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BRICS∗, Aarhus University

email:ramkilde@daimi.aau.dk

January 13, 1995

Abstract
In 1994 Lai considered higher order derivatives of discrete functions and

introduced the concept of higher order differentials. We introduce the con-
cept of partial differentials and present attacks on ciphers presumably secure
against differential attacks, but vulnerable to attacks using higher order and
partial differentials. Also we examine the DES for partial and higher order
differentials and give a differential attack using partial differentials on DES
reduced to 6 rounds using only 46 chosen plaintexts with an expected running
time of about the time of 3,500 encryptions. Finally it is shown how to find
a minimum nonlinear order of a block cipher using higher order differentials.

1 Introduction

Differential cryptanalysis [1] was introduced by Biham and Shamir.
Lai considered higher order derivatives of discrete functions [6] and
the concept of higher order differentials was introduced. As a special
case binary functions were considered, which is relevant for cryptanal-
ysis of block ciphers. The cryptographic significance of higher order
differentials was discussed, but no applications given. Knudsen and
Nyberg [8] showed that block ciphers exist secure against a differen-
tial attack using first order differentials, as proposed by Biham and
Shamir.
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation
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In this paper we introduce the concept of partial differentials, i.e.
differentials where only a part of the difference in the ciphertexts (after
a number of rounds) can be predicted. We show examples of Feistel
block ciphers secure against a differential attack using first order differ-
entials, but vulnerable to a differential attack using partial differentials
and higher order differentials, thus illustrating that one should be care-
ful when claiming for resistance against differential attacks. Finally,
we give a method of how to find a minimum nonlinear order of a block
cipher using higher order differentials.

2 Differential Attacks

In this paper we consider Feistel ciphers. A Feistel cipher with block
size 2n and with r rounds is defined as follows. The round function g
is

g : GF (2)n ×GF (2)n ×GF (2)m → GF (2)n ×GF (2)n

g(X, Y, Z) = (Y, f(Y, Z) +X)

where f can be any function taking two arguments of n bits and m
bits respectively and producing n bits. ’+’ is a commutative group
operation on the set of n bit blocks.

Given a plaintext P = (PL, PR) and r round keys K1, K2, ..., Kr the
ciphertext C = (CL, CR) is computed in r rounds. Set CL

0 = PL and
CR

0 = PR and compute for i = 1, 2, ..., r

(CL
i , C

R
i ) = (CR

i−1, f(CR
i−1, Ki) + CL

i−1)

Set Ci = (CL
i , C

R
i ) and CL = CR

r and CR = CL
r .

Traditionally, the round keys (K1, K2, ..., Kr), where Ki ∈ GF (2)m,
are computed by a key schedule algorithm on input a master key K.

The differential attacks exploit that pairs of plaintexts with certain
differences yield other certain differences in the corresponding cipher-
texts with a non-uniform probability distribution. For a pair of plain-
texts, which are not discarded by a filtering process, see [1, 2], one
tries for all values of the round key in the last round, if the expected
difference in the ciphertexts occur. This is repeated several times and
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the most suggested value is taken to be the value of the secret key of
the last round. Now all ciphertexts can be decrypted one round and a
weaker cipher attacked in the same way but with a smaller complexity.

The signal to noise ratio, S/N [1, 2], is the number of times the right
key is counted over the number of times a random key is counted.

S/N =
|K| × p
γ × λ

where p is the probability of the differential used in the attack, |K| is
the number of possible values of the key, we are looking for, γ is the
number of keys suggested by each pair of plaintexts and λ is the ratio
of non-discarded pairs to all pairs, see [1, 2] for further details. For our
attacks in this paper λ = 1. If S/N ≤ 1 then a differential attack will
not succeed.

Sometimes one also calls the function f , the round function. We
adopt this convention for convenience, since it should cause no confu-
sion.

For the remainder of this paper we will assume that the round keys
are independent and uniformly random and of size n, i.e. half the
block size. The difference of two quantities is always taken to be the
operation for which the difference is independent on the value of the
inserted key. Therefore when considering differences for the round
function f we will write f(x) instead of f(x, k). We will assume that
the difference of two quantities chosen in an attack is the exclusive-or
operation, if not stated explicitly otherwise. The complexity of the
attacks is measured as the number of encryptions of the full cipher
that an attacker has to perform for success.

