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SPECIFICATION AND AUTOMATED
VERIFICATION OF REAL-TIME BEHAVIOUR

— A CASE STUDY

Jørgen H. Andersen†, Carsten H. Kristensen‡ and
Arne Skou†

†BRICS∗,Department of Mathematics and Computer Science, Institute
of Electronic Systems, Aalborg University, Fredrik Bajers Vej 7,

DK-9220 Aalborg, Denmark.
‡Department of Control Engineering, Institute of Electronic Systems,
Aalborg University, Fredrik Bajers Vej 7, DK-9220 Aalborg, Denmark.

Abstract: In this paper we sketch a method for specification and auto-
matic verification of real-time software properties. The method combines
the IEC 848 norm and the recent specification techniques TCCS (Timed
Calculus of Communicating Systems) and TML (Timed Modal Logic)
— supported by an automatic verification tool, Epsilon. The method
is illustrated by modelling a small real-life steam generator example and
subsequent automated analysis of its properties.

Keywords: Control system analysis; formal specification; formal veri-
fication; real-time systems; standards.

1 INTRODUCTION

Industrial process control is increasingly focussing on safety critical and dependable ap-
plications. The design of such applications requires verification of system safety and
operability beyond the level normally accomplished in non-safety oriented applications.
∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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Correct operation requires that systems must operate not only in a logically correct way,
but in addition must satisfy specified timing properties. Verifying system timeliness is
among the hardest parts of the construction phase and is normally treated in an ad-hoc
way only [RRL88]. This is due to the fact that even small real-time systems often have
a very complex behavior because of the non-deterministic nature of their environments.
There is clearly a need for computer based tools to support verification. Recent decid-
ability results [ČGL93] have enabled the construction of such tools in prototype form,
and there is therefore a need to investigate their relevance in software design of process
control applications.

In this paper we make such an investigation by sketching a software design method espe-
cially suitable for real-time control systems. The method combines the familiar IEC 848
norm for function charts [IEC87] and a recent formalism for modeling real-time behavior
[ČGL93]. The formalism is supported by an automated verification tool, and we illustrate
the method by a case-study: the control of the well-known steam generator.

Our software design method is parted in four steps. After initial requirement analysis
we advocate a second step of functional description using function charts to describe the
real-time control strategy.

The third step is to construct a model of the control strategy. In this work we propose
the use of a timed process algebra TCCS [ČGL93], which is suitable for modeling com-
munication between systems and their environment, and we show how to convert relevant
parts of IEC 848 function charts to TCCS.

In step four, the system requirements are transformed into corresponding logical expres-
sions and it is automatically verified that these requirements are indeed fulfilled by the
given design. If any deficiencies are concluded then the model is improved and this step is
repeated. We demonstrate how the TCCS support tool Epsilon [GLNK94] may be used
to automatically verify the design and also to assist in debugging by providing diagnostic
information through counterexamples when verification fails.

The case demonstrates the proposed method and in particular it shows the automated
verification of a number of control requirements. These are divided into requirements for
safety (e.g. burner chamber must be purged before flame ignition), liveness (e.g. steam
must be produced) and performance (e.g. time between two activations of the water pump
must be at least T time units).

In Section 2 the steam generator is described and control requirements are formulated.
Specification and verification of real-time systems based on TCCS and TML is discussed
in Section 3. The modeling of the case study is described in Sections 4 and 5. Verification
of control requirements is shown in Section 6. The paper is discussed and concluded in
Sections 7 and 8. An appendix defining the formal specification languages and verification
methods is given.
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Figure 1: Steam generator. � and � shows process outputs (sensor signals) and inputs
(actuator signals) respectively.

3



2 STEAM GENERATOR

The common function of a steam generator is to produce steam to be used as a source
of power, e.g. in connection with turbines producing electrical power. Explanation of the
physical behavior as well as a simplified description of the control of a steam generator
may be divided into two corresponding to the two major physical components: a burner
part and a drum part. These parts are shown at Fig. 1 and described below.

2.1 Physical Description

The burner part heats the air in the generator, thus causing the drum part to deliver
steam as the water in it gets heated to its boiling point.

2.1.1 Burner Part. A compound of oil and air is blown into the steam generator using
a fan (Fan) and an oil pump (Oil). The compound is set on fire using an igniter (Lighter)
and fire is monitored using a flame detector (Flame).

When flame is detected i.e. the burner produces heat, a delay of SteamStart is assumed
before steam is actually produced. Likewise, a delay of SteamStop is assumed before steam
production stops when the burner is shut down. These delays make up an imprecise model
of the dynamics related to the mass and heat of the drum water, adequate for this type
of analysis.

2.1.2 Drum Part. The drum water level is changed using a water pump (Water). This
pump may change the water level in a positive manner (a manual valve is assumed present
to be used in cases of abnormal behavior only).

Water level is monitored using four level detectors; very high (HH), high (H), low (L), and
very low (LL). At any time, exactly one of these are active.

A steam detector (Steam) indicates whether steam is produced. When steam has been
produced in a period of EmptyTime the level indicator is shifted down, e.g. from H to L.
Similarly, when the water pump has been active for a period of FillTime the level indicator
is shifted up.

At startup, the drum is assumed to be empty. The human operator may accomplish this
using the manual valve.

2.2 Control Description

Control of the steam generator is separated in two parts as shown in Fig. 2. This describes
the control according to the IEC 848 standard.
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Figure 2: Function chart of burner control part (left) and drum control part (right).
Simple boxes (e.g. those given most left-hand) indicates states while double-lined boxes
are initial states. State change conditions are given on the lines connecting the states.
When entering a new state, the actions given in right-appended boxes are performed. “S”
indicates set-and-store output while “D” is a delayed set-and-store output with a delay
given as PurgeTime.

