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Abstract
In the design of algorithms for large-scale applications it is essential

to consider the problem of minimizing I/O communication. Geograph-
ical information systems (GIS) are good examples of such large-scale
applications as they frequently handle huge amounts of spatial data.
In this paper we develop efficient new external-memory algorithms for
a number of important problems involving line segments in the plane,
including trapezoid decomposition, batched planar point location, tri-
angulation, red-blue line segment intersection reporting, and general
line segment intersection reporting. In GIS systems, the first three
problems are useful for rendering and modeling, and the latter two
are frequently used for overlaying maps and extracting information
from them.
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1 Introduction

The Input/Output communication between fast internal memory and slower
external storage is the bottleneck in many large-scale applications. The sig-
nificance of this bottleneck is increasing as internal computation gets faster,
and especially as parallel computing gains popularity [27]. Currently, tech-
nological advances are increasing CPU speeds at an annual rate of 40–60%
while disk transfer rates are only increasing by 7–10% annually [29]. Inter-
nal memory sizes are also increasing, but not nearly fast enough to meet
the needs of important large-scale applications, and thus it is essential to
consider the problem of minimizing I/O communication.

Geographical information systems (GIS) are a rich source of important
problems that require good use of external-memory techniques. GIS systems
are used for scientific applications such as environmental impact, wildlife
repopulation, epidemiology analysis, and earthquake studies and for com-
mercial applications such as market analysis, facility location, distribution
planning, and mineral exploration [20]. In support of these applications, GIS
systems store, manipulate, and search through enormous amounts of spatial
data [16, 21, 30, 32]. NASA’s EOS project GIS system [16], for example,
is expected to manipulate petabytes (thousands of terabytes, or millions of
gigabytes) of data!

Typical subproblems that need to be solved in GIS systems include point
location, triangulating maps, generating contours from triangulated eleva-
tion data, and producing map overlays, all of which require manipulation of
line segments. As an illustration, the computation of new scenes or maps
from existing information—also called map overlaying—is an important GIS
operation. Some existing software packages are completely based on this
operation [32]. Given two thematic maps (piecewise linear maps with, e.g.,
indications of lakes, roads, pollution level), the problem is to compute a new
map in which the thematic attributes of each location is a function of the
thematic attributes of the corresponding locations in the two input maps.
For example, the input maps could be a map of land utilization (farmland,
forest, residential, lake), and a map of pollution levels. The map overlay op-
eration could then be used to produce a new map of agricultural land where
the degree of pollution is above a certain level. One of the main problems in
map overlaying is “line-breaking,” which can be abstracted as the red-blue
line segment intersection problem.

In this paper, we present efficient external-memory algorithms for large-
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scale geometric problems involving collections of line segments in the plane,
with applications to GIS systems. In particular, we address region decom-
position problems such as trapezoid decomposition and triangulation, and
line segment intersection problems such as the red-blue segment intersection
problem and more general formulations.

1.1 The I/O Model of Computation

The primary feature of disks that we model is their extremely long access time
relative to that of solid state random-access memory. In order to amortize
this access time over a large amount of data, typical disks read or write
large blocks of contiguous data at once. Our problems are modeled by the
following parameters:

N = # of items in the problem instance;
M = # of items that can fit into internal memory;
B = # of items per disk block,

where M < N and 1 ≤ B ≤M/2. Depending on the size of the data items,
typical values for workstations and file servers in production today are on
the order of M = 106 or 107 and B = 103. Large-scale problem instances can
be in the range N = 1010 to N = 1012.

In order to study the performance of external-memory algorithms, we use
the standard notion of I/O complexity [1, 34]. We define an input/output
operation (or simply I/O for short) to be the process of reading or writing
a block of data to or from the disk. The I/O complexity of an algorithm
is simply the number of I/Os it performs. For example, reading all of the
input data requires N/B I/Os. We will use the term scanning to describe
the fundamental primitive of reading (or writing) all items in a set stored
contiguously on external storage by reading (or writing) the blocks of the set
in a sequential manner.

For the problems we consider we define two additional parameters:

K = # of queries in the problem instance;
T = # of items in the problem solution.

Since each I/O can transmit B items simultaneously, it is convenient to
introduce the following notation:

n =
N

B
, k =

K

B
, t =

T

B
, m =

M

B
.
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We will say that an algorithm uses a linear number of I/O operations if it
uses at most O(n) I/Os to solve a problem of size N .

An increasingly popular approach to further increase the throughput of
I/O systems is to use a number of disks in parallel. The number D of disks
range up to 102 in current disk arrays. One method of using D disks in
parallel is disk striping [34], in which the heads of the disks are moved syn-
chronously, so that in a single I/O operation each disk reads or writes a block
in the same location as each of the others. In terms of performance, disk strip-
ing has the effect of using a single large disk with block size B′ = DB. Even
though disk striping does not in theory achieve asymptotic optimality [34]
when D is very large, it is often the method of choice in practice for using
parallel disks, especially when D is moderately sized [33].

1.2 Previous Results in I/O-Efficient Computation

Early work on I/O algorithms concentrated on algorithms for sorting and
permutation related problems [1, 15, 23, 24, 34]. External sorting requires
Θ(n logm n) I/Os,1 which is the external-memory equivalent of the well-
known Θ(N logN) time bound for sorting in internal memory. Work has
also been done on matrix algebra and related problems arising in scientific
computation [1, 34, 33]. More recently, researchers have designed external-
memory algorithms for a number of problems in different areas, such as in
computational geometry [19] and graph theoretic computation [5, 14]. In [6]
a general connection between the comparison-complexity and the I/O com-
plexity of a given problem is shown, and in [4] alternative solutions for some
of the problems in [14] and [19] are derived by developing and using dynamic
external-memory data structures.

1.3 Our Results

In this paper, we combine and modify in novel ways several of the previously
known techniques for designing efficient algorithms for external memory. In
particular we use the distribution sweeping and batch filtering paradigms
of [19] and the buffer tree data structure of [4]. In addition we also develop a
powerful new technique that can be regarded as a practical external-memory
version of batched fractional cascading on an external-memory version of

1We define for convenience logm n = max{1, (logn)/ logm}.
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a segment tree. This enables us to improve on existing external-memory
algorithms as well as to develop new algorithms and thus partially answer
some open problems posed in [19].

In Section 2 we introduce the endpoint dominance problem, which is a
subproblem of trapezoid decomposition. We introduce an O(n logm n)-I/O al-
gorithm to solve the endpoint dominance problem, and we use it to develop
an algorithm with the same asymptotic I/O complexity for trapezoid decom-
position, planar point location, triangulation of simple polygons and for the
segment sorting problem. In Section 3 we give external-memory algorithms
for line segment intersection problems. First we show how our segment sort-
ing algorithm can be used to develop an O(n logm n + t)-I/O algorithm for
red-blue line segment intersection, and then we discuss an O((n+ t) logm n)-
I/O algorithm for the general segment intersection problem.

