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The Suffix Tree of a Tree and Minimizing
Sequential Transducers

Dany Breslauer∗

Abstract

This paper gives a linear-time algorithm for the construction of the
suffix tree of a tree. The suffix tree of a tree is used to obtain an efficient
algorithm for the minimization of sequential transducers.

1 Introduction

The suffix tree of a string is a compact trie representing all suffixes of the
string. The suffix tree has proven to be an extremely useful data structure in
a wide variety of string processing algorithms [3, 6]. Kosaraju [10] defined the
generalized suffix tree of all suffixes of a set of strings which are represented by
a tree. Kosaraju mentions that Weiner’s [14] suffix tree construction algorithm
can be easily modified to construct the suffix tree of a tree in O(n logn) time,
and that it might even be possible to do so in O(n) time. In this paper we give
an O(n) time algorithm for the construction of the suffix tree of a tree, if the
input symbols are drawen from a constant size alphabet. We then use the new
suffix tree construction algorithm in the minimization of sequential transducers.

The minimization problem of deterministic finite automata is a well stud-
ied problem with the best algorithmic solution, due to Hopcroft [9], dating
back to the beginning of the seventies. Recently, Mohri [11] considered the
minimization of sequential transducers, or finite automata with output. Mohri
proved that after transforming any given sequential transducer into an equiva-
lent transducer that writes its output as soon as possible, the minimization of
the resulting transducer, considered as a finite automaton, gives the minimal
equivalent sequential transducer. We observe that Mohri’s transformation algo-
rithm essentially solves a single source shortest path problem. The shortest path
formulation of the problem and the new generalized suffix tree data structure
are used to obtain a simple and efficient implementation of Mohri’s algorithm.
∗BRICS – Basic Research in Computer Science – a centre of the Danish National Research

Foundation, Department of Computer Science, University of Aarhus, DK-8000 Aarhus C,
Denmark. Partially supported by the ESPRIT Basic Research Action Program of the EC
under contract #7141 (ALCOM II).
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2 Suffix trees

The suffix tree of the string w is a rooted tree with edges and vertices that are
labeled with substrings of w. The suffix tree satisfies the following properties:

1. Edges leaving (leading away from the root) any given vertex are labeled
with non-empty strings that start with different symbols.

2. Each vertex is labeled with the string formed by the concatenation of the
edge labels on the path from the root to the vertex.

3. Each internal (non-leaf) vertex has at least two descendants.

4. For each substring v of w, there exists a vertex labeled u, such that v is a
prefix of u.

It is a common practice to append a special alphabet symbol $, which does
not appear anywhere within w, at the end of w. This guarantees that the suffix
tree has exactly |w|+ 1 leaves that are labeled with all the distinct non-empty
suffixes of w$. Observe that the edge and vertex labels of the suffix tree can be
represented by their starting position in w and their length, and thus, the suffix
tree can be stored in O(|w|) space.

Theorem 2.1 (Weiner [5, 14]) The suffix tree of a string w can be construct-
ed in O(|w| log |Σ|) time and O(|w|) space, where Σ is the ordered alphabet that
the symbols of w are taken from.

We shall use the following data structure together with suffix trees.

Lemma 2.2 (Harel and Tarjan [7]; see also [12]) Given a rooted tree, it is
possible to pre-process the tree in O(n) time and space, such that queries about
the lowest common ancestor of any pair of vertices can be answered in constant
time.

One of the important applications of suffix trees is in finding the longest
common prefix (abbreviate hereafter LCP ) of any two suffixes. This can be
done in constant time for any LCP query after an O(|w|) time preprocessing
of the suffix tree, by using Theorem 2.2 and by observing that the longest
common prefix of two suffixes is the label of the vertex in the suffix tree which
is the lowest common ancestor of the leaves labeled with the two suffixes. For
more properties and applications of suffix trees see [3, 6].

2.1 The suffix tree of a tree

Given a set of strings {w1, . . . , wh}, we can represent these strings by the
common-suffix tree (abbreviate hereafter CS-tree), which is a rooted trie that is
defined as follows:
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1. Each edge is labeled by a single alphabet symbol.

2. Each vertex is labeled with the string formed by the concatenation of the
edge labels on the path from the vertex to the root. (These labels are not
stored explicitly.)

