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Abstract

The Curry-Howard isomorphism identifies proofs with typed λ-
calculus terms, and correspondingly identifies propositions with
types. We show how this isomorphism can be extended to relate
constructive temporal logic with binding-time analysis. In par-
ticular, we show how to extend the Curry-Howard isomorphism
to include the © (“next”) operator from linear-time temporal
logic. This yields the simply typed λ©-calculus which we prove
to be equivalent to a multi-level binding-time analysis like those
used in partial evaluation.

Keywords: Curry-Howard isomorphism, partial evaluation, binding-time
analysis, temporal logic.
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1 Introduction

Partial evaluation [8] is a method for specializing a program given part of
the program’s input. The basic technique is to execute those parts of the
program that do not depend on the unknown data, while constructing a
residual program from those parts that do. Offline partial evaluation uses
a binding-time analysis to determine those parts of the program that will
not depend on the unknown (dynamic) data, regardless of the actual value
of the known (static) data.

Binding-time analyzes are usually described via typed languages that in-
clude binding-time annotations, as for example by Nielson and Nielson [10]
and Gomard and Jones [6]. However, the motivation for the particular typ-
ing rules that are chosen is often not clear. There has been some work,
for example by Palsberg [11], on modular proofs that binding-time analyzes
generate annotations that allow large classes of partial evaluators to special-
ize correctly. However this still does not provide a direct motivation for the
particular rules used in binding-time type systems.

In this paper we give a logical construction of a binding-time type sys-
tem based on temporal logic. Temporal logic is an extension of classical logic
to include proofs that formulas are valid at particular times. The Curry-
Howard [7] isomorphism relates constructive proofs to typed λ-terms and
formulas to types. Thus, we expect that extending the Curry-Howard iso-
morphism to constructive temporal logic should yield a typed λ-calculus that
expresses that a result of a particular type will be available at a particular
time. This is exactly what a binding-time type system should capture.

Many different temporal logics and many different temporal operators
have been studied, so we need to determine exactly which are relevant to
binding-time analysis. In a binding-time separated program, one stage in
the program can manipulate as data the code of the following stage. At the
level of types this suggests that at each stage we should have a type for code
of the next stage. Thus, via the Curry-Howard isomorphism we are led to
consider the temporal logic © operator, which denotes truth at the next
stage, i.e. ©A is valid if A is valid at the next time. Further, since tem-
poral logics generally allow an unbounded number of “times”, they should
naturally correspond to a binding-time analysis with many levels, such as
that studied by Glück and Jørgensen [5]. The more traditional two-level
binding-time analyzes can then be trivially obtained by restriction. Also, in
binding-time analysis we have a simple linear ordering of the binding times,
so we consider linear-time temporal logic, in which each time has a unique
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time immediately following it. Putting this all together naturally suggests
that linear-time temporal logic with © and multi-level binding-time anal-
ysis should be images of each other under the Curry-Howard isomorphism.
This does not seem to have been observed previously, and in this paper we
show formally that this is indeed the case. The development is relatively
straight-forward and our main interest is in demonstrating the direct logical
relationship between binding-time analysis and temporal logic.

The structure of this paper is then as follows. In the following sec-
tion, we start with L©, an axiomatic formulation due to Stirling [13] for a
small classical linear-time temporal logic including ©. We then formulate a
natural-deduction system in a similar style to the modal systems of Martini
and Masini [9], and prove that it has the same theorems as the axiomatic
formulation. This allows us to directly apply the Curry-Howard isomor-
phism to the natural-deduction system, yielding the typed λ©-calculus with
the © operator in the types.

In the second half of the paper we consider λm, which is essentially
the λ-calculus fragment of the language used in the multi-level binding-time
analysis of Glück and Jørgensen [5]. We then construct a simple isomorphism
between λm and λ© that preserves typing, thus showing that these languages
are equivalent as type systems. We conclude by discussing some practical
concepts from binding-time analysis.