Our results are summarized in Table 1. For all but the batched pla-
nar point location problem, no algorithms specifically designed for external
memory were previously known. The batched planar point location algorithm
that was previously known [19] only works when the planar subdivision is
monotone, and the problems of triangulating a simple polygon and reporting
intersections between other than orthogonal line segments are stated as open
problems in [19].

For the sake of contrast, our results are also compared with modified
internal-memory algorithms for the same problems. In most cases, these
modified algorithms are plane-sweep algorithms modified to use B-tree-based
dynamic data structures rather than binary tree-based dynamic data struc-
tures, following the example of a class of algorithms studied experimentally
in [13]. Such modifications lead to algorithms using O(N logB n) I/Os. For
two of the algorithms the known optimal internal-memory algorithms [9, 10]
are not plane-sweep algorithms and can therefore not be modified in this
manner. It is difficult to analyze precisely how those algorithms perform in
an I/O environment; however it is easy to realize that they use at least Ω(N)
I/Os. The I/O bounds for algorithms based on B-trees have a logarithm of
base B in the denominator rather than a logarithm of base m. But the most
important difference between such algorithms and our results is the fact that
the updates to the dynamic data structures are handled on an individual
basis, which leads to an extra multiplicative factor of B in the I/O bound,
which is very significant in practice.

As mentioned, the red-blue line segment intersection problem is of special
interest because it is an abstraction of the important map-overlay problem,
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Problem I/O bound of Result using mod.
new result internal memory alg.

Endpoint dominance O(n logm n) O(N logB n)
Trapezoid decomposition O(n logm n) O(N logB n)
Batched planar point location O((n+ k) logm n)
Triangulation O(n logm n) Ω(N )
Segment sorting O(n logm n) O(N logB n)
Red-blue line segment intersection O(n logm n + t) O(N logB n + t)
Line segment intersection O((n+ t) logm n) Ω(N )

Figure 1: Summary of results.

which is the core of several vector-based GISs [2, 3, 26]. Although a time-
optimal internal-memory algorithm for the general intersection problem ex-
ists [10], a number of simpler solutions have been presented for the red-blue
problem [8, 11, 22, 26]. Two of these algorithms [11, 26] are not plane-sweep
algorithms, but both sort segments of the same color in a preprocessing step
with a plane-sweep algorithm. The authors of [26] claim that their algorithm
will perform well with inadequate internal memory owing to the fact that
data are mostly referenced sequentially. A closer look at the main algorithm
reveals that it can be modified to use O(n log2 n) I/Os in the I/O model,
which is only a factor of logm from optimal. Unfortunately, the modified
algorithm still needs O(N logB n) I/Os to sort the segments.

In this paper we focus our attention on the single disk model. As described
in Section 1.1, striping can be used to implement our algorithms on parallel
disk systems with D > 1. Additionally, techniques from [23] and [25] can be
used to extend many of our results to parallel disk systems. In the conference
version of this paper we conjectured that all our results could be improved
by the optimal factor of D on parallel disk systems with D disks, but it is
still an open problem whether the required merges can be done efficiently
enough to allow this.

2 The Endpoint Dominance Problem

In this section we consider the endpoint dominance problem (EPD) defined
as follows: Given N non-intersecting line segments in the plane, find the
segment directly above each endpoint of each segment.
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EPD is a powerful tool for solving other important problems as we will
illustrate in Section 2.1. As mentioned in the introduction a number of tech-
niques for designing efficient I/O-efficient algorithms have been developed in
recent years, including distribution sweeping, batch filtering [19] and buffer
trees [4]. However, we do not seem to be able to efficiently solve EPD using
these techniques directly. Section 2.2 briefly review some of the techniques
and during that process we try to illustrate why they are inadequate for solv-
ing EPD. Fortunately, as we will demonstrate in Section 2.3, we are able to
combine the existing techniques with several new ideas in order to develop
an I/O-efficient algorithm for the problem, and thus for a number of other
important problems.

2.1 Using EPD to solve other Problems

In this section we with three lemmas illustrate how an I/O-efficient solution
to EPD can be used in the construction of I/O-efficient solutions to other
problems.

Lemma 1 If EPD can be solved in O(n logm n) I/Os, then the trapezoid de-
composition of N non-intersecting segments can be computed in O(n logm n)
I/Os.

Proof : We solve two instances of EPD, one to find the segments directly
above each segment endpoint and one (with all y coordinates negated) to
find the segment directly below each endpoint—see Figure 2 for an example
of this on a simple polygon. We then compute the locations of all O(N)
vertical trapezoid edges. This is done by scanning the output of the two
EPD instances in O(n) I/Os. To explicitly construct the trapezoids, we sort
all trapezoid vertical segments by the IDs of the input segments they lie on,
breaking ties by x coordinate. This takes O(n logm n) I/Os. Finally, we scan
this sorted list, in which we find the two vertical edges of each trapezoid in
adjacent positions. The total amount of I/O used is thus O(n logm n).

Lemma 2 If EPD can be solved in O(n logm n) I/Os, then a simple polygon
with N vertices can be triangulated in O(n logm n) I/O operations.

Proof : After computing the trapezoid decomposition of a simple polygon, the
polygon can be triangulated in O(n) I/Os using a slightly modified version
of an algorithm from [18].
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Figure 2: Using EPD to compute
the trapezoid decomposition of a
simple polygon.

Figure 3: Comparing segments.
Two segments can be related in
four different ways.

We define a segment AB in the plane to be above another segment CD
if we can intersect both AB and CD with the same vertical line l, such
that the intersection between l and AB is above the intersection between
l and CD. Note that two segments are in comparable if they cannot be
intersected with the same vertical line. Figure 3 demonstrates that if two
segments are comparable then it is enough to consider vertical lines through
the four endpoints to obtain their relation. The problem of sorting N non-
intersecting segments in the plane is to extending the partial order defined
in the above way to a total order. This problem will become important in
the solution to the red-blue line segment intersection problem in section 3.1.

Lemma 3 If EPD can be solved in O(n logm n) I/Os, then a total ordering
of N non-intersecting segments can be found in O(n logm n) I/Os.

Proof : We first solve EPD on the input segments augmented with the seg-
ment S∞ with endpoints (−∞,∞) and (∞,∞). The existence of S∞ ensures
that all input segment endpoints are dominated by some segment. We define
an aboveness relation ↘ on elements of a non-intersecting set of segments
S such that AB ↘ CD if and only if either (C,AB) or (D,AB) is in the
solution to EPD on S. Here (A,BC) denotes that BC is the segment imme-
diately above A. Similarly, we solve EPD with negated y coordinates and a
special segment S−∞ to establish a belowness relation↗. As discussed sort-
ing the segments corresponds to extending the partial order defined by ↘
and ↗ to a total order.

In order to obtain a total order we define a directed graph G = (V,E)
whose nodes consist of the input segments and the two extra segments S∞
and S−∞. The edges correspond to elements of the relations ↘ and ↗.
For each pair of segments AB and CD, there is an edge from AB to CD
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iff CD ↘ AB or AB ↗ CD. To sort the segments we simply have to
topologically sort G. As G is a planar s,t-graph of size O(N) this can be
done in O(n logm n) I/Os using an algorithm of [14].