3. Edges leaving (leading away from the root) any given vertex are labeled
with different alphabet symbols.

4. There are h leafs which are labeled w1, . . . , wh.
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Figure 1: The CS-tree of the strings aaaa$, baaa$, abaa$, bbaa$, acaa$,
ccaa$, ca$.

Clearly, the number of vertices in the CS-tree is equal to the number of dif-
ferent suffixes of the strings w1, . . . , wh (including the empty suffix). Therefore,
the size of the CS-tree is smaller than or equal to the sum of the length of the
strings w1, . . . , wh plus one, and much smaller if the strings share long suffixes.
Similarly to the case of a single string, we can append a special alphabet symbol
$ that does not appear anywhere within any of the strings w1, . . . , wh, at the
end of these strings, guaranteeing that no suffix is a proper prefix of another.

Kosaraju [10] observed that similarly to the suffix tree of a string, the suf-
fix tree of a CS-tree can be defined to represent all substrings of the strings
w1$, . . . , wh$. The suffix tree of the CS-tree contains a leaf that corresponds
to each vertex (suffix) in the CS-tree (except the CS-tree root that represents
the empty suffix), and therefore, its size is linear in the size of the CS-tree,
regardless of the alphabet size. The edge and vertex labels can be represented
by the position of their start in the CS-tree (CS-tree vertex) and their length,
and thus, the suffix tree of an n-vertex CS-tree can be stored in O(n) space.
Observe that also the suffix tree of a CS-tree can be used to find the LCP of
two suffixes in the CS-tree in constant time, after an O(n) time preprocessing
of the suffix tree, using Lemma 2.2.

Remark. If we start with the strings w1, . . . , wh, we do not need to construct
the CS-tree of these strings in order to build the suffix tree. However, if we are
given directly the CS-tree, then we shall see that we can construct the suffix
tree of the CS-tree in time that is proportional to the size of the CS-tree and
not to the length of leaf labels.
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Figure 2: The suffix tree of the CS-tree in Figure 1.

2.2 Useful data structures

We define next the semi-dynamic nearest marked ancestor problem and quote
the complexity bounds of a data structure for its solution. The problem is
concerned with the maintenance of a rooted tree with marked vertices. The
following operations are supported:

1. u := create(); build a new tree with a single vertex u being its root.

2. insert(u, w); insert a new leaf w as a descendent of u.

3. insert(uv, w); insert a new vertex w between u and v by breaking the tree
edge uv.

4. mark(v); mark the vertex v. Newly inserted vertices are not marked.

5. u := nma−query(v); return the vertex u that is the nearest marked an-
cestor of v.

Lemma 2.3 (Amir et al. [2] and Westbrook [15]) The semi-dynamic n-
earest marked ancestor problem can be solved in constant amortized time for
insert and mark, and constant time for create and nma-query, using linear s-
pace.

We shall use also the following data structure.

Lemma 2.4 (Berkman and Vishkin [4]) Given a rooted tree, it is possible
to pre-process the tree in O(n) time and space, such that level-ancestor queries
that find the l-th vertex on the path from a vertex to the root can be answered
in constant time.
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2.3 Generalizing Weiner’s algorithm

Weiner’s [14] suffix tree construction algorithm takes O(n log |Σ|) time and uses
O(n) space, for strings of length n over an ordered alphabet Σ. Chen and
Seiferas [5] simplified Weiner’s algorithm and eliminated the need for some of
the information maintained by the algorithm while constructing the tree. We
show next that Weiner’s original algorithm can be modified to build the suffix
tree of a CS-tree.

Theorem 2.5 The suffix tree of an n-vertex CS-tree can be constructed in
O(n log |Σ|) time and space.

Proof: We modify Weiner’s algorithm to handle CS-trees. We refer the reader
to [5, 14] for some properties of suffix trees that are used here without proof.
Recall that Weiner’s algorithm inserts a suffix v into the suffix tree only after
all the suffixes of v have been inserted. Namely, it inserts the suffixes of the
string into the tree in increasing order of their lengths. The modified algorithm
also inserts a suffix v into the suffix tree only after all its suffixes have been
inserted. Only now, this does not mean that suffixes are inserted in increasing
order of their lengths, since we have suffixes of different strings. We assume for
simplicity that the suffixes are inserted in non-decreasing order of their length,
by a breadth-first traversal of the CS-tree. We also assume that the special
symbol $ has been appended to the CS-tree, so that each suffix in the CS-tree
corresponds to a leaf of the suffix tree.