3 Partial Differentials

In a conventional differential attack on a 2n bit Feistel cipher, a dif-
ferential is a tool to predict an n bit value of the ciphertext after a
certain number of rounds. But as we will show now it is not always
necessary to predict the full n bit value. Even a 1 bit value suffices in
some cases. A differential that predicts only parts of an n bit value is
called a partial differential.
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In [7] it is shown that the functions f(x) = x−1 in GF (2n), where
f(x) = 0 for x = 0, are differentially 2-uniform for odd n and differen-
tially 4-uniform for even n, i.e. the highest probability of a non-trivial
one round differential is 2/2n and 4/2n respectively. In both cases the
nonlinear order of the outputs is n− 1 [7]. As an example consider a
5 round cipher using as round function

f(x, k) = (x⊕ k)−1

in GF (2n) for n odd. From the results of [8] this cipher is highly
resistant against differential attacks using full differentials, since any 3
round differential has a probability of at most 23−2n according to Th. 2
of [8], that is, using differentials, where full n bit differences are used.
In an attack counting on the round key of the last round the signal to
noise ratio is

S/N <
2n × 23−2n

1× 1
< 1

for n > 3 and the attack will not succeed. In an attack counting on the
round keys of the last two rounds only a 2 round differential is needed.
And since the concepts of characteristics and differentials coincide for 2
rounds in a Feistel cipher it is easy to see that there exists a differential
with a probability of 2/2n and that this differential obtains a maximum
probability. The signal to noise ratio is

S/N =
22n × 21−n

1× 1
= 2n+1

and the attack will succeed with complexity 2n chosen plaintexts and
running time of about 23n.

However, for every non-trivial input difference to one round there are
only 2n−1 possible differences in the outputs, each one with a probabil-
ity of 2/2n, since the round function is differentially 2-uniform and the
exclusive-or operation is commutative. That is, for a non-trivial input
difference we get one bit of information about the output differences.
From this fact we can construct a 2 round differential of probability
one, where only one bit of the differences after 2 rounds of encryption
is predicted. In a differential attack counting on the round keys of the
last two rounds for every pair of plaintexts only half the possible values
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of the keys will be suggested. We obtain

S/N =
22n × 1

2(2n−1) × 1
= 2

and the attack will succeed with sufficiently many pairs of chosen plain-
texts. We implemented the attack on a 5 round 18 bit cipher with a
key of 45 bits using as round function f(x) = x−1 in GF (29). Using 18
pairs of chosen plaintexts in 100 tests only one pair of keys was found,
the right keys in the fourth and fifth rounds.

The attack can be generalised and the following result holds.

Theorem 3.1 Let f(x, k) : GF (2n)×GF (2n)→ GF (2n) be the round
function in a 5 round Feistel cipher with block size 2n bits using 5
round keys, each of size n bits. Let α (6= 0) be an input difference for
which only a fraction W of all output differences are possible. Then
a differential attack using partial differentials has a complexity of 2L
chosen plaintexts and a running time of about L× 22n, where L is the
smallest integer s.t. (W )L < 2−2n. The value of L is at most 2n+ 1.

Proof: Consider the following attack.

1. Let α be the non-trivial difference of two inputs to f , for which
only a fraction W of the output differences can occur.

2. Compute a table T (initialised to zero in all entries), s.t. for
i = 0, .., 2n − 1, T [f(i)⊕ f(i⊕ α))] = 1.

3. Choose plaintext P1 at random and set P2 = P1 ⊕ (α ‖ 0).

4. Get the encryptions C1 and C2 of P1 and P2

5. For every value k5 of the round key RK5 do

(a) Decrypt the ciphertexts C1, C2 one round using k5. Denote
these ciphertexts D1, D2.

(b) For every value k4 of the round key RK4 do

i. Calculate ti = f(DR
i ⊕ k4) for i = 1, 2.

ii. If T [t1 ⊕ t2 ⊕DL
1 ⊕DL

2 ] > 0 then output k5 and k4.
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Since the nonlinear order of f(x) can be as high as n− 1, the informa-
tion about the output differences we get from a given input difference is
not necessarily easily determined. Therefore we may have to compute
a table T , s.t. for a given input difference α, if T [β] > 0 then an output
difference β is possible. The inputs to the first round are equal and the
inputs to the second round has difference α. That is, we can compute a
fraction W of all possible values of the output difference of the fourth
round from the right halves of the ciphertexts and from the values
in table T. Upon termination about W × 22n of the possible values of
(RK4, RK5) have been suggested, one of which is the right pair of keys.
By repeating the attack sufficiently many times only one unique pair
of keys, the right pair of keys, will be left suggested. Any other keys
will be suggested with probability W for each run of the above attack.
Therefore after trying L pairs of plaintexts any key but the right key,
is suggested L times with a probability of (W )L and if (W )L < 2−2n

with a high probability the right keys are uniquely determined. Fi-
nally, note that since W ≤ 1/2, minL : (1/2)L < 2−2n = 2n+ 1. 2

The attack can be extended to work on ciphers with any number of
rounds by counting on all but the first three round keys.