2.2 Buffer Trees and Distribution Sweeping

In internal memory EPD can be solved optimally with a simple plane-sweep
algorithm; We sweep the plane from left to right with a vertical line, inserting
a segment in a search tree when its left endpoint is reached and removing it
again when the right endpoint is reached. For every endpoint we encounter
we also do a search in the tree to identify the segment immediately above
the point.

In [4] a number of external-memory data structures called buffer trees are
developed for use in plane-sweep algorithms. Buffer trees are data structures
that can support the processing of a batch of N updates and K queries on an
initially empty dynamic data structure of elements from a totally ordered set
in O((n + k) logm n + t) I/Os. They can be used to implement plane-sweep
algorithms in which the entire sequence of updates and queries is known in
advance. The queries that such plane-sweep algorithms ask of their dynamic
data structures need not be answered in any particular order; the only re-
quirement on the queries is that they must all eventually be answered. Such
problems are known as batch dynamic problems [17]. The plane-sweep algo-
rithm for EPD sketched above can be stated as a batched dynamic problem.
However, the requirement that the element stored in the buffer tree is taken
from a totally ordered set is not fulfilled in the algorithm, as we do not know
any total order of the segments. Actually, as demonstrated in Lemma 3,
finding such an ordering is an important application of EPD. Therefore, we
cannot use the buffer tree as the tree structure in the plane-sweep algorithm
to get an I/O-efficient algorithm. For the other problems we are consider-
ing in this paper, the known internal-memory plane-sweep solutions cannot
be stated as batched dynamic algorithms (since the updates depend on the
queries) or else the elements involved are not totally ordered.

In [19] a powerful external memory version of the plane-sweep paradigm
called distribution sweeping is introduced. Unfortunately, direct application
of distribution sweeping appears insufficient to solve EPD. In order to illus-
trate why distribution sweeping is inadequate for the task at hand, let us
briefly review how it works. We divide the plane into m vertical slabs, each
of which contains Θ(n/m) input objects, for example points or line segment
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endpoints. We then sweep down vertically over all of the slabs to locate com-
ponents of the solution that involve interaction of objects in different slabs
or objects (such as line segments) that completely span one or more slabs.
The choice of m slabs is to ensure that one block of data from each slab fits
in main memory. To find components of the solution involving interaction
between objects residing in the same slab, we recursively solve the problem in
each slab. The recursion stops after O(logm n/m) = O(logm n) levels when
the subproblems are small enough to fit in internal memory. In order to
get an O(n logm n) algorithm one therefore need to be able to do one sweep
in O(n) I/Os. Normally this is accomplished by preprocessing the objects by
using an optimal algorithm to sort them by y-coordinate. This e.g. allows
one to avoid having to perform a sort before each recursive application of
the technique, because as the objects are distributed to recursive subprob-
lems their y ordering is retained. The reason that distribution sweeping fails
for EPD is that there is no necessary relationship between the y ordering of
endpoints of segments and their endpoint dominance relationship. In order
to use distribution sweeping to get an optimal algorithm for EPD we instead
need to sort the segments in a preprocessing step which leaves us with the
same problem we encountered in trying to use buffer trees for EPD.

As know techniques fails to solve EPD optimally we are led instead to
other approaches as discussed in the next section.

2.3 External-Memory Segment Trees

The segment tree [7, 28] is a well-known dynamic data structure used to store
a set of segments in one dimension, such that given a query point all segments
containing the point can be found efficiently. Such queries are called stabbing
queries. An external-memory segment tree based on the approach in [4] is
shown in Figure 4. The tree is perfectly balanced over the endpoints of the
segments it represents and has branching factor

√
m/4. Each leaf represents

M/2 consecutive segment endpoints. The first level of the tree partitions the
data into

√
m/4 intervals σi—for illustrative reasons we call them slabs—

separated by dotted lines on Figure 4. Multislabs are defined as contiguous
ranges of slabs, such as for example [σ1, σ4]. There are m/8−

√
m/4 multi-

slabs. The key point is that the number of multislabs is a quadratic function
of the branching factor. The reason why we choose the branching factor to
be Θ(

√
m ) rather than Θ(m) is so that we have room in internal memory for

a constant number of blocks for each of the Θ(m) multislabs. The smaller
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σ0 σ1 σ2 σ3 σ4

√
m/4 slabs σi

· · · · · ·

· · ·· · ·· · ·· · ·· · ·

√
m/4 nodes

m/4 nodes

2N/M leaves

...

· · ·

A

· · ·

B

C

FE

D

· · ·O(logm n)

Figure 4: An external-memory segment tree based on a buffer tree over a set
of N segments, three of which, AB, CD, and EF , are shown.

branching factor at most about doubles the height of the tree.
Segments such as CD that completely span one or more slabs are called

long segments. A copy of each long segment is stored in the largest multislab
it spans. Thus, CD is stored in [σ1, σ3]. All segments that are not long
are called short segments and are not stored in any multislab. Instead, they
are passed down to lower levels of the tree where they may span recursively
defined slabs and be stored. AB and EF are examples of short segments.
The portions of long segments that do not completely span slabs are treated
as small segments. There are at most two such synthetically generated short
segments for each long segment and total space utilization is thus O(n logm n)
blocks.

To answer a stabbing query, we simply proceed down a path in the tree
searching for the query value. At each node we encounter, we report all the
long segments associated with each of the multislabs that span the query
value.

Because of the size of the nodes and auxiliary multislab data, the buffer
tree approach is inefficient for answering single queries. In batch dynamic
environments, however, it can be used to develop optimal algorithms. In [4],
techniques are developed for using external-memory segment trees in a batch
dynamic environment such that inserting N segments in the tree and per-
forming K queries requires O((n + k) logm n + t) I/Os.

It is possible to come close to solving EPD by first constructing an
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external-memory segment tree over the projections of the segments onto the
x-axis and then performing stabbing queries at the x coordinates of the
endpoints of the segments. However, what we want is the single segment
directly above each query point in the y dimension, as opposed to all seg-
ments it stabs. Fortunately, we are able to modify the external segment tree
in order to efficiently answer a batch of this type of queries. The modifica-
tion requires two significant improvements over existing techniques. First, as
discussed in Section 2.3.1, we need to strengthen the definition of the struc-
ture, and the tree construction techniques of [4] must be modified in order
to guarantee optimal performance when the structure is built. Second, as
discussed in Section 2.3.2 the batched query algorithm must be augmented
using techniques similar to fractional cascading [12].

2.3.1 Constructing Extended External Segment Trees

We will construct what we call an extended external segment tree using an
approach based on distribution sweeping. When we are building an external
segment tree on non-intersecting segments in the plane we can compare all
segments in the same multislab just by comparing the order of their endpoints
on one of the boundaries. An extended external segment tree is just an
external segment tree as described in the last section built on non-intersecting
segments, where the segments in each of the multislabs are sorted. Before
discussing how to construct an extended external segment tree I/O-efficiently
we will show a crucial property, namely that the segments stored in the
multislab lists of a node in such a structure can be sorted efficiently. We will
use this extensively in the rest of the paper. When we talk about sorting
segments in the multislab lists of a node we imagine that they are “cut” to
the slab boundaries, that is, that we have removed the part of the segments
that are stored recursively further down the structure. Note that this might
result in another total order on the segments than if we considered the whole
segment.