We show how to insert efficiently a new suffix au into the suffix tree, once
the suffix u has already been inserted. We first check separately if the new suffix
au has to be inserted as a child of the root. This can be done in constant time.
From now on assume that au is not inserted as a child of the root.

Let au′ be the longest vertex label in the suffix tree that is a prefix of au,
and let au′′ be the longest prefix of au that is also a prefix of some vertex label
au′′y in the suffix tree (au′′y being the shortest vertex label with prefix au′′).
Then, clearly, au′ is a prefix of au′′. There are two cases:

1. If au′ = au′′, then the new suffix au is inserted as a child of the vertex
au′.

2. If au′ 6= au′′, then let au′x = au′′. The suffix tree contains an edge
between the vertices au′ and au′′y = au′xy. This edge is broken by the
insertion of the new vertex au′x and the leaf au is inserted as a child of
au′x.

The main task of the algorithm, therefore, is to find the vertex au′, the edge
between au′ and au′′y = au′xy (specified by the first symbol of x), and the
length of au′′. Weiner proved that both u′ and u′′ must be vertices in the suffix
tree, if for every vertex label v the suffix tree contains also all suffixes of v. His
algorithm maintains the following information for each vertex v in the suffix
tree:
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1. v.link[a], for each a ∈ Σ, is a pointer to the vertex labeled av if such a
vertex exists in the suffix tree.

2. v.indicator[a], for each a ∈ Σ, indicates if av is a prefix of any vertex label
in the suffix tree.

This information allows to find au′ and au′′ by observing that u′ is the nearest
ancestor of u with u′.link[a] defined, and u′′ is the nearest ancestor of u with a
positive u′′.indicator[a]. Then, the vertex au′ is given by u′.link[a], and au′′ is
the prefix of au of length 1 + |u′′|.

The changes that are made to the link and indicator information are the
same as is Weiner’s algorithm. (If au was inserted as a child of the root, the
links and indicators are set similarly.)

1. u.link[a] := au;

2. v.indicator[a] is set for all ancestors v of u, up to u′′.

3. If u′′ 6= u′, then u′′.link[a] := au′′.

4. If u′′ 6= u′, then au′′.indicator[b] := au′′y.indicator[b], for all b ∈ Σ.

Weiner’s [5, 14] algorithm takes O(n log |Σ|) time and O(n) space since the
number of defined links and set indicators is O(n), since the links, the indicators
and the edges are stores by a binary searched tree that gives O(log |Σ|) access
time, and since the work spent in tracing u′ and u′′ up the tree is amortizes
against the depth reduction between u and au. In the suffix tree of a CS-tree,
the number of defined links is still O(n), but the number of set indicators might
be larger. Also, we can not amortize the time spent tracing u′ and u′′ against
the depth reduction from u to au, since u might be used again to insert other
suffixes bu, such that b 6= a.

We assume for the moment that the alphabet Σ = {1, . . . , c}, for some
constant c, so that the suffix tree edges, the links and the indicators can be
stored in an array and accessed in constant time. For each alphabet symbol
a ∈ Σ, we maintain a copy of the suffix tree where the vertices v with defined
v.link[a] are marked by the nearest marked ancestor data structure from Lemma
2.3. Then, given the vertex u, we can find the vertex u′ by a single nca-query.
We still trace up the path from u to u′′ since the indicators of the vertices
along this path must be set. The space requirements of maintaining the nearest
marked ancestor data structures, the links, the indicators, and the suffix tree
edges are O(n|Σ|). Each structural change in the suffix tree has to be made also
in the |Σ| copies of the nearest marked ancestor data structure, taking O(|Σ|)
time per change, or O(n|Σ|) in total. The time spent tracing up the vertices u′′