4 Higher Order Differentials

In [6] the definition of derivatives of cryptographic functions was given.

Definition 4.1 ((Lai [6])) Let (S,+) and (T,+) be Abelian groups.
For a function f : S 7→ T , the derivative of f at the point a ∈ S is
defined as

∆af(x) = f(x + a)− f(x)

The i’th derivative of f at the point a1, ..., ai is defined as

∆(i)
a1,...,ai

f(x) = ∆ai(∆
(i−1)
a1,...,ai−1

f(x))

Note that the characteristics and differentials used by Biham and
Shamir in their attacks correspond to the first order derivative de-
scribed by Lai. Therefore it seems natural to extend the notion of
differential into higher order differentials.
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Definition 4.2 A one round differential of order i is an (i+ 1)-tuple
(α1, ..., αi, β), s.t. ∆(i)

α1,...,αif(x) = β

When considering functions over GF (2) the points a1, ..., ai must be
linearly independent for the i’th derivative not to be trivial zero.

Proposition 4.1 ((Lai [6])) Let L[a1, a2, ..., ai] be the list of all 2i

possible linear combinations of a1, a2, ..., ai. Then

∆(i)
a1,...,aif(x) =

∑
γ∈L(α1,...,αi)

f(P ⊕ γ)

If ai is linearly dependent of a1, ..., ai−1, then

∆(i)
a1,...,ai

f(x) = 0

Proposition 4.2 ((Lai [6])) Let ord(f) denote the nonlinear order1

of a multi-variable polynomial function f(x). Then

ord(∆af(x)) ≤ ord(f(x)) − 1

This leads to the following Proposition.

Proposition 4.3 If ∆a1,...,aif(x) is not a constant, then the nonlinear
order of f is greater than i.

Proof: From Prop. 4.2 it follows that

ord(f) ≥ ord(∆a1f(x)) + 1 ≥ ...............≥ ord(∆a1,...,aif(x)) + i

2

4.1 Attacks using higher order differentials

In the previous section we showed how to exploit partial information of
differentials. One may ask the following question: does round functions
exist, which does not leak any partial information for any non-trivial
difference? The answer is positive and in the following we give an

1In [6] called the nonlinear degree.
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example of a 5 round Feistel cipher, for which the round function is
differentially 1-uniform i.e. for every non trivial input difference all
output differences occur exactly once. We show that differential attacks
on this cipher using higher order differentials are much more efficient
than conventional differential attacks. We generalise the result to any
5 round Feistel cipher.

Theorem 4.1 Let f(x, k) = (x + k)2 mod p, p prime, be the round
function in a Feistel cipher of block size log2p

2, where ’+’ is addition
modulo p and the difference of two quantities, x and y, is x−y mod p.
f is differentially 1-uniform, a non-trivial one round differential has a
probability of 1/p. Secondly, the second order derivative of f is con-
stant.

Proof: To prove the first statement, consider a fixed a 6= 0 mod p.
Then

f(x)− f(x + a) =p f(y) − f(y + a) ⇔
x2 − (x2 + a2 + 2ax) =p y2 − (y2 + a2 + 2ay) ⇔

2ax =p 2ay ⇔ 2a(x− y) =p 0 ⇔ x =p y

since p is prime. To prove the second statement, let a1, a2 be constants,
then

∆a1,a2f(x) = f(x+ a1 + a2)− f(x+ a1)− f(x+ a2) + f(x)
= x2 + (a1 + a2)2 + 2(a1 + a2)x− (x2 + a2

1 + 2a1x)
−(x2 + a2

2 + 2a2x) + x2

= (a1 + a2)2 − a2
1 − a2

2

= 2a1a2

2

Theorem 4.2 Let f(x, k) = (x + k)2 mod p, p prime, be the round
function in a 5 round Feistel cipher of block size log2 p

2 with indepen-
dent round keys, i.e. a key size of 5 × log2 p. A differential attack
using first order differentials needs about 2p chosen plaintexts and has
a running time of about p3.
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Proof: When doing a differential attack counting on the round key in
the fifth round of the above cipher we need a 3 (or 4) round differential.
It is easy to see that there exists a 3 round differential with a probability
of 1/p and that this differential obtains a maximum probability. We
obtain

S/N =
p× 1/p
1× 1

= 1

This attack is not possible, since the right key cannot be distinguished
from other random keys. When doing a differential attack counting on
the round keys in both the fourth and fifth rounds we need only a 2
round differential. There exists a 2 round differential with a probability
of 1/p, which is a maximum probability for the above cipher. In this
case we obtain

S/N =
p2 × 1/p

1× 1
= p

This attack is possible. We need about 2p chosen plaintexts and for
every pair of plaintexts we do two rounds of encryption for every p2

possible keys of the fourth and fifth rounds. Therefore we obtain a
complexity of about p3. 2

Theorem 4.3 Let f(x, k) = (x + k)2 mod p, p prime, be the round
function in a 5 round Feistel cipher of block size log2 p

2 with indepen-
dent round keys, i.e. a key size of 5 × log2 p. A differential attack
using second order differentials needs about 8 chosen plaintexts with a
running time of about p2.