Lemma 4 The set of N segment stored in the multislab lists of an inter-
nal node of an extended external segment tree can be sorted in O(n) I/O
operations.

Proof : We claim that we can construct a sorted list of the segments by
repeatedly looking at the top segment in each of the multislabs, and selecting
one of them to go to the sorted list.
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To prove the claim, assume for the sake of contradiction that there exists
a top segment s in one of the multislab lists which is above the top segment
in all the other multislab lists it is comparable with, but which must be
below a segment t in a total order. If this is the case there exist a series
of segment s1, s2 . . . , si such that t is above s1 which is above s2 and so on
ending with si being above s. But if si is above s then so is the top segment
in the multislab list containing si contradicting the fact that s is above the
top segment in all multislab lists it is comparable with.

As the number of multislab lists is O(m) there is room for a block from
each of them in internal memory. Thus the sorted list can be constructed
in O(n) I/Os by performing a standard external-memory merge of O(m)
sorted lists into a single sorted list.

In order to construct an extended external segment tree on N segments,
we first use an optimal sorting algorithm to create a list of all the endpoints
of the segments sorted by x-coordinate. This list is used during the whole
algorithm to find the medians we use to split the interval associated with
a given node into

√
m/4 vertical slabs. We now construct the O(m) sorted

multislab lists associated with the root in the following way: First we scan
through the segments and distribute the long segments to the appropriate
multislab list. This can be done in O(n) I/Os because we have enough
internal memory to hold a block of segments for each multislab list. Then
we sort each of these lists individually with an optimal sorting algorithm.
Finally, we recursively construct an extended external segment tree for each
of the slabs. The process continues until the number of endpoints in the
subproblems falls below M/2.

Unfortunately, this simple algorithm requires O(n log2
m n) I/Os, because

we use O(n logm n) I/Os to sort the multislab lists on each level of the re-
cursion. To avoid this problem, we modify our algorithm to construct the
multislab lists of a node not only from a list of segments but also from two
other sorted lists of segments. One sorted list consists of segments that have
one endpoint in the x range covered by the node under construction and one
to the left thereof. The other sorted list is similar but contains segments
entering the range from the right. Both lists are sorted by the y coordinate
at which the segments enter the range of the node being constructed. In
the construction of the structure the two sorted lists will contain segments
which was already stored further up the tree. We begin to build a node
just as we did before, by scanning through the unsorted list of segments,
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distributing the long segments to the appropriate multislab lists, and then
sorting each multislab list. Next, we scan through the two sorted lists and
distribute the long segments to the appropriate multislab lists. Segments
will be taken from these lists in sorted order, and can thus be merged into
the previously sorted multislab lists at no additional asymptotic cost. This
completes the construction of the sorted multislab lists, and now we simply
have to produce the input for the algorithm at each of the

√
m/4 children of

the current node. The
√
m/4 unsorted lists are created by scanning through

the list of segments as before, distributing the segments with both endpoints
in the same slab to the list associated with the slab in question. The 2

√
m/4

sorted lists of boundary crossing segments are constructed from the sorted
multislab lists generated at the current level; First we use a linear number
of I/Os sort the segments (Lemma 4) and then the 2

√
m/4 lists can be con-

structed by scanning through the sorted list of segments, distributing the
boundary crossing segments to the appropriate of 2

√
m/4 lists. These lists

will automatically be sorted.
In the above process all the distribution steps can be done in a linear num-

ber of I/Os, because the number of lists we distribute into always is O(m),
which means that we have enough internal memory to hold a block of seg-
ments for each output list. Thus, each level of recursion uses O(n) I/Os plus
the number of I/Os used on sorting. The following lemma then follows from
the fact that each segment only ones is contained in a list that is sorted:

Lemma 5 An extended external segment tree on N non-intersecting seg-
ments in the plane can be constructed in O(n logm n) I/O operations.

2.3.2 Filtering Queries Through an Extended Tree

Having constructed an extended external segment tree, we can now use it
to find the segments directly above each of a series of K query points. In
solving EPD, we have K = 2N , and the query points are the endpoints of
the original segments. To find the segment directly above a query point p, we
examine each node on the path from the root of the tree to the leaf containing
p’s x coordinate. At each such node, we find the segment directly above p by
examining the sorted segment list associated with each multislab containing
p. This segment can then be compared to the segment that is closest to the
query point p so far, based on segments seen further up the tree, to see if it
is the new globally closest segment. All K queries can be processed through
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the tree at once using a technique similar to batch filtering [19], in which all
queries are pushed through a given level of the tree before moving on to the
next level.

Unfortunately, the simple approach outlined in the preceding paragraph
is not efficient. There are two problems that have to be dealt with. First,
we must be able to look for a query point in many of the multislabs lists
corresponding to a given node simultaneously. Second, searching for the
position of a point in the sorted list associated with a particular multislab
may require many I/Os, but as we are looking for an O(n logm n) solution we
are only allowed to use a linear number of I/Os to find the positions off all
the query points. To solve the first problem, we will take advantage of the
internal memory that is available to us. The second problem is solved with a
notion similar to fractional cascading [11, 12, 31]. The idea behind fractional
cascading on internal-memory segment trees is that instead of searching for
the same element in a number of sorted lists of different nodes, we augment
the list at a node with sample elements from lists at the node’s children. We
then build bridges between the augmented list and corresponding elements
in the augments lists of the node’s children. These bridges obviate the need
for full searches in the lists at the children. We take a similar approach for
our external-memory problem, except that we send sample elements from
parents to children. Furthermore, we do not use explicit bridges.

As a first step towards a solution based on fractional cascading, we prepro-
cess the extended external segment tree in the following way (corresponding
to “building bridges”): For each internal node, starting with the root, we
produce a set of sample segments. For each of the

√
m/4 slabs (not mul-

tislabs) we produce a list of samples of the segments in the multislab lists
that span it. The sample list for a slab consists of every (2

√
m/4 )th segment

in the sorted list of segments that spans it, and we “cut” the segments to
the slab boundaries. All the samples are produced by scanning through the
sorted list of all segments in the node produced as in Lemma 4, distributing
the relevant segments to the relevant sample lists. This can be done effi-
ciently simply by maintaining

√
m/4 counters during the scan, counting how

many segments so far have been seen spanning a given slab. For every slab
we then augment the multislab lists of the corresponding child by merging
the sampled list with the multislab list of the child that contains segments
spanning the whole x-interval. This merging happens before we proceed to
preprocessing the next level of the tree. At the lowest level of internal nodes,
the sampled segments are passed down to the leaves.
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We now prove a crucial lemma about the I/O complexity of the prepro-
cessing steps and the space of the resulting data structure:

Lemma 6 The preprocessing described above uses O(n logm n) I/Os. Af-
ter the preprocessing there are still O(N) segments stored in the multi-lists
on each level of the structure. Furthermore, each leaf contain less than M
segments.