2.2.1 Burner Part. The burner is idle in Cold state. After startup it changes to an
infinite operating cycle consisting of the states Purge, Ignite, Run, and StandBy. In Purge
state the generator air is refreshed for a period of PurgeTime to avoid explosions in the
following Ignite state in which the burner is ignited. In Run state the water is heated,
which ends when the steam pressure is sufficient, resulting in a state change to StandBy
state. When steam pressure is insufficient the state changes back to the Purge state.

2.2.2 Drum Part. The drum is idle in Cold state. Then, the drum changes to Starting
state, filling the drum. When drum is full (H), the states Normal and Low alternates
indicating normal respectively low water level.

2.3 Control Requirements

A real-world system like a steam generator is subject to a number of requirements. These
may be parted in three, listed in order of importance:

Safety requirements Control systems are considered safety-critical if there exists at
least one failure which could cause a catastrophe like fatal damage or loss of human
life. To avoid such behavior a number of safety requirements are formulated.

Liveness requirements These are requirements which must be fulfilled if any produc-
tion are to be accomplished, i.e. steam has to be produced at some point in time.

Performance requirements A number of requirements may be derived from economi-
cal consideration. These requirements are basically of two sorts: 1) optimizing pro-
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ductivity (short-term economical consideration), and 2) minimizing wear of physical
components (long-term economical consideration).

2.3.1 Safety requirements. The primary concern in relation to the steam generator is to
avoid explosions. These are a potential danger because the burning chamber may contain
highly explosive gases if ignition has been attempted, and failed. To avoid ignition in
unsafe situations, the burning chamber is purged before every ignition. Safety requires
this purge phase to 1) be at least as long as required, and 2) precede every ignition.

A typical consumer of the steam is a turbine. Many types of turbines requires the steam
to be completely free of water drops as these may damage the turbine blades (because of
the high impulse of the water drops). Thus it is required that the water level is below a
given level (referred to as HH), as increasing the water level leads to an unacceptable risk
of drops from the drum to mix with the produced steam.

Another risk is that the drum may melt down due to over-exposure of heat. This is
possible if the burner produces heat while the drum contains little or no water. The risk
is avoided if the water level always is above a given value (called LL).

Requirement 1 Purge state must last at least PurgeTime time units.

Requirement 2 Purge state must always precede Ignition phase.

Requirement 3 Water level must never be LL after startup, i.e. after the drum control
enters its repeated cycle between the Normal and Low states.

Requirement 4 Water level must never be HH.

2.3.2 Liveness requirements. An obvious liveness requirement is that steam has to be
produced at some point in time.

Requirement 5 Steam must be produced.

2.3.3 Performance requirements. The steam generator contains a number of actuating
components: water pump, oil pump, fan and lighter. In order to avoid wear of actuating
components, a minimum time between two activations is enforced.

Requirement 6 Time between two activations of the water pump must be at least Wa-
terPumpActivate.

Requirement 7 Time between two activations of the oil pump must be at least
OilPumpActivate.

Requirement 8 Time between two activations of the fan must be at least FanActivate.

Requirement 9 Time between two activations of the lighter must be at least LighterAc-
tivate.
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These requirements introduce four delay variables (WaterPumpActivate, OilPumpActivate,
FanActivate, and LighterActivate) which may be used to tune the performance of the
control system.

3 A FORMALISM FOR SPECIFICATION AND VERIFICATION OF REAL–TIME
SYSTEMS

Through a small example, this section introduces the formalism used in the case study.
In subsection 3.1 we introduce the specification language TCCS. In subsection 3.2 we
introduce the notion of bisimulation equivalence between specifications and a modal logic,
TML [AKLN94], which is used to express safety, liveness, and performance properties of
a system. For more details, please consult the appendix or the quoted literature.

3.1 TCCS

The basic idea in process algebras [Mil89, Hoa85] is to define a systems behavior through
its interaction with an external environment (or observer). A system may consist of one
or more concurrent processes. In this way one may interpret a system as a black-box
equipped with pressure buttons. An observer may at any time attempt to press any of
the buttons. If it goes down, the observer may conclude that the system was in a state
where the specific button was available for external synchronization, and that the system
changed its state (via a state transition) when this synchronization (the button pressure)
took place.

As an example, let us consider the fabrication of a sink. On a conveyer belt, Con, is
situated a metal press, MP , which shapes metal into specific size sheets, a sink press,
SP , which inputs a sheet of metal and presses it into the shape of sink and outputs it.
When the metal press inputs metal we say MP does an “input metal transition”, written
MP

metal−→ MP ′ where MP ′ is the derived state.

Internal synchronization (or communication) can take place when two processes can do
complementary actions, i.e. MP can output metal sheets and SP can input metal sheets,
i.e. MP

sheet−→ MP ′ and SP sheet−→ SP ′. Such synchronization is described by Con τ−→ Con′

where τ symbolizes internal computation or communication. Delay transitions, i.e. waiting
a period of time, are considered synchronous. If, for instance, Con delays two time units,
both the MP and the SP delays the same period of time. A delay of t time units is
written ε(t).

The conveyer belt process can be illustrated as in Figure 3. Delays are depicted
horizontally, actions vertically. The conveyer belt of can be defined in TCCS as a parallel
composition of a metal press and a sink press:

MP
def= ε(1).metal.ε(1).sheet.MP

SP
def= sheet.ε(2).sink.SP

Con
def= (MP |SP )\{sheet}

The above specification is read as follows:
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sheetmetal
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sheetmetal
sinksheet
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1 2

Con

Environment

MP SP

MP SP

Figure 3: The environment to Con can only see metal being input and sinks being output.
Internally, MP and SP exchange sheets of metal. After an initial delay of one time unit
MP enables input of metal. When it has received the metal it must delay another time
unit before it enables the output of a sheet of metal. SP will accept input of a sheet of
metal at once. When it has received such input it will delay two time units before enabling
output of a sink. In the figure, time progresses horizontally whereas state changes progress
vertically.