Proof: Consider ∆α,βf(x) where α = a ‖ 0 and β = b ‖ 0 for some
fixed a, b, i.e the left halves of α and β are zero. See Fig. 1, where
(0, 0) denotes the trivial second order derivative of f and where in the
second round the second order derivative is (a, b, 2× a× b). Consider
the following attack

1. Choose plaintext P1 at random.

2. Set P2 = P1 + α, P3 = P1 + β and P4 = P1 + α+ β.

3. Get the encryptions C1, ..., C4 of P1, ..., P4

4. For every value k5 of the round key RK5 do

9
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Figure 1: A second order differential of a five round Feistel cipher

(0, 0)

(0, 0)(0, 0)

(a, b)

2× a× b (a, b)

(a) Decrypt all ciphertexts C1, ..., C4 one round using k5. Denote
these 4 ciphertexts D1, ..., D4.

(b) For every value k4 of the round key RK4 do

i. Calculate ti = f(DR
i + k4) for i = 1, .., 4.

ii. If (t1 + t4− (t2 + t3))− (DL
1 +DL

4 − (DL
2 +DL

3 )) = 2× a× b
then output k5 and k4.

Here XL and XR denote the left and right halves of X respectively.
In the first round all inputs to the f-function are equal. In the second
round the inputs form a second order differential with (a, b, 2 × a ×
b). Since this differential has probability 1 according to Th. 4.1, the
difference in the four inputs to the third round is Γ = 2 × a × b.
Therefore the difference in the outputs of the fourth round can be
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computed as the exclusive-or sum of Γ and of the right halves of the
ciphertexts. Upon termination a few keys will have been suggested,
among which the right keys appear, since the two round second order
differential has probability 1. Therefore by repeating this attack a few
times only one value of (RK4, RK5) is suggested every time. This value
is guaranteed to be the secret fourth and fifth round key. The signal
to noise ratio of the attack is

S/N =
p2 × 1
1× 1

= p2

where we have assumed that one key in average is suggested by each
pair of plaintexts. Now it is trivial to find the remaining three round
keys by similar attacks on cryptosystems with less than five rounds.
As in [1, 2] we can pack the chosen plaintexts in economical structures,
thus as an example obtain four second order differentials from 8 chosen
plaintexts.2

If the prime p above is of cardinality, say about 225, according to
Th. 4.2 a differential attack using first order differential has a com-
plexity of about 275 using about 226 chosen plaintexts, i.e. not at all a
practical attack. According to Th. 4.3 a differential attack using sec-
ond order differentials has a complexity of about 250 using only about
8 chosen plaintexts, a practical attack or at least not far from being
one.

The attack in the proof of Th. 4.3 can be applied to any 5 round
Feistel cipher, where the round function contains no expansion and
where the output coordinates are quadratic, i.e. the nonlinear order of
f is 2. Furthermore the attack can be converted into an attack on any 5
round Feistel cipher. For convenience let us now consider functions over
GF (2). We state explicitly the definition of higher order differentials
for this important case.

Definition 4.3 A one round differential of order i is an (i+ 1)-tuple
(α1, ..., αi, β), s.t. all αj’s are linearly independent and

∑
γ∈L(α1,...,αi)

F (P ⊕ γ) = β
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It is seen there are 2i plaintexts in an i-order differential.

Theorem 4.4 Let f(x, k) be the round function in a 5 round Feistel
cipher of block size 2n with independent round keys, i.e. a key size
of 5 × n bits. Assume that the nonlinear order of f is r. Then a
differential attack using r-order differentials needs about 2r+1 chosen
plaintexts with a running time of about 22n+r.

Proof: According to Prop. 4.3 the r-order derivative of a function of
nonlinear order r is a constant. Therefore we can obtain a 2 round
r-order differential with probability 1 and do a similar attack as in the
proof of Th. 4.3. 2

To illustrate the above attack, we consider now the differentially
uniform mappings f(x) = x2k+1 in GF (2n) described in [8].

