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PETRI NETS AND BISIMULATION

Mogens Nielsen Glynn Winskel
Department of Computer Science, University of Aarhus, Denmark

Abstract

Several categorical relationships (adjunctions) between models for con-
currency have been established, allowing the translation of concepts and
properties from one model to another. A central example is a coreflection
between Petri nets and asynchronous transition systems. The purpose of
the present paper is to illustrate the use of such relationships by transfer-
ring to Petri nets a general concept of bisimulation.

Introduction

Category theory has been used to structure the seemingly confusing world of
models for concurrency—see [27] for a survey. The general idea is to formalize
that one model is more expressive than another in terms of an “embedding”,
most often taking the form of a coreflection, i.e. an adjunction in which the unit
is an isomorphism. The models are equipped with behaviour preserving mor-
phisms, to be thought of as kinds of simulations. Besides providing an abstract
language for expressing relationships between seemingly very different models,
category theory also allows the translation of constructions and properties be-
tween models via adjunctions. For instance, most process algebra constructs,
like parallel and nondeterministic composition, may be understood in terms of
universal constructions, like product and coproduct. The preservation properties
of adjoints are helpful in showing, and explaining why, semantics is respected in
moving from one model to another. A coreflection central to this paper is that
embedding asynchronous transition systems, in the sense of Bednarczyk [1] and
Shields [22], in Petri nets.

The purpose of this paper is to illustrate the translation of concepts between
models, focussing here on the transference of the concept of bisimulation to Petri
nets from other models. The notion of bisimulation was defined categorically
in [8] in a form directly applicable to a wide range of models equipped with a
notion of path. This general definition takes the form of an existence of a span
of open maps. In [8] it was shown that in the special case of standard labelled
transition systems with sequential paths, the definition agrees with the strong
bisimulation of Milner [12], and in the case of event structures with nonsequential
paths in the form of pomsets, the definition yielded an interesting strengthening of
the history-preserving bisimulation introduced by Rabinovitch and Trakhtenbrot
[20]. Here we show how the coreflection from other models to nets combined with
abstract properties of the general definition of bisimulation from [8], provides a
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notion of bisimulation on nets which automatically inherits a number of important
properties.

The main message of this paper is that the categorical view of models for
concurrency, like Petri nets, provides guidelines for definitions of concepts like
behavioural equivalences, consistent across a range of models. We illustrate how
a notion of bisimulation can be read off for nets, and that this comes automatically
equipped with a number of essential properties. The categorical approach here
contrasts with the more common alternative of searching for a sensible candidate
for bisimulation on nets and, having found one of then checking it possesses these
essential properties.

A word on our choice of morphisms, which might otherwise seem rather arbi-
trary. Objects of our categories will represent processes. Morphisms will represent
a relationship between one process and another. Following [27], the morphisms we
focus on here arise in relating the behaviours of processes and their components
in languages like CCS. In CCS, communication is based on the synchronisation
of atomic actions. Because of this we can restrict attention to morphisms which
respect the granularity of actions, in the sense that an action may only be sent to
at most one action, and not to a computation consisting of several actions. As is
shown in [27], the resulting definitions of morphisms are sufficient to express via
morphisms the relationship between a constructed process and its components
built up using the operations of CCS. Conversely the choice of morphisms also
produces universal constructions which form the basis of a process description
language. This language is a little richer than that of CCS and CSP in the sense
that their operations are straightforwardly definable within it.

1 Models—a coreflection

In this section we introduce the models of Petri nets and asynchronous transition
systems, and present a coreflection between them. The purpose is mainly to set
the scene for the main results in the next section, and hence the presentation
here focusses on central definitions and constructions. For further details and all
missing proofs we refer to [27].

1.1 Transition systems

Transition systems are a frequently used model of parallel processes. They consist
of a set of states, with an initial state, together with transitions between states
which are labelled to specify the kind of events they represent.

Definition: A transition system is a structure

(S, i, L, tran)

where
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• S is a set of states with initial state i,

• L is a set of labels,

• tran ⊆ S × L × S is the transition relation. As usual, a transition (s, a, s′)
is drawn as s a→ s′.

It is convenient to introduce idle transitions, associated with any state. This
has to do with our representation of partial functions. We view a partial function
from a set L to a set L′ as a (total) function λ : L ∪ {∗} → L′ ∪ {∗} such that
f(∗) = ∗, where ∗ is a distinguished element standing for “undefined”. This
representation is reflected in our notation λ : L →∗ L′ for a partial function λ
from L to L′. It assumes that ∗ does not appear in the sets L and L′, and more
generally we shall assume that the reserved element ∗ does not occur in any of the
sets of the structures we consider. The expected composition of partial functions
is obtained by composing their representations. We shall identify total functions
on a set L with partial functions never yielding ∗ on L.