Proof : Before any samples are passed down the tree, we have at most 2N
segments represented at each level of the tree. Let Ni be the number of long
segments, both original segments and segments sent down from the previous
level, among all the nodes at level i of the tree after the preprocessing step. At
the root, we have N0 ≤ 2N . We send at most Ni/(2

√
m/4 ) ·

√
m/4 = Ni/2

segments down from level i to level i + 1. Thus, Ni+1 ≤ 2N + Ni/2. By
induction on i, we can show that for all i, Ni = (4− (1/2)i−1)N = O(N).
From Lemma 4 and the fact that the number of multislab lists is O(m)—and
thus that we can do a distribution or a merge step in a single pass of the
data—it follows that each segment on a given level is read and written a
constant number of times during the preprocessing phase. The number of
I/Os used at level i of the tree is thus O(ni), where ni = Ni/B. Since there
are O(logm n) levels, we in total use O(n logm n) I/Os.

Before preprocessing, the number of segments stored in a node is less than
the number of endpoints in the leaves below the node. To be precise, a leaf
contains less than M/2 segments and a node i levels up the tree from a leaf
contains less than M/2 · (

√
m/4)i segments. After preprocessing, the number

of segments Nl in a leaf at level l in the tree must be Nl ≤ M/2 + Nl−1

2
√
m/4

,
where Nl−1 is the maximal number of segments in a node at level l − 1; this
is because at most every (2

√
m/4)th of these segments are sent down to the

leaf. Thus,

Nl ≤M/2 +
M/2 ·

√
m/4 +Nl−2/2

√
m/4

2
√
m/4

≤M/2 +M/4 +
Nl−2

(2
√
m/4)2

and so on, which means that Nl < M .

Having preprocessed the tree, we are now ready to filter the K query
points through it. We assume without loss of generality that K = O(N).
If K = Ω(N) we break the queries into K/N groups of K ′ = N queries
and process each group individually. For EPD, we have K = 2N , so this
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grouping is not necessary. But as we will see later, grouping reduces the
overall complexity of processing a batch of queries whenK is very large. Since
our fractional cascading construction is done backwards (sampled segments
sent downwards), we filter queries from the leaves to the root rather than
from the root to the leaves. To start off, we sort the K query points by their
x coordinates in O(k logm k) I/Os. We then scan the sorted list of query
points to determine which leaf a given query belongs to. This produces an
unsorted list of queries for each leaf as indicated on Figure 5a). Next we
iterate through the leaves, and for each leaf find all dominating segments of
the queries assigned to the leaf that are among the segments in the leaf. This
is done by loading the entire set of segments stored at that leaf (which fits in
memory according to Lemma 6), and then use an internal-memory algorithm
to find the dominating segment for each query. As the total size of the data
in all the leaves is O(N), the total I/O complexity of the process is O(k+n).
In order to prepare for the general step of moving queries up the tree, we sort
the queries that went into each leaf based on the order of the segments that
we found to be directly above them, ending up in a situation as indicated in
Figure 5b). This takes O(k logm k) I/Os.

Each filtering step of the algorithm begins with a set of queries at a given
level, partitioned by the nodes at that level and ordered within the nodes
by the order of the segments found to be directly above them on the level.
This is exactly what the output of the leaf processing was. The filtering step
should produce a similar configuration on the next level up the tree. For
one node this is indicated on Figure 5c). Remember that throughout the
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Figure 5: Filtering queries through the
structure. An arrow in a list indicate
that it is sorted.

Figure 6: All queries between
sampled segments (indicated
by fat lines) must appear to-
gether in the list of queries for
the slab.
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algorithm we also keep track of the segment found to be closest to a given
query point so far, such that when the root is reached we have found the
dominating segment off all query points.

To perform one filtering step on a node we merge the list of queries associ-
ated with its children (slabs) and the node’s multislab lists. The key property
that allows us to find the dominating segments among the segments stored
in the node in an I/O-efficient manner, and sort the queries accordingly, is
that the list of queries associated with a son of the node cannot be to un-
sorted relative to their dominating segment in the node. This is indicated in
Figure 6.

In order to produce for each slab a list of the queries in the slab, sorted
according to dominating segment in the node, we again produce and scan
through a sorted list of segments in the multislab list of the node, just like
when we generated the samples that were passed down the tree in the the
preprocessing phase. This time, however, instead of generating samples to
pass down the tree, we insert a given segment in a list for each slab it spans.
Thus if a segment completely spans four slabs it is inserted in four lists. If,
during the scan, we encounter a segment which was sampled in slab s in
the sampling phase then we stop the scan and process the queries in the
list of queries for s between the sampled segment just encountered and the
last sampled segment. As previously discussed these queries appear together
in the sorted (according to dominating segment on the last level) list of
queries for s. When this is done we clear the list of segments spanning s
and continue the scan. The scan continues until all multislab segments have
been processed. The crucial property is now that during the scan we can
hold all the relevant segments in main memory because at no time during
the scan do we store more than 2

√
m/4 segments for each slab, that is,

2
√
m/4 ·

√
m/4 = m/2 segments in total. Thus we can perform the scan, not

counting the I/Os used to process the queries, in a linear number of I/Os.
To process the queries in a slab between two sampled segments we main-

tain 2
√
m/4 output blocks, each of which corresponds to a segment between

the two sampled segments. The block for a segment is for queries with the
segment as dominating segment among the segments in the multislab list.
As we read queries from the output of the child, we place them in the appro-
priate output block for the slab. If these output blocks become full, we write
them back to disk. Once all queries between the two sampled segments have
been processed, we concatenate the outputs associated with each of the seg-
ments between the samples. This results in a list of queries sorted according
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to dominating segment in the node, and this list is appended to an output
list for the slab. All of the above is done in a number of I/Os linear in the
number of queries processed.

When we finish the above process, we merge the sorted output query lists
of all the slabs to produce the output of the current node in a linear number
of I/Os.

As discussed above, once this process has reached the root, we have the
correct answers to all queries. The total I/O complexity of the algorithm is
given by the following theorem.

Theorem 1 An extended external segment tree on N non-intersecting seg-
ments in the plane can be constructed, and K query points can be filtered
through the structure in order to find the dominating segments for all these
points, in O((n + k) logm n) I/O operations.

Proof : According to Lemma 5 and 6 construction and preprocessing together
require O(n logm n) I/Os.

AssumingK ≤ N , sorting theK queries takesO(n logm n) I/Os. Filtering
the queries up one level in the tree takes O(n) I/Os for the outer scan and
O(k) I/Os to process the queries. This occurs through O(logm n) levels,
giving an overall I/O complexity of O(n logm n).

When K > N , we can break the problem into K/N = k/n sets of N
queries. Each set of queries can be answered as shown above in O(n logm n)
I/Os, giving a total I/O complexity of O(k logm n).

Theorem 1 immediately gives us the following bound for EPD, for which
K = 2N .

Corollary 1 The endpoint dominance problem can be solved in O(n logm n)
I/O operations.