MP The metal press first delays 1 time unit and then it becomes ready to receive metal.
When it receives metal then after an additional time unit it becomes ready to output
the metal sheet to the sink press. Finally it returns to its initial state.

SP The sink press initially is ready to receive a metal sheet from the press. After this it
delays 2 time units, and finally it is ready to offer the sink to an environment.

Con The complete system (Con) consists of the parallel composition of the above com-
ponents, where the internal synchronization port (or button) sheet is abstracted
away.

3.2 Verification

In order to support verification of stepwise refinements of specifications, a specification
method must provide a way to compare specifications at different abstraction levels. The
Epsilon system is based on the notion of bisimulation for this purpose. Epsilon can
verify two different kinds of bisimulation equivalences for specification comparison. In
order for three systems P and Q to be bisimulation equivalent (P ∼ Q) they must be
able to exactly match each others transitions, i.e if one can do a µ-transition – µ could
be anything: delay ε(d), τ or some external action – then the other must be able to do
the same and the derived states must again be able to match transitions. Most often
one is not interested in the internal behavior of a system, as it doesn’t matter if an
implementation makes additional internal computations (τ ’s) just as long as it has the
same external behavior. If two systems are τ -abstracted equivalent, written P ≈ Q, they
can match each others transitions by doing any number of τ -transitions before and after
the transition they have to match. Further, we will also at times abstract away time as
well as τ ’s. Two processes are τ and time abstracted equivalent, written P

•≈ Q, if they
can match each others transitions by doing any number of τ and/or delay transitions
before and after the transition they have to match.
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The equivalences P ∼ Q, P ≈ Q, P
•≈ Q are all decidable for finite state systems, and

the Epsilon system implements these algorithms.

We can now return to our conveyer belt and give a specification for it. One might expect
the conveyer belt to be τ and time abstracted (Con

•≈ Spec1) equivalent to the following:

Spec1 def= metal.sink.Spec1

However, it is not1. After a more careful study of the system we discover that
MP can input metal twice before SP outputs a sink. Further, MP will never have input
more than one “extra” metal compared to the number of sinks SP have output. This is
exactly the behavior of Spec2 (below) making Con

•≈ Spec2.

Spec2 def= metal.
(metal.sink.Spec2′ + sink.Spec2)

Spec2′ def= metal.sink.Spec2′ + sink.Spec2

Even when we abstract away both τ ’s and time, it can be hard to come up with
an easy to read specification. However, in the logic TML one can express properties
about parts of a system’s execution, e.g. (Property 1) from its start state Con will within
two time units be able to input metal and no matter how long it waits not output a sink
(Property 2) Con will at some point output a sink (Property 3) Con will always, after
having input metal, be able to output a sink within two time units. Property 1 can be
written as follows:

(F1) ∃[0, 2] 〈metal〉 tt ∧ ∀[0,∞[ [sink] ff

〈action〉 and [action] are modalities which respectively quantify the action transi-
tions of a state of a process existentially and universally. ∃interval and ∀interval are
modalities which respectively quantify the delay transitions over an interval of time
existentially and universally. In order for Con to satisfy F1, written Con |= F1, there

must exist a delay transition
ε(d)−→ where 0 ≤ d ≤ 2 to a state Con′ where there exists a

metal−→ -transition to a state Con′′ which satisfies tt. As all states satisfy tt we simply say:
Con can delay somewhere between 0 and 2 time units and then do a metal−→ -transition.
Further, Con must satisfy that for all delay transitions it can make, the derived state
must satisfy that all sink−→-transitions from it reaches a state which satisfies ff . In other
words – as no process satisfy ff – Con cannot do any sink−→-transitions no matter how long
it waits initially.

These modalities — like the equivalences — may be interpreted on different abstractions
of transition systems: 〈〈action〉〉, [[action]], ∃∃interval and ∀∀interval are the τ -abstracted
modalities. 〈〈−action−〉〉 and [[−action−]] are the τ and time abstracted modalities.

When we write up “natural specifications” like Properties 1 to 3 we do not directly say
whether or not we abstract τ ’s and/or time – it is often implied. In the case of Property 3
it must be a τ -abstracted delay of two time units in order for Con to satisfy it. The
following two formulas are such interpretations of Properties 2 and 3:

1In fact Epsilon gives us some diagnostics in the shape of a TML-formula why it isn’t so.
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(F2) poss(〈sink〉 tt)
(F3) inv([metal]∃∃[0, 2] 〈sink〉 tt)

4 MODELING IN TCCS

We will now construct a TCCS-model of the control system given in Section 2. This
chapter is a discussion of the main subjects in relation to building this model, while the
model itself is given in Sect. 5.

4.1 Actuators and Sensors

For each actuator and sensor we introduce a pair of gates (On or Off) whereby their states
may be set and read via a synchronization with an environment. Hence we choose not
to model the states of these actuator and sensor, but instead describe the dynamics of
state-changes.

We use a b-prefix to signify actions interfacing the control and physical models, e.g.
turning on and off the fan is modeled as the two output-transitions bFanOn and bFanOff
respectively.

4.2 Converting Function Charts to TCCS

The control system depicted on Fig. 2 may be converted to TCCS in a straightforward
manner. The function charts consist of states, actions, and state change conditions, all of
which are easily turned into a transition systems. As an example, the burner Ignite state
depicted as

Ignite

Run SS Stop Lighter

Flame

is expressed in TCCS as

burnerIgnite def= bFlameOn .bLighterOff .burnerRun.