Definition: Let T = (S, i, L, tran) be a transition system. An idle transition of
T typically consists of (s, ∗, s), where s ∈ S. Define

tran∗ = tran∪ {(s, ∗, s) | s ∈ S}.

Idle transitions help give a simple definition of morphism between transition
systems.

Definition: Let
T0 = (S0, i0, L0, tran0) and
T1 = (S1, i1, L1, tran1)

be transition systems. A morphism f : T0 → T1 is a pair f = (σ, λ) where

• σ : S0 → S1, a function between sets of states,

• λ : L0 →∗ L1, a partial function between sets of labels, are such that
σ(i0) = i1 and

(s, a, s′) ∈ tran0 ⇒ (σ(s), λ(a), σ(s′)) ∈ tran1∗.

The intention behind the definition of morphism is that the effect of a transi-
tion with label a in T0 leads to inaction in T1 precisely when λ(a) is undefined. In
our definition of morphism, idle transitions represent this inaction, so we avoid
the fuss of considering whether or not λ(a) is defined. With the introduction of
idle transitions, morphisms on transition systems can be described as preserving
transitions and the initial state. It is stressed that an idle transition (s, ∗, s)

3



represents inaction, and is to be distinguished from the action expressed by a
transition (s, a, s′) for a label a.

Transition systems with morphisms form a category T in which the compo-
sition of two morphisms f = (σ, λ) : T0 → T1 and g = (σ′, λ′) : T1 → T2 is
g ◦f = (σ′◦σ, λ′ ◦λ) : T0 → T2 and the identity morphism for a transition system
T has the form (1S, 1L) where 1S is the identity function on states and 1L is the
identity function on the labelling set of T .
(Here composition on the left of a pair is that of total functions while that on
the right is of partial functions.)

1.2 Petri nets

A Petri net may be seen as a transition system with an explicit representation
of (global) states as sets of (local) states (usually called conditions). The specific
version adopted here was introduced in [10].

Definition: A Petri net consists of (B,M0, E, pre, post) where

B is a set of conditions, with initial marking M0 a nonempty subset
of B,
E is a set of events, and
pre : E→Pow(B) is the precondition map such that pre(e) is nonempty
for all e ∈ E,
post : E → Pow(B) is the postcondition map such that post(e) is
nonempty for all e ∈ E.

A Petri net comes with an initial marking consisting of a subset of conditions
which are imagined to hold initially. Generally, a marking, a subset of condi-
tions, formalizes a notion of global state by specifying those conditions which
hold. Markings can change as events occur, precisely how being expressed by the
transitions

M
e→M ′

events e determine between markings M,M ′. In defining this notion it is conve-
nient to extend events by an “idling event”.

Definition: Let N = (B,M0, E, pre, post) be a Petri net with events E.
Define E∗ = E ∪ {∗}.
We extend the pre and post condition maps to ∗ by taking

pre(∗) = ∅, post(∗) = ∅.

Notation: Whenever it does not cause confusion we write •e for the preconditions
pre(e) and e• for the postconditions, post(e), of e ∈ E∗. We write •e• for •e ∪ e•.
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Definition: Let N = (B,M0, E, pre, post) be a net.
For M,M ′ ⊆ B and e ∈ E∗, define

M
e→M ′ iff •e ⊆M & e• ⊆M ′ & M \•e = M ′ \ e•.

Say e0, e1 ∈ E∗ are independent iff •e•0 ∩•e•1 = ∅.
A marking M of N is said to be reachable when there is a sequence of events,
possibly empty, e1, e2 . . . en such that

M0
e1→M1

e2→ · · · en→Mn = M.

inN . There is contact at a marking M when for some event e, all its preconditions
are marked at M and yet e cannot ocur at M :

•e ⊆M & e• ∩ (M \•e) 6= ∅.

A net is said to be safe when contact never occurs at any reachable marking.

Example: The following is an example of a standard graphical representation of
a safe net with six events and nine conditions. Notice in particular that events e0

and e1 are independent, whereas e3 and e4 are not. One of the essential properties
of nets is this possibility of specifying independence amongst events in terms of
pre- and postconditions.
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As morphisms on nets we take:

Definition: Let N = (B,M0, E, pre, post) and N ′ = (B′,M ′0, E′, pre′, post′) be
nets. A morphism (β, η) : N → N ′ consists of a relation β ⊆ B×B′, such that its
opposite relation βop ⊆ B′ × B is a partial function from B′ to B, and a partial
function η : E →∗ E′ such that

βM0 = M ′0,

β•e = •η(e) and
βe• = η(e)•.