This work is similar to work by Davies and Pfenning [3] which shows that
a typed language Mini-ML2 based on modal logic captures a powerful form
of staged computation, including run-time code generation. They also show
that Mini-ML2 is a conservative extension of the two-level and (linearly
ordered) B-level languages studied by Nielson and Nielson [10]. However,
they note that this system only allows programs that manipulate closed code,
while the binding-time type systems used in partial evaluation, such as that
of Gomard and Jones [6], allow manipulation of code with free variables.
Thus, the original motivation for the present work was to consider how to
extend Mini-ML2 to a system that is a conservative extension of the binding-
time type systems used in partial evaluation. In this paper we achieve
that goal, though find that we also lose the features of Mini-ML2 beyond
ordinary binding-time analysis. Our conclusion is that the 2 operator in
Mini-ML2 corresponds to a type for closed code, while the © operator in
λ© corresponds to a type for code with free variables. Thus the two operators
are suitable for different purposes, and which one is preferred depends on
the context. This suggests that a desirable direction for future work would
be the design of a type system correctly capturing both closed code and

3



code with free variables within a single framework.

2 A temporal λ-calculus

In this section we will show how to extend the Curry-Howard isomor-
phism to include the © (“next”) operator from temporal logic. Temporal
logics are generally formulated axiomatically and in classical style, while
a natural-deduction intuitionistic formulation is more appropriate for the
Curry-Howard isomorphism. We thus start with a sound and complete ax-
iomatic system given by Stirling [13] for the fragment of classical linear-time
temporal logic containing only ©, → and ¬. Starting from this small frag-
ment allows us to ignore the other connectives while formulating an equiva-
lent natural-deduction system. We then drop ¬ and classical reasoning from
the natural-deduction system, since our real interest is in the © operator,
and consider the extension of the Curry-Howard isomorphism by adding
proof terms to yield a simply typed λ-calculus with the © operator in the
types.

2.1 Axiomatic formulation

The following axioms and inference rules for the fragment of classical linear-
time temporal logic containing only ©, → and ¬ are due Stirling [13] (page
516), who shows that they are sound and complete for unravelled models of
this logic. We choose this system as our starting point because it appears
to be the smallest linear temporal logic containing the © operator that has
been previously considered in the literature.

Axioms: L1 Any classical tautology instance
L3 ©¬A ↔ ¬©A
L4 ©(A1 → A2) → (©A1 →©A2)

Inference rules: MP if A1 → A2 and A1 then A2
RO if A then ©A

Note that in the inference rules, we require that there be proofs from no
assumptions.
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2.2 Natural-deduction formulation

We now consider a natural-deduction formulation of L© and show that it is
equivalent to the axiomatic one. We include negation and classical reasoning
here so that this equivalence is exact, even though we will drop them later
when we consider the typed λ calculus. By presenting the © operator using
only an introduction rule and elimination rule we have separated it from
negation and classical reasoning, allowing us to remove those rules without
affecting the basic properties of ©.

Our natural-deduction formulation uses a judgement annotated with a
natural number n, representing the “time” of the conclusion and with each
assumption A in Γ also annotated by a time n. These are just like the
“levels” in the modal natural deduction systems of Martini and Masini [9],
and in fact our system is exactly the same as their rules for modal K, except
that because of linearity we do not need any restriction on the introduction
rule for©. Our rules for the non-temporal fragment are relatively standard
for natural deduction for pure classical logic, which will later allow us to
depend on the equivalence between the axiomatic and natural-deduction
systems for pure classical logic. We use a sequent style presentation here to
correspond with the λ-calculus typing rules presented later.

An in Γ
V

Γ `n A

Γ, An1 `n A2
→ I

Γ `n A1 → A2

Γ `n A1 → A2 Γ `n A1 → E
Γ `n A2

Γ, An `n p
¬Ip

Γ `n ¬A (p not in Γ, A)
Γ `n A Γ `n ¬A

¬E
Γ `n B

Γ,¬An `n A
C

Γ `n A

Γ `n+1 A©I
Γ `n ©A

Γ `n ©A
©E

Γ `n+1 A

In order to give a proof-theoretic semantics to the © operator we also
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need to consider a proof reduction rule for©I immediately followed by©E,
which reduces trivially to the proof with both inference steps removed.