4.3 Multiple Inputs and Outputs

If more outputs are required for a state-change the outputs are done in a natural or-
der, if any, or in an arbitrarily chosen order. Should more inputs be required to occur
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simultaneously we may try to use the naive act1On.act2On. This will contradict our re-
quirement (act1On and act2On occurring simultaneously) since act1On.act1Off.act2On
may happen. This is a classic problem of the interleaved process models in the school of
concurrency because truly concurrent actions cannot be expressed. This is, however, only
considered a minor problem in this case study.

5 MODELING THE CASE IN Epsilon

This section describes the model of the steam generator. In the following we will use the
TCCS-syntax as used by Epsilon. Table 1 compares the syntax of TCCS and TML to
Epsilon.

TCCS/TML Epsilon Explanation
def= :=: Declaration binding
a a Action
a ~a Co-action
ε(t) t Delay
nil nil Nil agent
| / Parallel composition
+ + Alternative choice
\ \ Restriction

inv(F ) inv All states satisfies F.
poss(F ) poss Some state satisfies F.
〈α〉F < > An α move leads to F.
[α]F [ ] All α moves lead to F.
∃IF EE I A time in I leads to F.
∀IF AA I All times in I lead to F.
F ∨G or F or G.
F ∧G and F and G.
tt tt True.
ff ff False.

Table 1: Converting from TCCS and TML to Epsilon
2.

The parameters in declarations are all time delays. The signals used for internal syn-
chronization in the components (e.g. drumready) is in all lowercase. As an example, the
TCCS-specification

burnerCold(PurgeTime) def=
drumready.ε(PurgeTime).bFanOn.burnerPurge(PurgeTime)

may be rewritten in Epsilon-syntax as

burnerCold(PurgeTime) :=:
drumready; PurgeTime; ~bFanOn ;burnerPurge(PurgeTime).

2F and G are TML formulae. I denotes a dense interval.
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(a)

drumctrl :=: drumCold.
drumCold :=: ~bWaterOn;drumStarting.
drumStarting :=: bH; ~bWaterOff; ~drumready;drumNormal.
drumNormal :=: bL; ~bWaterOn;drumLow.
drumLow :=: bH; ~bWaterOff;drumNormal.

(b)

burnerctrl(PurgeTime) :=: burnerCold(PurgeTime).
burnerCold(PurgeTime) :=: drumready; ~bFanOn;burnerPurge(PurgeTime).
burnerPurge(PurgeTime) :=: cPurge;PurgeTime; ~bOilOn; ~bLighterOn;

burnerIgnite(PurgeTime).
burnerIgnite(PurgeTime) :=: cIgnite;bFlameOn; ~bLighterOff;

burnerRun(PurgeTime).
burnerRun(PurgeTime) :=: bSteamOn; ~bOilOff; ~bFanOff;

burnerStandBy(PurgeTime).
burnerStandBy(PurgeTime) :=: bSteamOff; ~bFanOn;burnerPurge(PurgeTime).

Figure 4: The control system described in Epsilon-syntax. Part (a) shows drum part
and (b) shows burner part.

5.1 Control System

The control system consisting of a burner and drum control is expressed in the TCCS-
syntax of Epsilon (see Fig. 4). The two actions cIgnite and cPurge are special probes
included for verification purpose.

5.2 Physical Model

To be able to verify performance-requirements for the control system a model of the drum
and the burner is introduced. Hence, the complete model consists of two components: a
model of the control system, and a model of the drum and burner. The physical model is
described in Fig. 5 and 6. The burner is modeled by the component burner whereas the
drum is modeled by the four components drumLL (models water level sensors), filler
(models inlet of water), discharger (models steam evaporation), and steamgen (decides
whether steam is generated or not). The complete physical model is depicted in Figure 7.
The modeling of the physical part of the steam generator is very simple but sufficient in
this context. The individual parts are described below.

5.2.1 The burner Process (Fig. 5.) As the name indicates, burner models the be-
havior of the burner. Ignition of the burner requires that the fan is on (bFanOn)
and that oil supply is on (bOilOn) concurrently and a subsequent use of the igniter
(bLighterOn). When these conditions are met, the signal burner is output and flame is
lit (bFlameOn). The burner is deactivated if either the fan or oil is turned off (bFanOff
respectively bOilOff). This causes the signal noburner to be output and the flame to
disappear (bFlameOff).

12



burner :=: bFanOn;burner2 + bOilOn;burner3.
burner2 :=: bFanOff;burner + bOilOn;burner4.
burner3 :=: bOilOff;burner + bFanOn;burner4.
burner4 :=: bOilOff;burner2 + bFanOff;burner3 +

bLighterOn; ~burner; ~bFlameOn;burner5.
burner5 :=: bOilOff; ~noburner; ~bFlameOff;burner2 +

bFanOff; ~noburner; ~bFlameOff;burner3.

Figure 5: The physical burner model described in terms of Epsilon.

5.2.2 The filler Process (Fig. 6(a).) The inlet of water into the drum is controlled
by filler. If water is on (bWaterOn) then the drum level is assumed to be effected in a
increasing manner by the raise signal. When water is turned off (bWaterOff) the process
is idle awaiting it to be turned on.

5.2.3 The discharger Process (Fig. 6(b).) As a complement to filler, the
discharger process models steam evaporation, i.e. lowering the water level. When steam
is generated (steamgen) the drum level is assumed to be effected in a decreasing manner
at every lower signal. Likewise, when no steam is generated (nosteamgen) the process is
idle awaiting evaporation.