accounted over all steps is also O(n|Σ|), since in each step we set an indicator
that was not set before. The rest of the construction takes constant time in
each step, and therefore, the overall time and space complexities are O(n|Σ|).
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When constructing the suffix tree of a CS-tree we need to pay attention also
to the maintenance of the edge and vertex labels. When an edge is broken by
inserting the vertex au′′ = au′x between au′ and au′xy, the label of the edge
between au′ and au′x is set to x and on the edge between au′x and au′xy is set
to y. Since we choose to represent the labels by a pointer to their start in the
CS-tree and their length, the label x can be obtained by reducing the length of
the label xy that was on the broken edge. The label y, which is obtained easily
in the case of a string by adding |x| to the starting position of the label xy, is
now obtained by finding the |x|-level ancestor of the CS-tree vertex. By Lemma
2.4, after preprocessing the CS-tree in O(n) time, each such level ancestor query
is answered in constant time. The vertex labels can be handled similarly.

If the alphabet is larger, we can encode in O(n log |Σ|) time each alphabet
symbol as sequences of dlog2 |Σ|e symbols from the alphabet {0, 1}. Then, the
CS-tree can be modified to represent the encoded alphabet strings, the suffix
tree is built for the modified CS-tree (whose size is at most n log |Σ|), and the
suffix tree is modified to represent the strings over the original alphabet CS-tree.
All this takes O(n log |Σ|) time and space. Notice that after the construction of
the suffix tree has been completed, the suffix tree can be stored in only O(n)
space. 2

3 Automata and sequential transducers

We give next a brief summary of the definitions and the terminology of finite au-
tomata and sequential transducers. See Harrison’s book [8] and Mohri’s article
[11] for more information.

Definition 3.1 A deterministic finite automaton is the tuple (S, i, F, A, δ), such
that:

• S is the finite set of states of the automaton.

• i ∈ S is the initial state.

• F ⊆ S is the set of final states.

• A is the finite input alphabet.

• δ(s, a) ∈ S is the transition function mapping each state s ∈ S and alpha-
bet symbol a ∈ A to the next state.

The transition function δ can be extended to strings from A∗ by defining:

δ(s, ε) = s and
δ(s, aw) = δ(δ(s, a), w) for s ∈ S, a ∈ A and w ∈ A∗.

The finite automaton is said to accept a string w if and only if δ(i, w) ∈ F . The
languages (sets of strings) accepted by finite automata are called regular.
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Definition 3.2 A sequential transducer is the tuple (S, i, F, A, B, δ, σ), where:

• (S, i, F, A, δ) is a deterministic finite automaton.

• B is the finite output alphabet.

• σ(s, a) ∈ B∗ is the output string produced on the transition from the state
s ∈ S on the input symbol a ∈ A.

The output function σ can be extended to strings by defining:

σ(s, ε) = ε and
σ(s, aw) = σ(s, a)σ(δ(s, a), w) for s ∈ S, a ∈ A and w ∈ A∗.

The sequential transducer can be thought of computing the partial function
f(w) = σ(i, w) : A∗ → B∗, that is defined for those w ∈ A∗, such that
δ(i, w) ∈ F . The functions computed by sequential transducers are called se-
quential functions.

Finite automata and sequential transducers can be represented by graphs.
The graph representation of a sequential transducer consists of the set of vertices
S which are the states of the transducer. There is an edge u → v between the
vertices u, v ∈ S, labeled with the input symbol a ∈ A and the output string
b ∈ B∗, if δ(u, a) = v and σ(u, a) = b. We allow the graph representation to
be a partial representation that does not necessarily include at every vertex an
outgoing edge for all input alphabet symbols in A. Thus, we can assume that
in the graph representation of a sequential transducer, every vertex (state) is
reachable from the initial state i and has some final state that can be reached
from it. One can trivially remove vertices and edges in order to satisfy these
requirements in time that is linear in the size of the input graph. We shall use
the following notation for the graph representation of a sequential transducer:

• S is the set of states of the sequential transducer and n = |S| is their
number.

• E is the set of defined transitions and m = |E| is their number.

• uv.in ∈ A is the input label of the transition uv ∈ E.

• uv.out ∈ B∗ is the output label of the transition uv ∈ E and L =∑
uv∈E |uv.out| is the sum of the output label lengths.