Thus morphisms on nets preserve initial markings and events when defined.
A morphism (β, η) : N → N ′ expresses how occurrences of events and conditions
in N induce occurrences in N ′. Morphisms on nets preserve behaviour:
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Proposition 1 Let N = (B,M0, E, pre, post), N ′ = (B′,M ′0, E
′, pre′, post′) be

nets. Suppose (β, η) : N → N ′ is a morphism of net.

• If M e→M ′ in N then βM
η(e)→ βM ′ in N ′.

• If •e•1 ∩•e•2 = ∅ in N then •η(e1)• ∩• η(e2)• = ∅ in N ′.

Proof: By definition,

•η(e) = β•e and η(e)• = βe•

for e an event of N . Observe too that because βop is a partial function, β in
addition preserves intersections and set differences. These observations mean
that βM

η(e)→ βM ′ in N ′ follows from the assumption that M e→ M ′ in N , and
that independence is preserved. 2

Proposition 2 Nets and their morphisms form a category in which the com-
position of two morphisms (β0, η0) : N0 → N1 and (β1, η1) : N1 → N2 is
(β1 ◦ β0, η1 ◦ η0) : N0 → N2 (composition in the left component being that of
relations and in the right that of partial functions).

Definition: Let N be the category of nets described above.

Remark The rich structure of conditions on nets leaves room for variation, and
another definition of morphism gives sensible results on the subclass of “safe”
nets. A limitation with the above definition of morphism on nets is that it does
not permit all “folding” morphisms of the kind illustrated in the example below.

...OO

b2
��
��OO

e1
� �
� �OO

b1
��
�� //

# "
����

��·b
! 

OO e
� �
� �OO

e0
� �
� �OO

b0
��
��·

The folding sends each event e0, e1, . . . to the common event e, and each condition
b0, b1, . . . to the condition b. By restricting attention to safe nets we can relax
the definition of morphisms on nets to include foldings, as in [25, 26], and still
parallel the results of this paper—see [27] and the remark following Corollary 21.
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1.3 Asynchronous transition systems

Following tradition, the behaviour of a net may be described via its reachable case
graph, i.e. a transition system in which the states are the reachable markings and
the transitions are triples

M
e→M ′

as defined above. The case graph of our previous net example will be as follows:

�
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•

•

•

e4

e4e3

e3

e0

e1

e1

e0

•

•

• I

e5

e2

Notice how the event pairs (e0, e1) and (e3, e4) give rise to the same kind of
diamonds in the underlying transition system. Hence, in order to get a represen-
tation of the important distinction between the pairs in terms of independence,
we need to add some structure to the notion of case graph, here indicated by the I
in the independent diamond. This is exactly the motivation behind asynchronous
transition systems, as introduced independently by Bednarczyk [1] and Shields
[22]. The idea on which they are based is simple enough: extend transition sys-
tems by, in addition, specifying which transitions are independent of each other.
More accurately, transitions are to be thought of as occurrences of events which
bear a relation of independence.

Definition: An asynchronous transition system consists of (S, i, E, I, tran) where
(S, i, E, tran) is a transition system, I ⊆ E2, the independence relation is an
irreflexive, symmetric relation on the set E of events such that

(1) e ∈ E ⇒ ∃s, s′ ∈ S. (s, e, s′) ∈ tran

(2) (s, e, s′) ∈ tran & (s, e, s′′) ∈ tran⇒ s′ = s′′

(3) e1Ie2 & (s, e1, s1) ∈ tran & (s1, e2, u) ∈ tran
⇒ ∃s2. (s, e2, s2) ∈ tran & (s2, e1, u) ∈ tran.

Say an asynchronous transition system is coherent if it also satisfies

(4) e1Ie2 & (s, e1, s1) ∈ tran & (s, e2, s2) ∈ tran
⇒ ∃u. (s1, e2, u) ∈ tran & (s2, e1, u) ∈ tran.

Axiom (1) says every event appears as a transition, and axiom (2) that the
occurrence of an event at a state leads to a unique state. Axioms (3) and (4)
express properties of independence: if two independent events can occur one
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immediately after the other then they should be able to occur with their order
interchanged (3); if two events can occur independently from a common state
then they can occur together and in so doing reach a common state (4). Both
situations lead to an “independence square” associated with the independence
e1Ie2:

•

• •

•

�
�
���

�
�
���

@
@
@@I

@
@
@@I

s

u

s1 s2

e1

e2

e2

e1

Morphisms between asynchronous transition systems are morphisms between
their underlying transition systems which preserve the additional relations of
independence.