Lemma 4.1 Consider the permutation f(x) = x2k+1 in GF (2n) for n
odd and gcd(k, n) = 1. f is differentially 2-uniform and the second
order derivative of f , ∆α,βf(x) is a constant with the value Γ = α ×
β × (α2k−1 ⊕ β2k−1), where ′×′ is multiplication in GF (2n).

Proof: The first statement is proved in [8] and that the second deriva-
tive is a constant follows from Prop. 4.2. The actual constant can be
computed in a straightforward way and is omitted here (see [5]). 2

We implemented the attack of Th. 4.4 counting on both the fourth
and fifth round key using second order differentials in a five round
Feistel cipher with f(x) of Lemma 4.1 as round function and with
n = 9 and k = 1, i.e. a 18 bit cipher with a 45 bit key. In 100
tests using 12 chosen plaintexts only one pair of keys was suggested
and every time this pair was the right values of the fourth and fifth
secret round keys. By using quartets as defined in [1, 2] the number of
chosen plaintexts can be reduced to about 8. Note that for this cipher
the probability of any 3 round differential of first order is at most 23−2n

[8], where 2n is the block size. Also note that the example cipher of
[8] has 6 rounds, and is therefore not vulnerable to the above attacks.
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The outputs of S-box Does not affect S-boxes
1 1, 7
2 2, 6
3 3, 1
4 4, 2
5 5, 8
6 6, 4
7 7, 5
8 8, 3

Table 1: Flow of the S-box output bits.

5 Applications to the DES

5.1 Partial differentials of the DES

For the DES [9] there are partial differentials with probability one.
When two inputs to the F -function are equal in the inputs to an S-
box, the outputs from that S-box are always equal, independent of the
values of the inputs to other S-boxes. These partial differentials are
used to a wide extent in Biham and Shamirs attacks on the DES [1, 2].

The output of an S-box affects the inputs of at most six S-boxes in
the following round, because of the P-permutation, see Table 1. This
fact can be used to construct a four round partial differential for the
DES with probability one, which gives knowledge about the difference
of eight bits in the ciphertext after four rounds. Consider a pair of
plaintexts where the right halves are equal and the left halves differ,
such that the inputs to only one S-box, say S-box 1, are different after
the E-expansion. The first round in the differential holds always, and
in the second round the outputs of all S-boxes except S-box 1 are equal.
In the inputs to the third round the inputs of two S-boxes, S-boxes 1
and 7, are always equal, since S-box 1 does not affect these S-boxes
according to Table 1. Therefore the outputs of these S-boxes are equal,
and the xor of eight bits in the right halves of the ciphertexts after three
rounds are known, since the xor in the inputs in the second round
is known. The right halves after three rounds equal the left halves
after four rounds, therefore the xor of eight bits after four rounds of

13



S-box Input xor Bit i (yi) Probability
(hex) of output xor (p− 1/2) × 64

1 24 3 -20
2 2 2 20

c 4 20
20 2 28
22 2 -20
2d 1 20

3 2 1 20
4 1 20

10 4 24
20 2 24

5 1 2 20
6 4 3 20

c 4 20
24 1 -24

7 2 2 24
c 2 20
e 2 -20

20 4 24
8 1 2 20

10 3 20
20 4 20

Table 2: The partial 1-bit output differentials with |p− 1/2| ≥ 20/64
for the 8 S-boxes of DES.

encryption are known with probability one. This differential can be
used to attack the DES with 6 rounds in a differential attack using
only a few chosen plaintexts as we will show in the next section.

There are other interesting partial differentials for the DES. Consider
a six bit input difference (xor) to one S-box, x1, x2, x3, x4, x5, x6 and
the corresponding difference in the outputs y1, y2, y3, y4. Instead of
considering all 4 output bits as in traditional differentials, we consider
only one of the yi’s. The probabilities of these partial 1-bit output
differentials in the ideal case will be 1/2. In Table 2 for all 8 S-boxes
the partial differentials for which |p− 1/2| ≥ 20/64 are listed, where p
is the probabilities of the differentials. Note that if p is the probability
that an xor bit is one, 1−p is the probability that the bit is zero. As an
example consider S-box 2, where an input xor of 20x leads to an output
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xor, for which the xor of the second most significant bits of the outputs
is one in 60 out of all 64 possible pairs of inputs. It is also interesting
to note that for the S-box 4, the probabilities of partial 1-bit output
differentials are all between 20/64 and 44/64, i.e. |p − 1/2| ≤ 12/64
for S-box 4. S-box 4 has been the subject of much debate since the
publication of the DES and it has been conjectured the weakest S-box.
It is 75% redundant, see [3] and it has a strange difference distribution
table (see [1, 2]). To our knowledge the above properties show for the
first time a case, where S-box 4 is the strongest of the 8 S-boxes.