3.1 Minimal sequential transducers

Two deterministic finite automata are said to be equivalent if they accept the
same language. Classical automata theory [8] characterizes the unique finite
automaton with minimal number of states that is equivalent to a given finite
automaton. There are efficient algorithm that minimize a finite automaton:
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Theorem 3.3 (Hopcroft [1, 9]) Given a deterministic finite automaton, the
minimal equivalent automaton can be found in O(|A|n logn) time.

Mohri [11] observes that if a finite automaton is given by its partial graph
representation, then the complexity bounds above can be expressed in the size
of the graph.

Corollary 3.4 Given the partial graph representation of a deterministic finite
automaton, it can be minimized in O(m logn) time (provided that the transition
labels can be compared in constant time).

Similarly, two sequential transducers are said to be equivalent if they accept
the same languages and their partial output functions are the identical on the
language they accept. Mohri [11] characterized minimal sequential transducers,
with the smallest number of states, that are equivalent to a given sequential
transducer, and gave an algorithm for the minimization of sequential transduc-
ers. His algorithm consists of the following steps:

1. The sequential transducer is converted into an equivalent transducer in
prefix form. The prefix form equivalent transducer has the same graph
representation, except that the output labels are changed so that the
transducer writes its output as soon as possible.

2. The prefix form transducer is minimized as if it was a finite automaton.
Namely, the finite automaton with the same graph representation of the
sequential transducer and with transition labels that consist of both the
input labels and the output labels, is minimized using Corollary 3.4. (Now
transition labels are strings and it should become clear why we need to be
able to compare the transition labels in constant time.)

We give next the shortest path formulation of the problem of converting a
sequential transducer into its prefix form. Using this formulation and the suffix
tree of a tree we give an efficient algorithm for computing the prefix form of a
transducer and the minimal equivalent transducer.

4 The prefix form

Given a sequential transducer T = (S, i, F, A, B, δ, σ), define the prefix function
P : S → B∗, such that P (s) is the LCP of the output labels on all paths from s
to vertices in F (the output label on a path is the concatenation of the output
labels of the edges along the path). The function P is well defined since for for
any s ∈ S, there exists at least one path to a final state and the LCP of the
labels is also well defined. An equivalent formal definition is:

P (s) = ε s ∈ F
P (s) =

∧
sv∈E sv.out P (v) otherwise.

9



Where
∧

denotes the LCP .
Mohri [11] defines the equivalent transducer to T in prefix form to be the

transducer P with the same graph description as T , changing only the output
labels, so that P write its output as soon as possible. Namely, for any edge
u→ v, the output function is defined as:

uv.outP = [P (u)]−1 uv.outT P (v),

if P (i) = ε. If P (i) 6= ε, then the transducer minimization problem can be solved
similarly and the details are omitted here [11]. Observe that we used above the
notation x−1x = ε. This notation is justified since P (u) is surely a prefix of
uv.outT P (v).

4.1 Efficient implementation

Let T = (S, i, F, A, B, δ, σ) be a sequential transducer given by its graph de-
scription. The most time consuming computation is that of the prefix function
P (s), for all s ∈ S, which we address first. We denote by Lin the sum of the
output label lengths in the input transducer T and by Lout the sum of the
output label lengths in the output minimized transducer.

Let F be a rooted forest in the graph describing T , such that the final states
in F are the roots in F , and there is a unique directed path in F from each
vertex s ∈ S \ F to some vertex in F . Let L(s) be the output label on the path
connecting the vertex s to the root of its tree in F . Define C(s) as:

C(s) = ε s ∈ F
C(s) =

∧
sv∈E sv.out L(v) otherwise.

Then, clearly, P (s) is a prefix of C(s), and C(s) is a prefix of L(s). Letting
l(s) = |P (s)| and c(s) = |C(s)|, it should be clear that for any s ∈ S,

l(s) = min{c(s); |sv.out|+ l(v) ∀sv ∈ E},

since either l(s) is the length of the shortest output label on a path from s to F ,
or there are at least two paths from s to F with longer output labels, but the
LCP of the output labels along these paths is exactly P (s); if these two path
start with the same edge sv, then l(s) = |sv.out| + l(v) and if these two path
start with different edges, then l(s) = c(s).