Definition: Let T = (S, i, E, I, tran) and T ′ = (S ′, i′, E′, I ′, tran′) be asyn-
chronous transition systems. A morphism T → T ′ is a morphism of transition
systems

(σ, η) : (S, i, E, tran)→ (S ′, i′, E′, tran′)

such that
e1Ie2 & η(e1), η(e2) both defined ⇒ η(e1)I ′η(e2).

Morphisms of asynchronous transition systems compose as morphisms between
their underlying transition systems, and are readily seen to form a category.

Definition: Let A be the category of asynchronous transition systems.

1.4 Asynchronous transition systems and nets

1.4.1 An adjunction

There is an adjunction between the categories A and N.1 First, we note there is
an obvious functor from nets to asynchronous transition systems, that associated
with the case graph of a net.

1The adjunction between coherent asynchronous transition systems and nets is shown in
detail in [27], to which the reader can refer for missing details (including missing proofs) in this
section—the argument is virtually unaffected when working with the broader category of all
asynchronous transition systems.
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Definition: LetN = (B,M0, E, •( ), ( )•) be a net. Define na(N) = (S, i, E, I, tran)
where

S = Pow(B) with i = M0,

e1Ie2 ⇔• e•1 ∩•e•2 = ∅,
(M, e,M ′) ∈ tran⇔M

e→M ′ in N, for M,M ′ ∈ Pow(B).

Let (β, η) : N → N ′ be a morphism of nets. Define

na(β, η) = (σ, η)

where σ(M) = βM , for any M ∈ Pow(B).

It may be shown [27] that na is indeed a functor, and that the construction
na(N), for a net N , yields a coherent asynchronous transition system.

As a preparation for the definition of a functor from asynchronous transition
systems to nets we examine how a condition of a net N can be viewed as a
subset of states and transitions of the asynchronous transition system na(N).
Intuitively the extent |b| of a condition b of a net is to consist of those markings
and transitions at which b holds uninterruptedly. In fact, for simplicity, the extent
|b| of a condition b is taken to be a subset of tran∗, the transitions (M, e,M ′) and
idle transitions (M, ∗,M) of na(N); the idle transitions (M, ∗,M) play the role
of markings M .

Definition: Let b be a condition of a net N . Let tran be the transition relation
of na(N). Define the extent of b to be

|b| = {(M, e,M ′) ∈ tran∗ | b ∈M & b ∈M ′ & b 6∈• e•}.

Not all subsets of transitions tran∗ of a net N are extents of conditions of N .
For example, if (M, e,M ′) 6∈ |b| and (M ′, ∗,M ′) ∈ |b| for a transition M e→M ′ in
N this means the transition starts the holding of b. But then b ∈ e• so any other
transition P e→ P ′ must also start the holding of b. Of course, a condition cannot
be started or ended by two independent events because, by definition, they can
have no pre- or postcondition in common. These considerations motivate the
following definition of condition of a general asynchronous transition system.
The definition is a generalization of the notion of regions for transition systems
introduced by Ehrenfeucht and Rozenberg [17].

Definition: Let T = (S, i, E, I, tran) be an asynchronous transition system. Its
conditions are nonempty subsets b ⊆ tran∗ such that

(1) (s, e, s′) ∈ b⇒ (s, ∗, s) ∈ b & (s′, ∗, s′) ∈ b
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(2) (i) (s, e, s′) ∈• b & (u, e, u′) ∈ tran⇒ (u, e, u′) ∈• b
(ii) (s, e, s′) ∈ b• & (u, e, u′) ∈ tran⇒ (u, e, u′) ∈ b•

where for (s, e, s′) ∈ tran we define

(s, e, s′) ∈• b⇔ (s, e, s′) 6∈ b & (s′, ∗, s′) ∈ b,
(s, e, s′) ∈ b• ⇔ (s, ∗, s) ∈ b & (s, e, s′) 6∈ b, and
•b• =• b ∪ b•.

(3) (s, e1, s
′) ∈• b• & (u, e2, u

′) ∈• b• ⇒ ¬e1Ie2.

Let B be the set of conditions of T . For e ∈ E∗, define

e• = {b ∈ B | ∃s, s′. (s, e, s′) ∈• b},
•e = {b ∈ B | ∃s, s′. (s, e, s′) ∈ b•}, and
•e• = •e ∪ e•.