5.2.4 The steamgen Process (Fig. 6(c).) The steamgen process decides whether steam
is generated or not. The signals steamgen and nosteamgen is output, depending upon
the signals burner and noburner, indicating if the burner is producing heat.

The heat from the burner must be present for SteamStart time units before any steam
is produced. Similarly, when steam is produced it takes SteamStop time units for the
noburner signal to be effected. If steam is produced and the burner is turned of for a
period less that SteamStop time units, then steam is produced continuously.

5.2.5 The drumLL Process (Fig. 6(d).) The drumLL process corresponds to one of four
alternating processes to model the water level sensors. The drum level is controlled by the
raise and lower signal indicating a raise and lowering in water level. These processes
are willing to synchronize at any time with an action corresponding to the current water
level bLL, bL, bH, and bHH.

These processes model the dynamics of refill and evaporation of the drum water level using
FillTime and EmptyTime time units respectively to model the amount of time necessary
to change water level.

5.3 The entire model

The physical model and the control system may now be put together into a single system
(see Fig. 8). The system is a network consisting of all the components described in Sect.
5.1, and 5.2. The system is restricted in such manner that only the probes cIgnite and

13



(a)

filler :=: bWaterOn;filler2.
filler2 :=: ~raise;filler2 + bWaterOff;filler.

(b)

discharger :=: steamgen;discharger2.
discharger2 :=: ~lower;discharger2 + nosteamgen;discharger.

(c)

steamgen(SteamStart,SteamStop) :=:
burner;steamgen2(SteamStart,SteamStop).

steamgen2(SteamStart,SteamStop) :=:
noburner;steamgen(SteamStart,SteamStop) +
SteamStart; ~steamgen; ~bSteamOn;steamgen3(SteamStart,SteamStop).

steamgen3(SteamStart,SteamStop) :=: noburner;
(burner;steamgen3(SteamStart,SteamStop) + SteamStop;
~nosteamgen; ~bSteamOff;steamgen(SteamStart,SteamStop)).

(d)

drumLL(FillTime,EmptyTime) :=:
EmptyTime; lower; drumLL(FillTime,EmptyTime) +

~bLL;drumLL(FillTime,EmptyTime) +
FillTime; raise; drumL(FillTime,EmptyTime).

drumL(FillTime,EmptyTime) :=:
EmptyTime; lower; drumLL(FillTime,EmptyTime) +

~bL;drumL(FillTime,EmptyTime) +
FillTime; raise; drumH(FillTime,EmptyTime).

drumH(FillTime,EmptyTime) :=:
EmptyTime; lower; drumL(FillTime,EmptyTime) +

~bH;drumH(FillTime,EmptyTime) +
FillTime; raise; drumHH(FillTime,EmptyTime).

drumHH(FillTime,EmptyTime) :=:
EmptyTime; lower; drumH(FillTime,EmptyTime) +

~bHH;drumHH(FillTime,EmptyTime) +
FillTime; raise; drumHH(FillTime,EmptyTime).

Figure 6: The physical drum model described in terms of Epsilon. Parts (a) to (d)
shows filler (models inlet of water), discharger (models steam evaporation), steamgen
(decides whether steam is generated or not), and drumLL (models water level sensors)
respectively.
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bFlameOn

bFlameOff

bSteamOn

bSteamOff

bHH

bH

bL

bLL

bWaterOn

bFanOn

bFanOff

bOilOn

bOilOff

bLighterOn

filler

drumLL

discharger

steamgen

burner

raise

lower

steamgen

burner noburner

nosteamgen

Figure 7: Complete physical model of steam generator. External inputs and outputs are
shown entering and leaving the dashed box.

testsys(PurgeTime,SteamStart,SteamStop,FillTime,EmptyTime) :=:
( drumctrl / burnerctrl(PurgeTime) / burner /
drumLL(FillTime,EmptyTime)/ steamgen(SteamStart,SteamStop) /
filler/discharger/dummy

)\[ drumready,bFanOff,bFanOn,bOilOff,bOilOn,bLighterOff,
bLighterOn,bWaterOff,bWaterOn,raise,lower,bSteamOn,
bSteamOff,bFlameOn,bFlameOff,bLL,bL,bH,bHH,steamgen,
nosteamgen,burner,noburner ].

dummy :=: ~bLighterOff;dummy + ~bFlameOff;dummy +
bLighterOff;dummy + bFlameOff;dummy.

Figure 8: The entire model described in Epsilon-syntax.
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Welcome to Epsilon v.3.0, Aalborg University 1994.

Type ‘help.’ to get list of available predicates.

1 ?- [newburner1].
newburner1 compiled, 0.02 sec, 5,392 bytes.

Yes
2 ?- [formuli].
formuli compiled, 0.11 sec, 9,436 bytes.

Yes
3 ?- testsys(5,1,1,1,1)>-’inv([cPurge]AA[0,5[[cIgnite]ff)’.
establishing internal datastructure....done

testsys(5, 1, 1, 1, 1) satisfies inv([cPurge]AA[0,5[[cIgnite]ff)

Yes
4 ?-

Figure 9: Using Epsilon. Example shows the verification of Property 1.

cPurge are externally observable. The probes are used for verification of the ordering and
timing of the control behavior.

6 VERIFICATION IN Epsilon

In this section, we investigate whether the nine desired system properties listed in Section
2 can be formally proved by using the automated proof system Epsilon. That is, we
attempt to verify that the system model presented in the previous section (see Figure 8),
fulfils the desired requirements. It should be stressed that we can only verify the system
model with respect to specific choices of timing parameters.