Another interesting property of the S-boxes is revealed by consider-
ing pairs of input where the only the two middle input bits differ, i.e.
xors 04x, 08x and 0cx. These xors are of particular interest in differen-
tial cryptanalysis, since this allows neighbouring S-boxes to have equal
inputs, i.e. xors 00x. For these input xors, the probability that one
particular bit in the output xor is zero is at most 36/64 for S-boxes
no. 2, 3 and 7. For the S-boxes 1, 5, 6 and 8 the probability is at most
32/64 and for S-box 4 at most 24/64. We can use the above partial dif-
ferentials to construct a four round differential, which gives knowledge
about the difference of more than eight bits in the ciphertext after four
rounds.

As an example, for S-box 7, an input xor of 04x will yield an out-
put xor, such that the xor of the second output bits (y2) is zero
with probability 36/64. Consider a pair of plaintexts with difference
00000020x | 00000000x, that is where the right halves are equal and
the left halves differ in only one bit. After one round of encryption
the difference will always be 00000000x | 00000020x. After two rounds
of encryption the difference will be 00000020x | Yx with probability
36/64, where E(Y ) is different in the inputs to only S-boxes 1, 2, 6,
and 8. Therefore the outputs of S-boxes 3, 4, 5, and 7 will be equal
after three rounds of encryption. In other words one gets knowledge
of the xor of 16 bits in the right halves of the ciphertexts after three
rounds and therefore in the left halves of the ciphertexts after four
rounds of encryption with probability 36/64.

In a similar way, one can use two of the combinations of Table 2,
namely the input xor 04x for S-box 6 and the input xor 04x for S-box 3,
both with probability 52/64 to obtain a four round partial differential
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with probability (52/64)2 ' 42/64 where the xor of nine ciphertext
bits are known.

Note that although the above differentials can be used to deduce key
bits of the DES with 6 or fewer rounds in a partial differential attack,
it is also clear that when considering the DES with more than 6 rounds
the method will only work locally in the first few and last few rounds
of the cipher.

Finally we note that in [10] Preneel et al. considered, what they call
reduced exors, in differential attacks on the DES in CFB mode. The
reduced exors have some resemblance with partial differentials.

5.1.1 Attack on 6 round DES.

In this section we consider the DES [9] reduced to 6 rounds. We take
the first 6 rounds of the standard and omit the initial and final per-
mutation, since they are of no importance for our attack.

Theorem 5.1 There exists a differential attack on DES with 6 rounds,
which finds the secret key using 46 chosen plaintexts in expected time
the time of about 3,500 encryptions, which can be done in a few seconds
on a PC.

Proof: We consider a differential chosen plaintext attack using the
differential in Fig. 2 and a similar differential where all the quantities
20000000x are replaced by 40000000x. Assume first that the outputs
of the first round have difference α. The inputs to the third round
differ in only two bits both affecting only S-box 1. According to the
above discussion, the inputs with difference X to the fourth round are
equal in the inputs to the S-boxes 1 and 7. Therefore eight bits of
the difference Y are zero. Since the difference of the inputs to the
third round is known, the attacker knows eight bits of the difference of
the outputs of the F-function in the sixth round, since he knows the
difference in the ciphertexts. These eight bits are the output bits of
S-boxes 1 and 7. The attacker now tries for all 64 possible values of
the key whether the inputs to S-box 1 yield the computed expected
output difference, and does the same for S-box 7. For every pair of
ciphertexts used in the analysis for both S-boxes the attacker will get
an average of 4 suggested key values, among which the right key values
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Figure 2: A 4 round differential of DES.

appear, since the used differential has probability one. By trying a few
pairs, e.g. four pairs with a high probability only one key value, the
right key value, will be left suggested by all pairs.

In the following, let Ki,j denote the six bit key in S-box no. j in
the i’th round and let P be the 32 bit linear permutation in the DES
round function, see [9]. ’|’ and ’‖’ denotes concatenation of 4 bit and
32 bit strings respectively.

We assumed above that the difference of the outputs of the first
round is α, which it will not always be. First we note that since the
inputs to the first round differ in the inputs to only one S-box, there
are only 16 possible values of α. Choose a set of 4 plaintexts

Pi = Ai ‖ PR

for i = 0, ..., 3, where Ai = P (ai | r0 | r1 | ...|r5 | r6), where ai = i,
each of 4 bits, the rk’s are randomly chosen 4 bit numbers and PR is a

17



randomly chosen 32 bit string. Next choose a set of 4 plaintexts

P1,j = Bj ‖ PR ⊕Φ1,1

for j = 0, ..., 3, where Bj = P (bj | r0 | r1 | ... | r5 | r6), Φ1,1 = 20000000x
and b0 = 0x, b1 = 4x, b2 = 8x, b3 = cx.

