mosses. Theory and practice of Action Semantics. In Proceed-
ings of the 1996 Symposium on Mathematical Foundations of Computer
Science, Lecture Notes in Computer Science, 1996. To appear.

26

[31] Steve S. Muchnick and Neil D. Jones, editors. Program Flow Analysis:
Theory and Applications. Prentice-Hall, 1981.

[32] Flemming Nielson and Hanne Riis Nielson. Two-Level Functional Lan-
guages, volume 34 of Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 1992.

[33] Frank J. Oles. Type algebras, functor categories, and block structure. In
Algebraic Methods in Semantics, pages 543–573. Cambridge University
Press, 1985.

[34] Larry Paulson. Compiler generation from denotational semantics. In
Bernard Lorho, editor, Methods and Tools for Compiler Construction,
pages 219–250. Cambridge University Press, 1984.

[35] Uwe Pleban. Compiler prototyping using formal semantics. In Graham
[16], pages 94–105.

[36] B. Randell and L. J. Russell. Algol 60 Implementation. Academic Press,
New York, 1964.

[37] Martin R. Raskovsky. Denotational semantics as a specification of code
generators. In Allen [2], pages 230–244.

[38] John C. Reynolds. Definitional interpreters for higher-order program-
ming languages. In Proceedings of 25th ACM National Conference,
pages 717–740, Boston, 1972.

[39] John C. Reynolds. The essence of Algol. In van Vliet, editor, Interna-
tional Symposium on Algorithmic Languages, pages 345–372, Amster-
dam, 1982. North-Holland.

[40] John C. Reynolds. Preliminary design of the programming language
Forsythe. Technical Report CMU-CS-88-159, School of Computer Sci-
ence, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1988.

[41] David A. Schmidt. Denotational Semantics: A Methodology for Lan-
guage Development. Allyn and Bacon, Inc., 1986.

[42] David A. Schmidt. The Structure of Typed Programming Languages.
The MIT Press, 1994.

[43] Ravi Sethi. Control flow aspects of semantics-directed compiling. In
Allen [2], pages 245–260.

27

[44] Joseph Stoy. Some mathematical aspects of functional programming.
In John Darlington, Peter Henderson, and David A. Turner, editors,
Functional Programming and its Applications. Cambridge University
Press, 1982.

[45] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach
to Programming Language Theory. MIT Press, 1977.

[46] Mitchell Wand. Deriving target code as a representation of continu-
ation semantics. ACM Transactions on Programming Languages and
Systems, 4(3):496–517, 1982.

[47] Mitchell Wand. A semantic prototyping system. In Graham [16], pages
213–221.

[48] Mitchell Wand. From interpreter to compiler: a representational deriva-
tion. In Ganzinger and Jones [15], pages 306–324.

28

Recent Publications in the BRICS Report Series

RS-96-13 Olivier Danvy and Reńe Vestergaard. Semantics-Based
Compiling: A Case Study in Type-Directed Partial Evalu-
ation. May 1996. 28 pp.

RS-96-12 Lars Arge, Darren E. Vengroff, and Jeffrey S. Vitter.
External-Memory Algorithms for Processing Line Seg-
ments in Geographic Information Systems. May 1996.
34 pp. An shorter version of this paper was presented
at the Third Annual European Symposium on Algorithms,
ESA '95.

RS-96-11 Devdatt Dubhashi, David A. Grable, and Alessandro Pan-
conesi.Near-Optimal, Distributed Edge Colouring via the
Nibble Method. May 1996. 17 pp. Invited to be published
in in a special issue ofTheoretical Computer Sciencede-
voted to the proceedings of ESA '95.

RS-96-10 Torben Bräuner and Valeria de Paiva. Cut-Elimination
for Full Intuitionistic Linear Logic . April 1996. 27 pp. Also
available as Technical Report 395,Computer Laboratory,
University of Cambridge.

RS-96-9 Thore Husfeldt, Theis Rauhe, and Søren Skyum.Lower
Bounds for Dynamic Transitive Closure, Planar Point Lo-
cation, and Parentheses Matching. April 1996. 11 pp. To
appear inAlgorithm Theory: 5th Scandinavian Workshop,
SWAT '96 Proceedings, LNCS, 1996.

RS-96-8 Martin Hansen, Hans Ḧuttel, and Josva Kleist. Bisimu-
lations for Asynchronous Mobile Processes. April 1996.
18 pp. Appears inTbilisi Symposium on Language, Logic,
and Computation, 1995.

RS-96-7 Ivan Damg̊ard and Ronald Cramer. Linear Zero-
Knowledegde - A Note on Efficient Zero-Knowledge Proofs
and Arguments. April 1996. 17 pp.

RS-96-6 Mayer Goldberg. An Adequate Left-Associated Binary
Numeral System in theλ-Calculus (Revised Version).
March 1996. 19 pp. Accepted forInformation Processing
Letters. This report is a revision of the BRICS Report RS-
95-38.