(Note that •∗• = ∅.)
Further, for s ∈ S, define M(s) = {b ∈ B | (s, ∗, s) ∈ b}.

As an illustrative exercise, we check that the extent of a condition of a net is
indeed a condition of its asynchronous transition system.

Lemma 3 Let N be a net with a condition b. Its extent |b| is a condition of
na(N). Moreover,

(I) (M, e,M ′) ∈• |b| ⇔ b ∈ e•

(II) (M, e,M ′) ∈ |b|• ⇔ b ∈• e.

whenever M e→M ′ in N .

Proof: We prove (I) (the proof of (II) is similar):

(M, e,M ′) ∈• |b| ⇔ (M, e,M ′) 6∈ |b| & (M ′, ∗,M ′) ∈ |b|
⇔ ¬(b ∈M & b ∈M ′ & b 6∈• e•) & b ∈M ′

⇔ (b 6∈M & b ∈M ′) or (b ∈• e• & b ∈M ′)
⇔ b ∈ e•, as M e→M ′.

Using (I) and (II), it is easy to check that |b| is a condition of na(N)—note that
|b| is nonempty because it contains, for instance, ({b}, ∗, {b}). 2

Definition: Let (σ, η) : T → T ′ be a morphism between asynchronous transition
systems T = (S, i, E, I, tran) and T ′ = (S ′, i′, E′, I ′, tran′). For b ⊆ tran′∗, define

(σ, η)−1b = {(s, e, s′) ∈ tran∗ | (σ(s), η(e), σ(s′)) ∈ b}
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Definition: Let T = (S, i, E, I, tran) be an asynchronous transition system. De-
fine an(T ) = (B,M0, E, pre, post) by taking B to be the set of conditions of T ,
M0 = M(i), with pre and post condition maps given by the corresponding op-
erations in T , i.e. pre(e) =• e and post(e) = e• in T . Let (σ, η) : T → T ′ be a
morphism of asynchronoustransition systems. Define an(σ, η) = (β, η) where for
conditions b of T and b′ of T ′ we take

bβb′ iff b = (σ, η)−1b′.

It may be shown that an as defined is indeed a functor, [27]. Let us illustrate
here how a net is produced from an asynchronous transition system.

Example: Consider the following asynchronous transition system T with two
independent events, 1 and 2:

·
· · 1 I 2

�

2 ??���
1__>>>

1

^^<<<
2

@@���

It has these conditions, where those transitions in the condition are represented
by solid arrows:

·
· a ·
·
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__>>>
??���

·
· b ·
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AA�������
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AA���

·
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@@������
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^^===
@@������
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AA���
]] � � � � � � �
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AA�������

·
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^^===
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·
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@@�������
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Consequently the asynchronous transition system T yields this net an(T ):
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# "
��

OO

2
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��·

a
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��·
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b
��
��·

OO

c
��
��·

Theorem 4 The functors an : A → N and na : N → A form an adjunction
with an left adjoint to na.
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1.4.2 A coreflection

Neither A nor N embeds fully and faithfully in the other category via the functors
of the adjunction. This accompanies the facts that neither unit nor counit is an
isomorphism (see [9] p. 88); in passing from a netN to an◦na(N) extra conditions
are most often introduced; the net an ◦ na(N) is always safe even though N is
not, as we will see. While passing from an asynchronous transition system T to
na ◦ an(T ) can, not only blow-up the number of states, but also collapse states
which cannot be separated by conditions; in addition, the asynchronous transition
system na ◦ an(T ) is always coherent even though T is not.

A (full) coreflection between asynchronous transition systems and nets can be
obtained at the cost of adding three axioms. Let A0 be the full subcategory of
asynchronous transition systems T = (S, i, E, I, tran) satisfying the following:

Axiom 1 Every state is reachable from the initial state, i.e. for every s ∈ S
there is a chain of events e1, . . . , en, possibly empty, for which i e1···en→ s,
where i is the initial state.

Axiom 2 M(u) = M(s)⇒ u = s, for all s, u ∈ S.

Axiom 3 •e ⊆M(s)⇒ ∃s′. (s, e, s′) ∈ tran, for all s ∈ S, e ∈ E.

There is a close similarity to the regional axioms characterizing the case graphs
of elementary net systems in terms of the regional axioms of Ehrenfeucht and
Rozenberg, as presented in [17]. Axioms 2 and 3 enforce two separation proper-
ties. The contraposition of Axiom 2 says

u 6= s⇒M(u) 6= M(s)

i.e. that if two states are distinct then there is a condition of T holding at one
and not the other.