We then immediately get the following from Lemma 1, 2 and 3.

Corollary 2 The trapezoid decomposition and the total order of N non-
intersecting segments in the plane, as well as the triangulation of a simple
polygon, can all be computed in O(n logm n) I/O operations.

It remains open whether a simple polygon can be triangulated in O(n)
I/Os when the input vertices are given by their order on the boundary of the
polygon, which would match the linear internal-memory bound [9].
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As a final direct application of our algorithm for EPD we consider the
multi-point planar point location problem. This is the problem of reporting
the location of K query points in a planar subdivision defined by N line
segments. In [19] an O((n + k) logm n)-I/O algorithm for this problem is
given for monotone subdivisions of the plane. Using Theorem 1 we can
immediately extended the result to arbitrary planar subdivisions.

Lemma 7 The multi-point planar point location problem can be solved using
O((n + k) logm n) I/O operations.

3 Line Segment Intersection

In this section we design algorithms for line segment intersection reporting
problems. In Section 3.1 we develop an I/O-efficient algorithm for the red-
blue line segment intersection problem and in Section 3.2 we develop an
algorithm for the general line segment intersection problem.

3.1 Red-Blue Line Segment Intersection

Using our ability to sort segments as described in Section 2, we can now
overcome the problems in solving the red-blue line segment intersection prob-
lem with distribution sweeping. Given input sets Sr of non-intersecting red
segments and Sb of non-intersecting blue segments, we construct two inter-
mediate sets

Tr = Sr ∪
⋃

(p,q)∈Sb
{(p, p), (q, q)}

Tb = Sb ∪
⋃

(p,q)∈Sr
{(p, p), (q, q)}

Each new set is the union of the input segments of one color and the endpoints
of the segments of the other color (or rather zero length segments located at
the endpoints). Both Tr and Tb are of size O(|Sr| + |Sb|) = O(N). We sort
both Tr and Tb using the algorithm from the previous section, and from now
on assume they are sorted. This preprocessing sort takes O(n logm n) I/Os.

We now locate intersections between the red and blue segments with a
variant of distribution sweeping with a branching factor of

√
m. As discussed

in Section 2.2, the structure of distribution sweeping is that we divide the
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plane into
√
m slabs, not unlike the way the plane was divided into slabs

to build an external segments tree in Section 2.3. We define long segments
as those crossing one or more slabs and short segments as those completely
contained in a slab. Furthermore, we shorten the long segments by “cutting”
them at the right boundary of the slab that contain their left endpoint, and
at the left boundary of the slab containing their right endpoint. This may
produce up to two new short segments for each long segment, and below we
show how to update Tr and Tb accordingly in O(n) I/Os. We also show how
to report all Ti intersections between the long segments of one color and the
long and short segments of the other color in O(n+ti) I/Os. Next, we use one
scan to partition the sets Tr and Tb into

√
m parts, one for each slab, and we

recursively solve the problem on the short segments contained in each slab
to locate their intersections. Each original segment is represented at most
twice at each level of recursion, thus the total problem size at each level of
recursion remains O(N) segments. Recursion continues through O(logm n)
levels until the subproblems are of size O(M) and thus can be solved in
internal memory. This gives us the following result:

Theorem 2 The red-blue line segment intersection problem on N segments
can be solved in O(n logm n+ t) I/O operations.

Now, we simply have to fill in the details of how we process the segments
on one level of the recursion. First, we consider how to insert the new points
and segments generated when we cut a long segment at the slab boundaries
into the sorted orders Tr and Tb. Consider a cut of a long red segment s
into three parts. Changing Tr accordingly is easy, as we just need to insert
the two new segments just before or after s in the total order. In order to
insert all new red endpoints generated by cutting long red segments (which
all lie on a slab boundary) in Tb, we first scan through Tr generating the
points and distributing them to

√
m lists, one for each boundary. The lists

will automatically be sorted and therefore it is easy to merge them into Tr
in a simple merge step. Altogether we update Tr and Tb in a O(n) I/Os.

Next, we consider how intersections involving long segments are found.
We divide the algorithm into two parts; reporting intersections between long
and short segments of different colors and between long segments of different
colors.

Because Tr and Tb are sorted, we can locate interactions between long
and short segments using the distribution-sweeping algorithm used to solve
the orthogonal segment intersection problem in [19]. We use the algorithm
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Figure 7: Long blue segments
(dashed lines) can interact with
multislab in three ways.

Figure 8: Proof of Lemma 8. The
segment between a and b must in-
tersect b.

twice and treat long segments of one color as horizontal segments and short
segments of the other color as vertical segments. We sketch the algorithm
for long red and blue short segments (details can be found in [19]); We sweep
from top to bottom by scanning through the sorted list of red segments
and blue endpoints Tr. When a top endpoint of a small blue segment is
encountered, we insert the segment in an active list (a stack where we keep
the last block in internal memory) associated with the slab containing the
segment. When a long red segment is encountered we then scan through all
the active lists associated with the slabs it completely spans. During this scan
we know that every small blue segment in the list either is intersected by the
red segment or will not be intersected by any of the following red segments
(because we process the segments in sorted order), and can therefore be
removed from the list. A simple amortization argument then shows that we
use O(n + ti) I/Os to do this part of the algorithm.

Next we turn to the problem of reporting intersections between long seg-
ments of different colors. We define a multislab as in Section 2.3.1 to be a
slab defined by two of the

√
m boundaries. In order to report the intersec-

tions we scan through Tr and distribute the long red segments into the O(m)
multislabs. Next, we scan through the blue set Tb, and for each blue segment
we report the intersections with the relevant long red segments. This is the
same as reporting intersections with the appropriate red segments in each
of the multislab lists. Now consider Figure 7. A long blue segments can
“interact” with a multislab in three different ways. It can have one endpoint
in the multislab, it can cross the multislab completely, or it can be totally
contained in the multislab. First, let us concentrate on reporting intersec-
tions with red segments in multislabs for which the blue segment intersects
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the left boundary. Consider a blue segment b and a multislab m containing
its right endpoint, and define yp to be the y coordinate of a point p. We have
the following:

Lemma 8 If a blue segment b intersects the left boundary of a multislab
at point p then all blue segments processed after b will intersect the same
boundary at a point q below p. Let r be the left endpoint of a red segment in
the multislab list. If yr ≥ yp and b intersects the red segment, then b intersects
all red segments in the multislab list with left endpoints in the y-range [yp, yr].
The case yr ≤ yp is symmetric.

Proof : The first part follows immediately from the fact that we process
the segments in sorted order. Figure 8 demonstrates that the second part
holds.

Using this lemma we can now complete the design of the algorithm for our
problem using a merging scheme. As discussed above, we process the blue
segment in Tb one at a time and report intersections with red segments in
multislabs list where the blue segment intersect the left boundary. For each
such multislab list we do the following: We scan forward from the current po-
sition in the list until we find the first red segment sr whose left endpoint lies
below the intersection between the blue segment and the multislab bound-
ary. Then we scan backward or forward as necessary in the multislab list
in order to report intersections. Lemma 8 shows that the algorithm reports
all intersections because all intersected segments lies consecutively above or
belove sr. Furthermore, it shows that we can use blocks efficiently such that
we in total only scan through each multislabs list once without reporting
intersections. Thus, our algorithm uses a total of O(n + ti) I/Os.