Since c(s) and |sv.out|, for sv ∈ E, are all non-negative integers, l(s) is well
defined. In fact, the equations in l(s) can be modeled as a single source shortest
path problem to a special vertex R in the graph consisting of the vertices S∪{R},
the edges sv ∈ E weighted |sv.out|, and extra edges from each vertex s ∈ S to
R with weight c(s).

The algorithm to compute P (s) proceeds as follows:

1. Compute the forest F by a breadth-first-search;
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2. Compute c(s), for all s ∈ S;

3. Solve a single source shortest path problem in the graph with n+1 vertices
and m+ n edges that is defined above.

Mohri’s algorithm essentially computes c(s) by brute force comparison of the
labels while solving the shortest path problem simultaneously. His algorithm
takes O(n + m(Pmax + 1)) time or O(n + m + (m − n + |F |)Pmax) time if the
transducer graph is acyclic, where Pmax = max{|P (s)| | s ∈ S}.

The single source shortest path problem with integer edge weights can be
solved by an implementation of Dijkstra’s algorithm using Thorup’s [13] integer
priority queue in O(m log logm) time. In our case, we can use even a simple
weighted breadth-first-search that takes O(n+m+ Lin) time.

We show next that c(s) can be computed in O(n + m + Lin log |B|) time
using the suffix tree of a tree.
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Figure 3: A transducer T and a forest F .

1. Given the graph description of the transducer T and the forest F , create
a tree T̂ with at most m+ 1 vertices as follows:

• The tree T̂ is rooted at a special vertex R that is connected to all the
vertices in F , which are roots of the trees in F , with edges labeled ε.

• The tree T̂ includes all edges u→ v that are in F , with their labels
uv.out.
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• For each edge u→ v that is not in F , there is a new vertex ũv in the
tree T̂ , connected to v with an edge that is labeled uv.out.

Clearly, the sum of the lengths of the edge labels in T̂ is Lin.
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2. Construct the CS-tree of T̂ , that is the CS-tree of the strings uv.out C(v),
which are the labels in T̂ on the paths from each vertex to the root. This
can be done in in O(Lin log |B|) time, while maintaining for each edge
uv ∈ E, the corresponding CS-tree vertex that represents the path label
uv.out C(v). The resulting CS-tree has size O(Lin).
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Figure 5: The CS-tree constructed from T̂ .

3. Construct the suffix tree of the CS-tree in O(Lin log |B|) time and space.

4. Compute c(s), for all s ∈ S, by lowest common ancestor queries on the
suffix tree in O(n+m) time.

The overall computation is summarized in the following theorem:
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Figure 6: The prefix form of T .

Theorem 4.1 Given a sequential transducer, the equivalent minimal sequential
transducer can be computed in O(n + m logn + Lin log |B| + Lout) time and
O(n+m+ Lin log |B|) space.
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a:ε

f:ε
e:DBCi

b:CCD

a:ABC

a:AB

Figure 7: The minimal transducer equivalent to T .

Proof: The algorithm first finds the forest F in O(n + m) time, computes
c(s), for all s ∈ S, in O(n + m+ Lin log |B|) time and solves the single source
shortest path problem in O(n+m+Lin) time. The prefix form of the transducer
is then found in O(n + m) time, if the output labels are represented by their
starting position within the CS-tree and their length, and by using the level-
ancestor data structure from Lemma 2.4. (Notice that the sum of the length
of the output labels in the prefix form transducer can be larger. This is not
a problem, however, since these edge output labels are represented by the CS-
tree.) Then, the algorithm applies Hopcroft’s automata minimization algorithm
from Corollary 3.4, using the fact the edge (output) labels in their CS-tree
representation can be compared in constant time by consulting the suffix tree.
Finally, O(n+m+ Lout) time is required to output the minimized transducer.
2
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5 Conclusions

The minimization of the number of states in sequential transducers is not the
only aspect of their size. In many cases, it is possible that by minimizing
the number of states, the sum of the lengths of the output labels is increased
substantially. From a practical point of view, if one is interested in the storage
requirements of sequential transducers, it might make more sense to minimize
the label lengths, or some function of the label length and the number of states.

We believe that the suffix tree of a tree is of independent interest and that
other applications of this suffix tree will be found in the future. It would be
interesting to reduce the space requirements of the suffix tree construction al-
gorithm to O(n).
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