6.1 Safety properties

The first safety requirement states that 1: Purge state must last at least PurgeTime time
units. This may more precisely be formulated as: Whenever (invariantely) the system
enters the Purge state, the flame will not be ignited until PurgeTime seconds has passed,
or in terms of the Epsilon–logic:

F1=> ’inv([cPurge] AA[0,PurgeTime[ [cIgnite]ff)’

For a specific parameter choice, e.g. testsys(5,1,1,1,1) Epsilon confirms that the
property holds, see Figure 9.

The second safety property states that 2: Purge state must always precede Ignition phase.
That is, the two states must be properly ordered in time, but we are not particularly
interested in the actual elapsed time between the two states (this aspect is covered by
property 1). For this purpose we must apply the transition system where internal com-
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putations and timing aspects are abstracted away. This transition system must then be
equivalent to the following specification:

spec2 :=: cPurge;cIgnite;spec2

An invocation of the Epsilon command wtar(testsys(5,1,1,1,1),spec2) confirms
that this indeed holds for the specific choices of parameters.

As for the third property 3: Water level must never be LL after startup, we insert a
probe, drumlow in the system model, whenever it enters the state representing the water
level LL. Again, we are not particularly interested in the timing properties, and we may
therefor formulate the property more precisely as: Ignoring time progression and internal
computations, the system may only indicate water level LL once in its lifetime, i.e. it
must be time abstracted bisimulation equivalent with the following process:

drumlow;nil

An attempt to verify this property for the system model testsys(5,1,1,1,1) fails! That
is, the system responds as follows when the two processes are compared via the wtar
command:

?- wtar(drumlow;nil,testsys(5,1,1,1,1)).
deleting all transition systems

[[-drumlow-]]<<-drumlow->>tt

No
?-

This means that the above TML property is enjoyed by the right hand process, but not
by the left hand side, i.e. the system is always able to indicate water level LL at least
twice. By analysing the model in detail, we find that whenever the burner flame is turned
off (by stopping the oil pump), the reaction time to close the steamvalve (SteamStop)
must be less than the emtying rate for the burner (EmptyTime). This is confirmed by
comparing the system model testsys(5,1,1,2,3) against the process drumlow;nil.

The fourth property 4: Water level must never be HH, is verified in the same manner, i.e.
we insert a probe drumhigh indicating the transition to the state representing water level
HH, and attempt to verify

F4=>’poss(<drumhigh>tt)’ ,

that is, is it possible to sense the level HH? Epsilon confirms that this property does
NOT hold (as we expect).

6.2 Liveness requirements

In order to verify the liveness requirement 5: Steam must be produced, we introduce a probe
steamon, which indicates that the start of steam generation has been communicated to
the burnercontrol module. Epsilon confirms that the property

F5=>’poss(<steamon>tt)’ ,

is fulfilled by the system model testsys(5,1,1,2,3).
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6.3 Performance requirements

The final four requirements 6–9 demand (invariantely) a minimun dealay between any
two activations of the units water pump, oil pump, fan and lighter. So, we introduce
probes startwater, bOil, bFan, bLighter to indicate the start activations of these
units. (If we also probe the stopping activations the minimum delay in fact becomes 0
for the lighter!).

Let the parameter Time indicate the desired delay. Then we may formulate property 6:
Time between two activations of the water pump must be at least WaterPumpActivate as
the following parameterised formula:

F6(Time) => ’inv([startwater] AA[0,Time] [startwater]ff)’ ,

that is, whenever the water pump is activated, another activation is not possible be-
fore Time time units have elapsed. For the instantion Time=4 Epsilon fails to verify
testsys(5,1,1,2,3) whereas it succeeds for the system testsys(10,1,1,4,5). This
indicates that the system parameter FillTime defines the lower limit for the water pump
activation delay. That is, the time to raise the water level from L to LL defines the lower
limit.

Along the same lines we find (by experimenting with Epsilon), that the system parame-
ter SteamStart defines the lower limit for the oil pump activation frequency, that is, the
elapsed timed from burner ignition to steam production defines the minimum delay. Also,
we find that the minimum delay between any two activations of the fan is determined by
the sum of the system parameters PurgeTime and SteamStart, and finally that the min-
imum delay between lighter ignitions is determined by the sum of the system parameters
PurgeTime, SteamStart and SteamStop.

7 FURTHER WORK

Our work has suggested a number of potential improvements in relation to the specification
and verification of this steam generator example.

7.1 Handling Process Abnormalities

The specification of a process control application would be incomplete without specifying
how the control system should react to situations in which the process behaves abnor-
mally. As an example consider the drum control; the HH water level is not expected to
happen. However, if this assumption fails then the control should be able to handle that
situation. This could be handled by extending the control with a simple construction
saying e.g. “if HH happens then shut down the process within 3 seconds”. Detecting
process Abnormalities and handling these are often considered exceptions and separated
from the normal control procedures and specified as parallel to these.

The specification of exceptions may be parted in two; state dependent and state indepen-
dent exceptions. State independent exceptions are always active while state dependent
exceptions are active only at certain control states, often known as modes. An example
is the state independent exception requiring response if the water level reaches HH.
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A state dependent exception arises if Oil is turned off in the Ignite state. Turning off oil is
accepted or even required in certain other states, however oil is needed in order to ignite
successfully. When entering the Ignite state this exception checking must be turned on
and likewise turned off when leaving.

As indicated by the above, we believe that the detection of process abnormalities and
handling of these may be specified and verified in the same manner as in Section 5 and 6
using the TCCS formalism.

7.2 Looseness

In the burner control algorithm, the time between purging and ignition is declared as
exactly PurgeTime. However, this precision is much to strict as 1) no practical system
supports timing services with unlimited precision, and 2) this time may be slightly in-
creased without any practical importance.

An obvious enhancement of the specification would be to allow the time between purging
and ignition to be at least PurgeTime. This would allow the time be indefinitely long,
thus a maximum time must be given also.