By combining each of the four plaintexts Pi with each of the four
plaintexts P1,j one obtains one pair of plaintexts with difference

P (hx | 0 | 0 | 0 | 0 | 0 | 0 | 0) ‖ Φ1,1 (1)

for all values of h = 0, ..., fx, that is, from these eight plaintexts one
pair of plaintexts is a right pair with respect to the characteristic in
Fig. 2.

To get more right pairs choose a set of 4 plaintexts

P2,j = Bj ‖ PR ⊕Φ1,2

for j = 0, ..., 3, where Φ1,2 = 40000000x, and a set of 4 plaintexts

P3,j = Ai ‖ PR ⊕ Φ1,1 ⊕ Φ1,2

for i = 0, ..., 3.
By combining the set P2,j with the set P3,j one obtains another pair

of plaintexts with difference (1) for all values of h = 0, ..., fx.
By combining the set P1,j with the set P2,j and combining the set Pi

with the set P3,j one obtains 2 pairs of plaintexts with difference

P (hx | 0 | 0 | 0 | 0 | 0 | 0 | 0) ‖ Φ1,2

for all values of h = 0, ..., fx. Note that the characteristics just defined
both affect the same S-box in the first round. Get the encryptions of
the 16 plaintexts Pi, P1,j, P2,j and P3,j.

The attack proceeds as follows.

1. For every value k1,1 of the key K1,1 in S-box 1 in the first round do

(a) Let k1,∗ be the 48 bit key obtained from the concatenation of
the value of k1,1 and 42 randomly chosen bits.
Compute c0 = F (k1,∗, PR) and c1 = F (k1,∗, PR ⊕ Φ1,1). Now
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c0 ⊕ c1 = P (y | 0 | 0 | ... | 0) for some hex value y. Find
the plaintext Pi and P1,j, such that c0 ⊕ c1 = Ai ⊕ Bj. The
pair of plaintexts Pi and P1,j is a right pair with respect to the
characteristic in Fig. 2. Next compute c2 = F (k1,∗, PR ⊕ Φ1,2)
and c3 = F (k1,∗, PR ⊕ Φ1,1 ⊕ Φ1,2). Find the plaintext P2,j and
P3,j, such that c2⊕c3 = Bj⊕Ai. The pair of plaintexts P2,j and
P3,j is a right pair with respect to the characteristic in Fig. 2.
Repeat this procedure finding 2 right pairs Pi and P2,j, P1,j and
P3,j for the second characteristic.

(b) Use the four right pairs in the differential attack described
above. First do the attack on S-box 1 in the last round. If
one key value k6,1 of K6,1 is suggested by all four pairs, perform
the differential attack on S-box 7 in the last round. If one key
value k6,7 of K6,7 is suggested by all four pairs, take k6,1 and k6,7

as the key values of K6,1 and K6,7 and take k1,1 as the value of
K1,1.

The above attack finds 18 key bits with a high probability. In step
1(a) above we need not do a complete evaluation of the F-function,
only the computation of the one S-box involved is needed. For every
value of K1,1 we do 4 S-box evaluations. Then for every value of K6,1

we do 8 S-box evaluations, one for each of the 8 ciphertexts in the 4
pairs. The search for K6,7 is done only when one key value of K6,1 is
suggested all four times. Totally the time used is about the time of
215 S-box evaluations, about the time of 500 encryptions of six round
DES. Note that the differential used in the attack has probability one.
More key bits can be found in similar attacks by plaintexts yielding
other characteristics.

With an additional 2 sets of each 16 plaintexts involving other S-
boxes in the first round one finds 54 key bits. By a careful choice of
each of the 2 sets one of the plaintext Pi in the above described attack
can be reused. Since the DES has dependent round keys some of the
key bits tried in the first and in the sixth round are identical. Using
the S-boxes 1, 2 and 5 in the first round is an optimal choice and the
attack finds 45 bits of the 56 bit secret key. The remaining 11 bits
can be found by exhaustive search. The attack needs a total of 46
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No. of chosen plaintexts No. of keybits found
7 8
16 18
31 33
46 45

Table 3: Complexities of our attacks on DES with 6 rounds.

plaintexts and runs in time about 3,500 encryptions of six round DES,
which can be done in a few seconds on a PC. 2

There are possible variations of the above attack, which are listed
in Table 3. It should be noted that the linear attack combined with
differential ’techniques’ by Hellman and Langford [4] exploits the same
phenomenon as in our attack, but the two attacks are different. Finally
we note that in [10] Preneel et al. considered, what they call reduced
exors, in differential attacks on the DES in CFB mode. The reduced
exors have some resemblance with partial differentials.