This takes care of the cases where the blue segment completely spans
a multislab or where it has its right, and only the right, endpoint in the
multislab. The case where the blue segment only has its left endpoint in the
multislab can be handled analogously. The remaining case can be handled
with the same algorithm, just by distributing the blue segments instead of
the red segments, and then processing one long blue segment at a time.
To summarize, we have shown how to perform one step of the distribution
sweeping algorithm in O(n + ti) I/Os, and thus proven Theorem 2.
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3.2 General Line Segment Intersection

The general line segment intersection problem cannot be solved by distri-
bution sweeping as in the red-blue case, because the ↗ and ↘ (Lemma 3)
relations for sets of intersecting segments are not acyclic, and thus the prepro-
cessing phase to sort the segments cannot be used to establish an ordering
for distribution sweeping. However, as we show below, extended external
segment trees can be used to establish enough order on the segments to
make distribution sweeping possible. The general idea in our algorithm is
to build an extended external segment tree on all the segments, and during
this process to eliminate any inconsistencies that arise because of intersecting
segments on the fly . This leads to a solution for the general problem that
integrates all the elements of the red-blue algorithm into one algorithm. In
this algorithm, intersections are reported both during the construction of an
extended external segment tree and during the filtering of endpoints through
the structure.

In order to develop the algorithm we need an external-memory priority
queue [4]. Given mp blocks of internal memory, N insert and delete-min
operations can be performed on such a structure in O(n logmp n) I/Os. If we
chose mp to be mc for some constant c (0 < c < 1), we can perform the N op-
erations using O(n logm n) I/Os. In the construction of an extended external
segment tree for general line segment intersection, we use two priority queues
for each multislab. In order to have enough memory to do this, we reduce
the fan-out of the extended segment tree from

√
m/4 to (m/4)1/4. This does

not change the asymptotic height of the tree, but it means that each node
will have less than

√
m/4 multislabs. We chose mp to be

√
m. Thus, with

two priority queues per multislab, each node of the external segment tree still
requires less than m/2 blocks of internal memory. Exactly what goes into
the priority queues and how they are used will become clear as we describe
the algorithm.

3.2.1 Constructing the Extended External Segment Tree

In the construction of an extended external segment tree in Section 2.3.1 we
used the fact that the segments did not intersect in order to establish an
ordering on them. The main idea in our algorithm is a mechanism for break-
ing long segments into smaller pieces every time we discover an intersection
during construction of the multislab lists of a node. In doing so we manage
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to construct an extended segment tree with no intersections between long
segments stored in the multislab lists of the same node.

In order to construct the extended external segment tree on the N (now
possibly intersecting) segments, we as in Section 2.3.1 first in O(n logm n)
I/Os create a sorted list of all the endpoints of the segments. The list is sorted
by x coordinate, and used during the whole algorithm to find the medians
we use to split the interval associated with a node into (m/4)1/4 vertical
slabs. Recall that in Section 2.3.1 one node in the tree was constructed
from three lists, one sorted list of segments for each of the two extreme
boundaries and one unsorted list of segments. In order to create a node
we start as in the non-intersecting case by scanning through the unsorted
list of segments, distributing the long segments to the appropriate multislab
lists. Next, we sort the multislab lists individually according to the left
(or right) segment endpoint. Finally, we scan through the two sorted lists
and distribute the segments from these lists. The corresponding multislab
lists will automatically be sorted according to the endpoint on one of the
boundaries.

Now we want to remove inconsistencies by removing intersections between
long segments stored in the multislab lists. We start by removing intersec-
tions between segments stored in the same list. To do so we initialize two
external priority queues for each of the multislabs, one for each boundary.
Segments in these queues are sorted according to the order of the their end-
point on the boundary in question, and the queues are structured such that
a delete-min operation returns the topmost segment. We process each of the
multislab lists individually as follows: We scan through the list and check if
any two consecutive segments intersect. Every time we detect an intersection
we report it, remove one of the segment from the list, and break it at the
intersection point as indicated on Figure 9. This creates two new segments.

s

t

s1 s2 s3 s4 s5 s6 s6

s

u

t

Figure 9: Breaking a segment. Figure 10: Proof of lemma 9.
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If either one of them are long we insert it in both the priority queues cor-
responding to the appropriate multislab list. Any small segments that are
created are inserted into a special list of segments which is distributed to
the children of the current node along with normal small segments. The left
part of s on Figure 9 between s1 and s3 is for example inserted in the queues
for multislab [s1, s3], and the part to the right of s3 is inserted in the special
list. It should be clear that after processing a multislab list in this way the
remaining segments are non-intersecting (because every consecutive pair of
segments are non-intersecting), and it will thus be consistently sorted. As
we only scan through a multislab list ones the whole process can be done in
a linear number of I/Os in the number of segments processed, plus the I/Os
used to manipulate the priority queues.

Unfortunately, we still have inconsistencies in the node because segments
in different multislab lists can intersect each other. Furthermore, the newly
produced long segments in the priority queues can intersect each other as
well as segments in the multislab lists. In order to remove the remaining
intersections we need the following lemma.

Lemma 9 If the minimal (top) segments of all the priority queues and the
top segments of all the multislab lists are all non-intersecting, then the top-
most of them is not intersected by any long segment in the queues or lists.

Proof : First, consider the top segment in the two priority queues correspond-
ing to the two boundaries of a single multislab. If these two segments do not
intersect, then they must indeed be the same segment. Furthermore, no
other segment in these queues can intersect this top segment. Now consider
the top segment in the multislab list of the same multislab. As the two seg-
ments are non-intersecting one of them must be completely above the other.
This segment is not intersected by any segment corresponding to the same
multislab. Now consider this top segment in all the multislabs. Pick one of
the top-most of these non intersecting segments and call it s. Now consider
Figure 10. Assume that s is intersected by another segment t in one of the
queues or multislab lists. By this assumption t is not the top segment in
its multislab. Call the top segment in this multislab u. Because u does not
intersect either t or s, and as it is on top of t, it also has to be on top of s.
This contradicts the assumption that s is above all the top segments.

Our algorithm for finding and removing intersections now proceeds as
follows. We repeatedly look at the top segment in each of the priority queues
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and multislab lists. If any of these segments intersect, we report the inter-
section and break one of the segments as before. If none of the top segments
intersect we know from Lemma 9 that the topmost segment is not intersected
at all. This segment can then be removed and stored in a list that eventually
becomes the final multislab list for the slab in question. When we have pro-
cessed all segments in this way, we end up with O(m) sorted multislab list
of non-intersecting segments. We have enough internal memory to buffer a
block from each of the lists involved in the process, so we only need a num-
ber of I/Os linear in the number of segments processed (original and newly
produced ones), plus the number of I/Os used to manipulate the priority
queues.