The following theorem justifies the above formulation:

Theorem 1 We can derive · `0 A if and only if there is a proof of A in

L©.

Proof: (sketch) In one direction, we construct a derivation for each axiom
and proceed by induction over the inference rules in L©. For L1 we actu-
ally simply notice that removing the rules for © yields a standard natural-
deduction system for pure classical logic. The other axioms are straight-
forward, and the case for the inference rule RO only requires showing that
incrementing every time annotation in a derivation yields a derivation.

In the other direction, we prove by induction over the structure of deriva-
tions, strengthening the induction hypothesis to:

if An1
1 , . . . , Ankk `

n A
then ©n1A1 → . . .→©nkAk →©nA is provable in L©

Here ©n means n occurrences of ©. Only the cases for the → and ¬
rules are non-trivial. They are solved by repeated application of L3, L4 and
the converse of L4 (which is derivable using L3, L4 and a classical tautology)
along with a sequence of cuts (which are classical tautologies) to reduce to
the corresponding cases for pure classical logic of the equivalence between
natural deduction and axiomatic presentations.

2.3 A temporal λ-calculus

We now add proof terms to the intuitionistic fragment without ¬ of the
natural-deduction system. We remove ¬ because it is not usually included
in typed λ-calculi (though it can be), and in particular it is not included in
binding-time type systems. We are justified in simply removing the inference
rules for negation and classical reasoning, since the in the natural-deduction
formulation the © operator is completely captured by its introduction and
elimination rules. This yields λ©, a simply typed λ-calculus with the ©
operator in the types, by the natural extension of the Curry-Howard iso-
morphism.

6



2.3.1 Syntax

Types A ::= b | A1 → A2 | ©A
Terms M ::= x | λx:A. M |M0 M1

| next M | prev M
Contexts Γ ::= · | Γ, x:An

2.3.2 Typing rules

Γ `n M : A Expression M has type A at time n in context Γ.

x:An in Γ
V

Γ `n x : A

Γ, x:An1 `n M : A2
→ I

Γ `n λx:A1. M : A1 → A2

Γ `n M0 : A1 → A2 Γ `n M1 : A1 → E
Γ `n M0 M1 : A2

Γ `n+1 M : A ©I
Γ `n next M :©A

Γ `n M :©A
©E

Γ `n+1 prev M : A

2.3.3 Reduction rules

We have the standard β-reduction rule as well as the following reduction
rule from the natural-deduction proof-reduction rule, analogously to the
correspondence between β-reduction and the proof reduction rule for →:

prev(next M)
©−→M

We also have the following for elimination followed by introduction, analo-
gous to η-reduction:

next(prev M) ©−→M
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3 Equivalence to a binding-time type system

We now demonstrate the relationship between λ© and binding-time type
systems considered by other authors. To do this we consider λm, a simply
typed λ-calculus which is essentially the core of standard binding-time an-
alyzes used in offline partial evaluation (see e.g. Gomard and Jones [6]).
λm additionally allows more than two binding times in the same way as the
multi-level binding-time analysis of Glück and Jørgensen [5]. Our formu-
lation of λm is basically the λ-calculus fragment of Glück and Jørgensen’s
system, though it has some important differences. We use separate syntactic
categories for the types of each level, thus avoiding side conditions regarding
well-formedness of types. Further, we do not treat the final level as dynami-
cally typed, but consider the whole program to be statically typed. Finally,
we do not include “lifting” from one binding time to a later one, but instead
demonstrate later in this section how this can be easily added to λm.

We then give a simple translation between λm and λ©. This translation
is a bijection on terms and types that preserves typing, modulo reduction
of prev - next redices. Thus λm and λ© are equivalent as type systems,
modulo these trivial reductions.