5.2 Higher order differentials of the DES

In this section we consider higher order differentials for the 8 S-boxes
of the DES. Table 4 lists the probabilities of the most likely n’th order
differentials for the 8 S-boxes of the DES, for n = 1, ..., 4. Note that
the probability of any fifth order differential is one, since the output
coordinates of the DES S-boxes have order 5 (see [11]) and the fifth
derivative is a constant according to Prop. 4.2. The numbers for S-box
4 in Table 4 are substantially different from

the numbers of the other S-boxes and there exist 3. order differentials
with probability one. For example with α1 = 25x, α2 = 24x and
α3 = 30x the third order differential of S-box 4, ∆α1,α2,α3(S4) = fx
with probability one. Note that ∆α1,α2,α3(S4) is the exclusive-or of
eight six bit inputs. We have found no way of exploiting higher order
differentials for the DES, other than by attacking a four round version
of the DES. However since the DES with four rounds is trivially broken
using first order differentials, this application is not of much use.
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S-box no. 1. order 2. order 3. order 4. order
1 16 24 48 64
2 16 28 48 64
3 16 28 40 64
4 16 48 64 64
5 16 28 40 64
6 16 24 40 64
7 16 28 40 64
8 16 28 40 64

Table 4: The probabilities (× 64) of the best higher order differential
s for the 8 S-boxes of DES.

6 Computing the Nonlinear Order

In [11] it was considered to cryptanalyse the DES by the method of
formal coding. The conclusion was that this is hardly possible. It was
shown also that the nonlinear order of any of the 8 S-boxes in the DES
is 5. An open question is, what is the order of the outputs for the full
16 round DES. In general, a cipher will be vulnerable to attacks like
the method of formal coding if the nonlinear order of the outputs is
too low. Higher order differentials can be used to determine a lower
bound of the nonlinear order of a block cipher.
Test for nonlinear order
Input: EK(·), a block cipher, a key K, plaintexts x1 6= x2 and r, an
integer.
Output: i ≤ r, a minimum nonlinear order of EK.
Let a1, a2, ..., ai be linearly independent.

1. Set i = 1

2. Compute y1 = ∆a1,...,aiEK(x1) and y2 = ∆a1,...,aiEK(x2)

3. If y1 = y2 output i and stop

4. If i ≥ r output i and stop

5. Set i = i+ 1 and go to step (2)
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If in step (3), y1 6= y2 then the nonlinear order is greater than i accord-
ing to Prop. 4.3. If y1 = y2 then the nonlinear order may be greater
than i, because it is possible for other values of x′1 and x′2 that y′1 6= y′2.
However the above test must stop, since if the i’th derivative of f is
constant, then the i + r’th derivative of f is zero for all r > 0. Also,
note that computing an i’th order derivative of f , is equivalent to com-
puting two times an i−1’st order derivative of f . Therefore the values
of y1, y2 can be stored and re-used in following steps.

To test a block cipher E, pick a random key K and two random
plaintexts and run the test for nonlinear order. If the output of the
test is d then the nonlinear order of EK is at least d. Repeat this
procedure for as many keys and plaintexts as desired. The input r and
the test in step (4) is necessary for block ciphers like the DES and r
should be chosen not much greater than 32, since it takes about 2r

encryptions to check a nonlinear order of r.

7 Concluding Remarks

We have shown applications for partial and higher order differentials.
We presented ciphers secure against conventional differential attacks,
but vulnerable to attacks using either partial or higher order differen-
tials. We showed interesting partial and higher order differentials for
the DES and presented a differential attack on DES with 6 rounds us-
ing partial differentials with complexity of about 46 chosen plaintexts
and a running time of about the time of 3,500 encryptions. Finally we
presented a method to test the nonlinear order of a block cipher using
higher order differentials.

In the above attacks we have exploited the small number of rounds
in the Feistel ciphers we have analysed. It is an open problem, whether
differential attacks based on higher order differentials are applicable to
ciphers with more than 5 rounds. This seems to require a method
of iterating higher order differentials to more than two rounds in the
same way as with first order differentials. Partial differentials can be
combined with conventional differentials to refine attacks using the
latter. It is an open problem whether partial differentials can improve
the attacks on DES [1, 2] for more than 6 rounds.
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