Asynchronous transition systems satisfying Axiom 3 are necessarily coherent:

Proposition 5 If an asynchronous transition system T satisfies Axiom 3 then
T is coherent.

Proof: Suppose e1Ie2 and (s, e1, s1), (s, e2, s2) are transitions in T . Let b be a
condition of T which e2 exits, so in particular (s, ∗, s) ∈ b and (s, e2, s2) /∈ b. As
e1Ie2, the condition bmust contain (s, e1, s1) and so (s1, ∗, s1). Thus •e2 ⊆M(s1).
Axiom 3 now provides a transition (s1, e2, u). Property (3) in the definition of
asynchronous transition systems together with property (1) (determinacy) now
ensure coherence. 2

Because the conditions of an asynchronous transition system support an op-
eration of complementation (explained in [27]), Axioms 2 and 3 hold for any
asynchronous transition system na(N) got from a net N , but obviously Axiom 1
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does not—we need further to make all states reachable. But here we note that the
subcategory of asynchronous transition systems in which all states are reachable
is coreflective in A. The right adjoint to the inclusion functor, R, defined below,
restricts to reachable states. Its composition with na yields the right adjoint of
the coreflection between A0 and N.

Definition: Let AR be the full subcategory of A consisting of asynchronous
transition systems (S, i, E, I, tran) satisfying Axiom 1, i.e. so that all states s are
reachable.

Let R act on an asynchronous transition system T = (S, i, E, I, tran) as fol-
lows:

R(T ) = (S ′, i′, E′, I ′, tran′)

where

S ′ consists of all reachable states of T
E′ = {e ∈ E | ∃s, s′ ∈ S ′. (s, e, s′) ∈ tran}
I ′ = I ∩ (E′ × E′)

tran′ = tran∩ (S ′ × E′ × S ′).

For a morphism (σ, η) : T → T ′ of asynchronous transition systems, define
R(σ, η) = (σ′, η′) where σ′ and η′ are the restrictions of σ and η to the states,
respectively events, of R(T ).

We need the notion of reachable extent of a condition. This consists essentially
of the reachable markings and transitions at which b holds uninterruptedly.

Definition: Let N be a net. Let tran∗ be the transitions and idle transitions of
R ◦ na(N). Define

|b|R = |b| ∩ tran∗.

And finally we can state the main result of this section, quoted from [27].

Theorem 6 Defining na0 = R◦na, the composition of functors, yields a functor
na0 : N → A0 which is right adjoint to an0 : A0 → N, the restriction of an to
A0.

The unit at T = (S, i, E, I, tran) ∈ A0 is an isomorphism

(σ, 1E) : T → na0 ◦ an0(T )

where σ(s) = M(s) for s ∈ S, making the adjunction a coreflection.
The counit at a net N is

(β, 1E) : an0 ◦ na0 → N

where
cβb iff ∅ 6= c = |b|R

between conditions c of na0(N) and b of N .

13



One consequence of the coreflection is that any net N can be converted to
a safe net an0 ◦ na0(N) with the same behaviour, in the sense that there is
an isomorphism between the reachable asynchronous transition systems the two
nets induce under na0, for details see [27]. Another is that A0 has products and
coproducts given by the same constructions as those of A.

The coreflection A0 → N cuts down to an equivalence of categories by re-
stricting to the appropriate full subcategory of nets.

Definition: Let N0 be the full subcategory of saturated nets, i.e. nets such that

b 7→ |b|R

is a bijection between conditions of N and those of na0(N).

The nets in N0 are saturated with conditions in the sense that they have as
many conditions as is allowed by their reachable behaviour and independence
(regarded as an asynchronous transition system), see [27].

Theorem 7 The functor an restricts to a functor an0 : A0 → N0. The functor
R ◦ na restricts to a functor na0 : N0 → A0. The functors an0, na0 form an
equivalence of categories.

1.5 Unfolding

There is a well-known operation of unfolding a transition system to a tree whose
branches consist of sequences of occurrence of transitions that can be performed
starting from the initial state. This operation in fact arises automatically as a
right adjoint, part of a coreflection, between categories of synchronisation trees
and transition systems. In more detail, define S, the category of synchronisation
trees, to be the full subcategory of transition systems whose objects satisfy:

• every state is reachable,

• the transitive closure of the transition relation is acyclic, and

• s′ a→ s & s′′ b→ s⇒ a = b & s′ = s′′.