3.1 Syntax

We use the separate syntactic categories τn to indicate the type of results
which will be available at time n or later. The time annotations on base types
bn and function types τn1 →n τn2 indicate the time at which the corresponding
values are available. The time annotations on terms indicate the time at
which the λ or @ (application) are reduced, and the corresponding variable
substituted for. See Glück and Jørgensen [5] for a semantics of evaluation
of multi-level terms in multiple stages.

Types τn ::= bn | τn1
n→ τn2 | τn+1

Terms E ::= xn | λnxn:τn. E | E0 @n E1
Contexts Ψ ::= · | Ψ, xn:τn
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3.2 Typing rules

xn:τn in Ψ tpm var
Ψ m̀ xn : τn

Ψ, xn:τn1
m̀ E : τn2

tpm lam
Ψ m̀ λnxn:τn. E : τn1

n→ τn2

Ψ m̀ E0 : τn1
n→ τn2 Ψ m̀ E1 : τn1 tpm app

Ψ m̀ E0 @n E1 : τn2

3.3 Equivalence translation

We now give simple translations between well typed terms in λm and λ©.
The translation from λ© maps terms which are in the same equivalence
class with respect to next(prev M) and prev(next M) reductions to the
same λm term. In the other direction, we always translate λm terms to λ©

terms with all such redices reduced, these being unique representatives of
the equivalence classes. Note that we can always reduce all these redices,
since the number of reductions is bounded by the number of next and prev
constructors. We then show that the two translations are inverses of each
other when restricted to the representatives of the equivalence classes, and
that they preserve typing. This shows that λm is isomorphic to λ© modulo
the next-prev reductions. Thus they are equivalent, modulo these trivial
reductions.

The translations are given by the functions | · |n and ‖ · ‖n defined as
follows:

Type Translation

|bn|n = b ‖b‖n = bn

|τn1 →n τn2 |n = |τn1 |n→ |τn2 |n ‖A1 → A2‖n = ‖A1‖n →n ‖A2‖n
|τn+1|n = ©|τn+1|n+1 ‖©A‖n = ‖A‖n+1

Term Translation

|xn|n = x ‖x‖n = xn

|λnxn:τn. E|n = λx:|τn|n. |E|n ‖λx:A. M‖n = λxn:‖An‖n. ‖M‖n
|E0@nE1|n = |E0|n |E1|n ‖M0 M1‖n = ‖M0‖n@n‖M1‖n

(m > n) |Em|n = next|Em|n+1 ‖next M‖n = ‖M‖n+1

(m < n) |Em|n+1 = prev|Em|n ‖prev M‖n+1 = ‖M‖n
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Here we use Em as convenient syntax matching all expressions which
have the top constructor annotated with m.

Lemma 2 | · |n and ‖ · ‖n are inverses on the fragment of λ© with no next-

prev redices.

Proof: By a straight-forward induction.

Theorem 3 The two translations preserve typing, namely:

• if · m̀ E : τ0 then · `0 |M |0 : |τ0|0

• if · `0 M : A then · m̀ ‖M‖0 : ‖A‖0

Proof: By a straight-forward structural induction, strengthening appropri-
ately to:

• if Ψ m̀ E : τn then Ψ `n |M |n : |τ |n

• if Γ `n M : A then ‖Γ‖ m̀ ‖M‖n : ‖A‖n

3.4 Relationship to binding-time analysis in practice

The proof above shows that λ© and λm are equivalent as type systems,
thus justifying our claim that binding-time type systems are the image of
temporal logic under the the Curry-Howard isomorphism. However, λm is
lacks some aspects of real binding-time type systems, and in particular we
now compare λm in detail with the multi-level binding-time type system of
Glück and Jørgensen [5].

Firstly, we have verified that there is no difficulty in extending λm and
λ© with data-structures, fixed-points, and other features from realistic func-
tional languages, just as for the simply-typed λ-calculus.