Constructs of this type may be specified directly in the Epsilon tool, and should thus
replace fixed delays in the description of the control systems as well as the physical model.
We intend to enhance the model in such a manner.

8 CONCLUSION

This paper documents a case study in specification and verification, showing how minor
systems within the area of real-time systems may be dealt with formally. A steam gener-
ator has been specified in TCCS and checked against safety and performance properties.
The tool Epsilon has been used to provide the means for automating the verification.

Based on this case study, we believe, that TCCS/TML is a well-suited formalism for
specifying and verifying process control applications since the functionality of these appli-
cations are very well characterized by their communication with their environments. The
notion of communication is central to TCCS, thus linking the functionality of applications
to TCCS in a very direct manner.

Compositionality is a very important ability if larger real-world applications are to be
verified. TCCS can be verified compositionally [ČGL93]. This allows splitting of an
initial specification into smaller parts which preserves what was proven in relation to the
initial specification. Then, attention may be confined to the specification and verification
of each part in turn.

The case study points out two major problems. First of all, it has proven difficult to
model certain behaviors in TCCS. Most real-world problems can be modelled, however,
sometimes only in a very non-straight-forward manner, because TCCS is based on syn-
chronous communication, where as many process control application are thought of as
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being asynchronous. The second problem is that of state space explosion. The size of
the resulting state space is exponential in the number of processes in the network. Thus,
many networks may easily be to large for verification.

Finally, the automated verification of the steam control has shown to be rather slow
and requiring large amounts of computer memory (e.g. Requirement 9 was verified in 10
minutes on a SUN SPARC-Station 10 using 10 MBytes). At current, the Epsilon tool
is a prototype written in Prolog which indicates that speed improvements are possible
if it was implemented in a more efficient programming language. Furthermore various
optimizations of the algorithm is also possible. However, the state-explosion problem
leading to large computer memory requirements is inherent. Fortunately, TCCS can be
verified compositionally which appears to be one way of avoiding the problem of state-
explosion.
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ε(0).α.R α−→ R
R

α−→ R′

X
α−→ R′

X
def= R

R1
α−→ R′1

R1 +R2
α−→ R′1

R2
α−→ R′2

R1 +R2
α−→ R′2

nil
ε(d)−→ nil α.R

ε(d)−→ α.R if α 6= τ

ε(d).R
ε(e)−→ ε(d− e).R if e ≤ d R

ε(d−e)−→ Rd−e

ε(d).R
ε(e)−→ Rd−e

d < e

R1
ε(d)−→ Rd

1 R2
ε(d)−→ Rd

2

R1 +R2
ε(d)−→ Rd

1 +Rd
2

R
ε(d)−→ Rd

X
ε(d)−→ Rd

X
def= R

Table 2: Regular process transitions.

A APPENDIX

A.1 The model specification language TCCS

The notation is as follows: we have a set of names A. A set of labels L = A ∪ A. A is
the complementary set of names, i.e. A = {a : a ∈ A}. A set of actions Act = L ∪ {τ},
τ indicating internal computation. We assume a set of delays Del = {ε(d) : d ∈ R>0}
which means that delays range over a dense time domain. We use a to range over L,
α to range over Act, d, e to range over R≥0 and µ to range over Act ∪ Del. We define
a = a, τ = τ . We give the syntax and semantics of TCCS in two steps by it’s building
blocks, namly regular processes and networks of regular processes. Regular processes are
defined as follows:

R ::= nil | ε(d).α.R |R1 +R2 |X.

The semantics of a TCCS-process is given in terms of how it changes state. If a process
in state P after doing an action a reaches a state P ′, we say P does an a-transition to
state P ′, written P

a−→ P ′. Likewise, if a process in state P after delaying 1.2 time
units reaches a state P 1.2, we say P does an ε(1.2)-transition to state P 1.2, also written

P
ε(1.2)−→ P 1.2. The semantics for regular processes is given in Table 2. nil is a deadlocked

process in the sence it can do nothing but delay (i.e. nil
ε(d)−→ nil for any real d). ε(d) is

a delay prefix requiring the process to delay d before enabling α. If d = 0 we will write
α.R. Delaying for an amount of time e which is less than d the delay prefix of the derived
process is correspondingly smaller (i.e. ε(d).α.R

ε(e)−→ ε(d−e).α.R). When α is enabled the

process can both delay any amount of time and do α (i.e. α.R
ε(d)−→ α.R and α.R

α−→ R)
exept when α = τ the process cannot delay. R1 + R2 is a nondeterministic process. It
can delay any amount of time R1 and R2 can delay That is R1 +R2

ε(d)−→ Rd
1 +Rd

2 if both

R1
ε(d)−→ Rd

1 and R2
ε(d)−→ Rd

2. If R1 + R2 does an action it is because either R1 or R2 does
this action. Accordingly, the derived state of the nondeterministic process is the derived
state of either R1 or R2. That is R1 + R2

α−→ R′1 if R1
α−→ R′1 and R1 + R2

α−→ R′2 if
R2

α−→ R′2. X is a process variable which must be defined by some equation, X def= R. It
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Ri
α−→ R′i

(R1 | . . . |Ri | . . . |Rn)\L α−→ R1 | . . . |R′i | . . . |Rn

α, α 6∈ L

Ri
a−→ R′i Rj

a−→ R′j

R1 | . . . |Ri | . . . |Rj | . . . |Rn
α−→ R1 | . . . |R′i | . . . |R′j | . . . |Rn

R1
ε(d)−→ Rd

1 . . .Rn
ε(d)−→ Rd

n

R1 | . . . |Rn | . . .
ε(d)−→ Rd

1 | . . . |Rd
n

e < d,Re
1 | . . . |Re

n 6
τ−→

Table 3: Transitions of composite processes.

simply behaves as R. Networks of regular processes are defined by the following syntax:

N ::= (R1 | . . . |Rn)\L,

where R1, . . . , Rn are regular processes and L is a list of hidden labels (NB. it is not possible
to hide the internal action τ ). The semantics of composed processes is given in terms of
the component processes. If one of the regular processes can do some action the network
can do this action exept if this action is a member of the list of hidden actions. Further,
a composed process can do internal computation if two regular processes respectively can
do input and output of some action. A composite process may only delay if it cannot do
some internal computation or communication. The semantics is given in Table 3.