The inclusion functor st : S ↪→ T has as right adjoint the functor ts : T → S
which on objects T = (S, i, L, tran), a transition system, yields the synchronisa-
tion tree ts(T ) = (S ′, i′, L, tran′) where:

• The set S ′ consists of all finite, possibly empty, sequences of transitions

(t1, · · · , tj, tj+1, · · · , tn−1)

such that tj = (sj−1, aj, sj) and tj+1 = (sj, aj+1, sj+1) whenever 1 < j < n.
The element i′ = (), the empty sequence.

14



• The set tran′ consists of all triples (u, a, v) where u, v ∈ S ′ and u =
(u1, . . . , uk), v = (u1, . . . , uk, (s, a, s′)), obtained by appending an a transi-
tion to u.

The transition system T unfolds to a synchronisation tree whose states and arcs
represent occurrences of states and transitions.

What is the analogue of unfolding for models like Petri nets and asynchronous
transition systems? This time the notion of occurrence should take account of
the independence present in these more detailed models. Several answers have
been proposed, Mazurkiewicz trace languages [10], occurrence nets [16] and event
structures [16], though they are all closely related. Here we focus on one, event
structures.

The events of an event structure are to be thought of as representing individ-
ual occurrences of actions of a system. The structural parts of an event structure
are intended to capture the causal and nondeterministic aspects of such compu-
tations:

Definition: Define an event structure to be a structure (E,≤, Con) consisting
of a set E, of events which are partially ordered by ≤, the causal dependency
relation, and a consistency relation Con consisting of finite subsets of events,
which satisfy

{e′ | e′ ≤ e} is finite,
{e} ∈ Con,
Y ⊆ X ∈ Con⇒ Y ∈ Con,
X ∈ Con & e ≤ e′ ∈ X ⇒ X ∪ {e} ∈ Con,

for all events e, e′ and their subsets X, Y .
We say two events e, e′ ∈ E are concurrent, and write e co e′, iff

(e 6≤ e′ & e′ 6≤ e & {e, e′} ∈ Con).

The finiteness assumption restricts attention to discrete processes where an
event occurrence depends only on finitely many previous occurrences. The axioms
on the consistency relation express that all singletons of events are consistent, and
that the relation is closed under subsets and downwards with respect to the causal
dependency relation.

Say an event structure E = (E,≤, Con) is coherent if the consistency relation
Con is determined by consistency on pairs of events, or alternatively if there is
a, necessarily unique, binary conflict relation # on events such that

X ∈ Con⇔ ∀e1, e2 ∈ X. ¬e1#e2.

We can describe coherent event structures by a triple (E,≤,#) where, as before,
E is a set of events partially ordered by a causal dependency relation ≤, and #,
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the conflict relation, is a binary, symmetric, irreflexive relation on events, which
satisfy

{e′ | e′ ≤ e} is finite,
e#e′ ≤ e′′ ⇒ e#e′′

for all e, e′, e′′ ∈ E. The property of #, that two events causally dependent on
conflicting events are themselves in conflict, follows from those of Con. We shall
take the liberty of identifying (E,≤,#), presenting a coherent event structure,
with the associated event structure (E,≤, Con); in other words, (E,≤,#) should
be understood as referring to the event structure (E,≤, Con) it determines.

To understand the “dynamics” of an event structure (E,≤, Con) we show how
an event structure determines a asynchronous transition system (S, i, E, I, tran).
Guided by our interpretation we can formulate a notion of computation state of
an event structure (E,≤, Con). Taking a computation state of a process to be
represented by the set x of events which have occurred in the computation, we
expect that

e′ ∈ x & e ≤ e′ ⇒ e ∈ x
—if an event has occurred then all events on which it causally depends have
occurred too—and also that

∀X ⊆fin x. X ∈ Con

—all finite subsets of events in the same computation are consistent. Let
C(E,≤,#) denote the subsets of events satisfying these two conditions, tradi-
tionally called the configurations of the event structure. We let S be the set of
finite configurations and i the empty configuration.

Events manifest themselves as atomic jumps from one configuration to an-
other. For configurations x, x′ and event e, define

(x, e, x′) ∈ tran⇔ e /∈ x & x′ = x ∪ {e}.

We take two events to be independent in the asynchronous transition system
iff they are concurrent in the event structure, i.e.

e1Ie2 ⇔ e1 co e2.