Secondly, the “lift” coercions which map values from one binding time to
a later one are missing from our language. Glück and Jørgensen [5] include
lift coercions only at base types. Since λ© and λm do not include particular

10



base types and primitive operations, it is not surprising that they do not in-
clude lift coercions. Further, we refer to work by Davies and Pfenning [3] in
which it was shown that these lift coercions are generally definable as func-
tions in a staged version of a language like ML. For example, in a language
extending Standard ML with Next, Prev and O from λ©, and a type of nat-
ural numbers represented using zero and successor similar to Mini-ML [2],
we have the following lift coercion:

(* val liftNat : nat -> O nat *)

fun liftNat Z = Next Z

| liftNat (S x) = Next (S (Prev (liftNat x)))

With these lift coercions defined appropriately, λm is almost identical
to the λ-calculus core of the multi-level binding-time analysis of Glück and
Jørgensen [5], except for some minor syntactic differences. The only other
remaining difference is that Glück and Jørgensen allow the final binding
time to be dynamically typed. Since the Curry-Howard isomorphism only
concerns statically typed languages, it is not surprising that λ© and λm

differ in this regard.
Finally, we observe that λ© allows an interesting perspective on the

relationship between the binding-time annotated language and the original
language. If we consider next, prev and the lift coercions to all be implicit
coercions in the original language, then we have a type system including ©
for this language that is reminiscent of sub-typing in the style of work by
Breazu-Tannen et.al. [1]. Doing type inference and making these “coercions”
explicit is then exactly a binding-time analysis. However, next and prev
are not functions, so they are quite different from other implicit coercions.

λ© could also serve as the basis for an extension of a statically typed
language like Standard ML to allow hand-written programs that generate
specialized code. Welinder [14] has shown this to be a useful technique in
some situations, since it gives the programmer direct control over binding-
time decisions, and forces them to think about binding-times when writing
code. This of course comes at the price that the programmer must manually
annotate the program themselves. We consider λ© more appropriate as the
basis for such a language than λm because it has a less intrusive syntax.
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4 Conclusion

We have demonstrated that the image of a small temporal logic under
the Curry-Howard isomorphism, λ©, provides a logical construction of a
binding-time type system that is equivalent to those used in partial evalu-
ation. In particular, λ© allows programs that manipulate code with free
variables. This is in contrast to work by Davies and Pfenning [3] on
Mini-ML2, a typed language based on modal logic that also expresses a
form of binding-time analysis. As an example, we have a the following term
of type (A1 →0 B1)→0 (A1 →1 B1) in the binding-time type system λm:

λ0f0:A1 →0 B1. λ1x1:A1. f0 @0 x1

There is no corresponding typed term in Mini-ML2. In λ© we can use the
translation in the previous section to yield a corresponding term of type
(©A→©B) →©(A→ B), as follows:

λf :© A→©B. next (λx:A. prev (f (next x)))

However, the manipulation of code with free variables comes at a price.
Since λ© does not express closed code, it can not be directly extended with a
construct like that in Mini-ML2 that expresses evaluation of generated code.
Such a construct is essential in a language that supports general forms of
staged computation, and is the main novel feature of Mini-ML2, so in future
work we will consider how to construct a type system that captures both
closed code and code with free variables.

One possible direction for this work is based on the observation that
manipulation of code with free variables is allowed in λ© because there is
only a single successor stage from any stage, which corresponds to the fact
that λ© is based on a linear-time temporal logic. In Mini-ML2 we allow
each stage to have several successor stages in order to allow more general
forms of staged computation, in particular run-time code generation and
sharing of code between stages (see [3] for details). This means that when
constructing code in an arbitrary successor stage we cannot use variables
that are bound further out in a possibly different successor stage.

This suggests that to design a language which expresses both closed code
and code with free variables we could explicitly name stages and provide an
explicit quantifier over them, rather than using next and prev to move
between stages. This is similar to the systems of labelled natural deduction
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of Gabbay and de Queiroz [4], which allow many different logics to be for-
mulated including modal logics, though this is still a speculative direction
for future research.

We have implemented type checkers for the languages λ© and λm in the
logic programming language Elf (see Pfenning [12]). Using logic program-
ming variables, the same programs will also perform type inference. We
have also implemented the translations and proof of equivalence between
these languages in Elf.
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