A.2 Equivalences om TCCS specifications

Epsilon supports two different verification strategies. The first is bisimulation equiva-
lence of system specifications. Two processes are equivalent, written P ∼ Q if they have
exactly the same behavior, i.e. they can match each others transitions at every state.

Definition 1 (Strong Bisimulation) A binary relation B, relating processes of TCCS,
is a strong simulation, if (P,Q) ∈ B implies that for all α ∈ Act and ε(d) ∈ Del,

1. Whenever P α−→ P ′,
∃Q′ : Q α−→ Q′ and (P ′, Q′) ∈ B.

2. Whenever P
ε(d)−→ P ′,

∃Q′ : Q ε(d)−→ Q′ and (P ′, Q′) ∈ B.

Such a simulation is called a strong bisimulation if it is symmetrical. The largest of all
such bisimulations is called strong bisimulation equivalence, and is denoted ∼. 2

It is often relevant to ignore internal computations of a system, and in some cases it
may also be of interest to abstract away from timing information as well. The following
abstraction rules makes this precise.

Definition 2 (Abstracting Transitions)
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1. P τ=⇒ Q iff P ( τ−→)∗Q

2. P a=⇒ Q iff P ( τ−→)∗ a−→ ( τ−→)∗Q

3. P
ε(d)
=⇒ Q iff P ( τ−→)∗

ε(d1)−→ ( τ−→)∗ · · ·
( τ−→)∗

ε(dn)−→ ( τ−→)∗Q

4. P τ=⇒ Q iff P
ε(d)
=⇒ Q.

where a ∈ L, ε(d) ∈ Del and d =
∑n
i=1 di 2

Based on these assumptions, we can now define the following two derived TCCS equiva-
lence.

Definition 3 (Weak Bisimulation) Two processes P and Q are weakly bisimulation
equivalent, written P ≈ Q, if they are strong bisimulation equivalent in the abstracted
transition systems defined by abstraction rules 1 to 3 given above.

Definition 4 (Time-Abstracted Bisimulation) Two processes P and Q are time-
abstracted bisimulation equivalent, written P

•≈ Q, if they are bisimulation equivalent
in the abstracted transition systems defined by abstraction rules 1 to 4 given above.

A.3 Logical specifications

TCCS specifications define which actions a system can provide in a given state. Such
specifications may sometimes be too concrete, and the traditional way of obtaining loose-
ness is to specify by applying modal logics [HC72, ]. In the TCCS case, TML is the
associated modal logic.

A modal logic is a logic where the expressions quantify transitions of a related system.
Hence, the semantics of the modal logic is given in terms of a satisfiability relation between
TCCS–processes and TML–formulae. We have four basic modalities, namely 〈α〉, [α], ∃I
and ∀I , quantifing transitions:

• 〈α〉F says a process in its current state must have an α-transition after which it
must satisfy F .

• [α]F says that if a process in its current state can do an α-transition any such
derived state must satisfy F .

• ∃IF says a process in its current state must be able to delay for an amount of time
d ∈ I after which it must satisfy F .

• ∀IF says that if a process in its current state can delay for any amount of time
d ∈ I any such derived state must satisfy F .

• 〈〈α〉〉F , [[α]]F , ∃∃IF and ∀∀IF are the τ -abstracted versions of the above.

• 〈〈−α−〉〉F and [[−α−]]F are the time- and τ -abstracted versions of the above.
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Table 4: The semantics of TML given in terms of the satisfiability relation |=.

P |= inv(F ) ⇔ ∀µ, P ′, P ( µ−→)∗P ′.P ′ |= F

P |= poss(F ) ⇔ ∃µ1, . . . µn, P ′, P
µ1−→ · · · µn−→ P ′.P ′ |= F

P |= 〈α〉F ⇔ ∃P ′. P α−→ P ′ ∧ P ′ |= F

P |= [α]F ⇔ ∀P ′. P α−→ P ′ ⇒ P ′ |= F

P |= ∃IF ⇔ ∃d ∈ I, P d. P
ε(d)−→ P d ∧ P d |= F

P |= ∀IF ⇔ ∀d ∈ I, P d. P
ε(d)−→ P d ⇒ P d |= F

P |= F ∨ G ⇔ P |= F or P |= G
P |= F ∧ G ⇔ P |= F and P |= G
P |= tt all processes satisfy tt
P |= ff no process satisfy ff

The complete syntax of TML is as follows:

F ::= 〈α〉F | [α]F | ∃IF | ∀IF | 〈〈α〉〉F | [[α]]F | ∃∃IF | ∀∀IF |
〈〈−α−〉〉F | [[−α−]]F |F1 ∧ F2 |F1 ∨ F2 | inv(F ) | poss(F ) | tt | ff

where I is an open, half open or closed interval. The formula inv(F ) says that a process
in its current state and any derived state must satisfy F . poss(F ) says that a process in
its current state or in some derived state must satisfy F .

The formal semantics of TML is given in Table 4. The semantics of the time- and
τ -abstracted modalities are obtained by replacing −→–transitions with =⇒–transitions.
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