Finally, as in Section 2.3.1, we produce the input to the next level of
recursion by distributing the relevant segments (remembering to include the
newly produced small segments) to the relevant children. As before, this is
done in a number of I/Os linear in the number of segments processed. We
stop the recursion when the number of original endpoints in the subproblems
fall below M/4.

If the total number of intersections discovered in the construction process
is T then the number of new segments produced isO(T ), and thus the number
of segments stored on each level of the structure is bounded by O(N + T ).
As in Section 2.3.1 we can argue that each segment is only contained in
one list being sorted and thus we use a total of O((n + t) logm(n + t)) =
O((n + t) logm n) I/Os to sort the segments. In constructing each node we
only use a linear number of I/Os, plus the number of I/Os used on priority
queue operations. Since the number of priority queue operations is O(T ), the
total number of of I/Os we use to construct the whole structure is bounded
by O((n+ t) logm n).

3.2.2 Filtering Queries Through the Structure

We have now constructed an extended external segment tree on the N seg-
ments, and in the process of doing so we have reported some of the intersec-
tions between them. The intersections that we still have to report must be
between segments stored in different nodes. In fact intersections involving
segments stored in a node v can only be with segments stored in nodes be-
low v or in nodes on the path from v to the root. Therefore we will report
all intersections if, for all nodes v, we report intersections between segments
stored at v and segments stored in nodes below v. But in v segments stored
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in nodes below v must be similar to the segments we called small in the
red-blue line segment algorithm. Thus, if in each node v we had a list of
endpoints of segments stored in nodes below v, sorted according to the long
segment in v immediately on top of them, we could report the remaining
intersections with the algorithm that was used in section 3.1.

In order to report the remaining intersections we therefore preprocess the
structure and filter the endpoints of the O(N + T ) segments stored in the
structure through the structure as we did in section 2.3.2. At each node
the filtering process constructs a list of endpoints below the node sorted
according to dominating segment among the segments stored in the node.
At each node we can then scan this list to collect the relevant endpoints
and then report intersections with the algorithm used in Section 3.1. For
all nodes on one level of the structure the cost is linear in the number of
segments and endpoints processed, that is, O(n+ t) I/Os, plus a term linear
in the number of new intersections reported.

Recall that the preprocessing of the structure in Section 2.3.2 consisted
of a sampling of every (2

√
m/4)th segment of every slab in a node, which

was then augmented to the segments stored in the son corresponding to the
slab. The process was done from the root towards the leaves. We will do
the same preprocessing here, except that because we decreased the fanout to
(m/4)1/4 we only sample every (2(m/4)1/4)th segment in a slab. However, as
we are building the structure on intersecting segments we should be careful
not to introduce intersections between segments stored in the multislab lists
of a node when augmenting the lists with sampled segments. Therefore
we do the preprocessing while we are building the structure. Thus, in the
construction process described in the previous section, after constructing the
sorted multislab lists of a node, we sample every (2(m/4)1/4)th segment in
each slab precisely as in Section 2.3.2. We then send these segments down
to the next level together with the other “normal” segments that need to
be recursively stored further down the tree. However, we want to make sure
that the sampled segments are not broken, but stored on the next level of
the structure. Otherwise we cannot I/O-efficiently filter the query points
through the structure, as the sampled segments are stored on the next level
to make sure that the points are not to unsorted relative to the segments
stored in a node. Therefore we give the sampled segments a special mark
and make sure that we only break unmarked segments. We can do so because
two marked segments can never intersect, otherwise they would have been
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broken on the previous level.
By the same argument used in Section 2.3.2 to prove Lemma 6 we can

prove that the augmentation of sampled segments does not asymptotically
increase the number of segments stored on each level of the structure. Also
all the sampling and augmentation work can be done in a linear number of
I/Os on each level of the structure. This means that the number of I/Os
used to construct the structure is kept at O((n + t) logm n), even when the
preprocessing is done as an integrated part of it.

After the construction and preprocessing we are ready to filter the O(N+
T ) endpoints through the O(logm n) levels of the structure. Recall by refer-
ring to Figure 5 that in order to do the filtering we first sort the points by x
coordinate and distribute them among the leaves. Then for each leaf in turn
we find the dominating segments of the points assigned to the leaf and sort
the points accordingly. Finally, the points are repeatedly filtered one level
up until they reach the root.

The sorting of the points by x coordinate can be done inO((n+t) logm(n+
t)) = O((n + t) logm n) I/Os. Also each of the filtering steps can be done
in a linear number of I/Os by the same argument as in Section 2.3.2 and
the previous discussion. However, our structure lacks one important feature
which we used in Section 2.3.2 to find dominating segments in the leaves.
As in Section 2.3.2 we can argue that a leaf represents less than M/4 end-
points of the original segments, but as new segments and thus endpoints
are introduced during the construction of the structure we cannot guarantee
that the number of segments stored in a leaf is less than M/2. Therefore,
we cannot find the dominating segments by loading all segments stored in
a leaf into internal memory and using an internal memory algorithm. Also,
the segments stored in a leaf may intersect each other and we need to find
and reports such intersections. However, assuming that we can report such
intersections and produce the sorted list of endpoints for each leaf, the rest
of the algorithm runs in O((n + t) logm n + t′) I/Os, where T ′ is the num-
ber of intersections found during the filtering of the endpoints through the
structure. If T1 = T + T ′ is the total number of intersections reported then
this number is clearly O((n + t1) logm n).

In order to overcome the problems with leaves containing more than M
segments we do the following: We collect all the segments stored in such
leaves. The number of collected segments must be less than 2T1 (actually
less than 2T ), since the involved leaves contain more than M segments but
less than M/2 of the original N segments. The same holds for the number
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of endpoints assigned to the leaves. We then recursively build an external
extended segment tree on these segments and filter the relevant endpoints
through the structure in order to report intersections between the segments
and produce a list of the points sorted according to dominating segment. If
we do not count the I/Os used to process the leaves in this tree this costs
us O((t1 + t2) logm n) I/Os. Here T2 is the number of intersections reported.
Now we again need to collect the less than 2T2 segments in the leaves of
the new tree containing more than M segments and recursively solve the
problem for those segments. The process stops when all leaves contain less
than M segments, and the total number of I/Os used on all the structure
is then O(n logm n + 2

∑
i ti logm n) = O((n + tt) logm n), where Tt is the

total number of intersections reported. This completes our algorithm for the
general segment intersection problem, giving us the following theorem:

Theorem 3 All T intersections between N line segments in the plane can
be reported in O((n + t) logm n) I/O operations.

4 Conclusions

In this paper, we have presented efficient external-memory algorithms for
large-scale geometric problems involving collections of line segments in the
plane, with applications to GIS systems. We have obtained these algorithms
by combining buffer trees and distribution sweeping with a powerful new
variant of fractional cascading designed for external memory.

The following two important problems, which are related to those we have
discussed in this paper, remain open:

• If given the vertices of a polygon in the order they appear around its
perimeter, can we triangulate the polygon in O(n) I/O operations?

• Can we solve the general line segment intersection reporting problem
in the optimal O(n logm n+ t) I/O operations?
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