It is easy to see that this indeed defines an asynchronous transition system,
T = (S, i, E, I, tran) from the event structure E = (E,≤, Con). Furthermore, a
coherent event structure gives rise to a coherent asynchronous transition system.
The construction, which we call ea, identifying an event structure with an asyn-
chronous transition system, extends to a functor with the following definition of
morphisms for event structures:
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Definition: Let E = (E,≤, Con) and E′ = (E′,≤′, Con′) be event structures.
A morphism from E to E′ consists of a total function η : E → E′ on events which
satisfies

if x ∈ C(E) then ηx ∈ C(E′) &
∀e0, e1 ∈ x.η(e0) = η(e1)⇒ e0 = e1.

Write E for the category of event structures; composition is the usual com-
position of partial functions. Write E0 for the subcategory of coherent event
structures.

The construction ea extends to a full and faithful functor:
Let η : E → E′ be a morphism of event structures; it determines a morphism

ea(η) = (σ, η) : ea(E)→ ea(E′)

in which σ(x) = ηx, simply the direct image of a configuration x under η. The
“inclusion” functor ea : E → A has a right adjoint ae : A → E unfolding an
asynchronous transition system to an event structure, forming a coreflection. We
won’t go into the details of the construction of a right adjoint here, referring the
reader to [27]; there it is shown how an asynchronous transition system determines
a Mazurkiewicz trace language (easy) from which an event structure is obtained
(harder).2 The coreflection cuts down to one between the subcategory of coherent
even structures and the subcategory of coherent asynchronous transition systems.
In fact, the coreflection also cuts down to one, ea0 : E0 → A0, ae0 : A0 → E0.
This is because it is easy to construct a net from a coherent event structure so
that both induce the same asynchronous transition system (see [16, 27]); hence,
images of E0 under ea lie in A0.

2 Labelled models and bisimulation

The coreflections of the previous sections enable us to place Petri nets within a
broader picture of models for concurrency—[27] gives a fuller view. They allow
us to apply to nets a general notion of bisimulation, obtained from a span of open
maps, proposed in [8].

2.1 Labelled models and their relationship

Like most models for concurrency, nets [18] and asynchronous transition systems
[14], or more precisely their labelled versions, have been used as models for process
languages like CCS, [12]. As an illustration, following [18], the CCS expression
a.nil|b.nil is represented by the labelled net:

2In truth, this is only shown in detail for coherent structures in [27], though the slight
generalisation, when coherence is not assumed, is also indicated there.
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In contrast the (strongly bisimilar) expression a.b.nil+ b.a.nil is represented
by:
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There is a general way of introducing labels to models in such a way that one
may carry over adjunctions between unlabelled models to their labelled counter-
parts. Here we sketch the idea, applicable to the categories of nets, asynchronous
transition systems and event structures. We assume a category X of structures
each of which possesses a distinguished set of events and where morphisms have
as a component a partial function between sets of events.

(i) Add to structures X an extra component of a (total) labelling function
l : E → L from the structure’s set of events E to a set of labels L; we
obtain labelled structure as pairs (X, l).

(ii) We assume morphisms f : X → X ′ of unlabelled structures include a
component η between sets of events. A morphism of labelled structures
(X, l) → (X ′, l′) is a pair (f, λ) where f : X → X ′ is a morphism on the
underlying unlabelled structures and λ : L →∗ L′ is a partial function on
the label sets such that λ ◦ l = l′ ◦ η. Composition of morphisms is done
coordinatewise.

Morphisms between labelled structures are of this generality in order to obtain
operations of process calculi as universal constructions. However, for our purpose
of studying bisimulation, it suffices to work with subcategories of structures hav-
ing a common set of labels L, and restrict to morphisms as above, but with the
extra condition that the component λ is the identity on L—this implies that the
event component η is total. We call the resulting category XL; this subcategory is
the fibre over L with respect to the obvious functor projecting labelled structures
to their label sets. For emphasis:
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• The objects of XL consist of structures (X, l) where X is an object of X,
and l : E → L is a (total) labelling function from E the events of X to the
labelling set L

• The morphisms of XL from (X, l) to (X ′, l′) correspond to morphisms f :
X → X ′ of X of which the event component η preserves labels, i.e. l′◦η = l.

Correspondingly, for a set of labels L, we denote the fibres over L in the la-
belled versions of our categories of nets, asynchronous transition systems and
event structures by NL, AL, A0

L and E0
L respectively. Similarly the category of

transition systems over label set L, with morphisms having the identity as label
component, will be denoted TL, and its full subcategory of synchronisaton trees
SL. We remark that synchronisation trees can be identified with those event
structures having empty co-relation.

It follows for general reasons [27] (and is easy to see) that the adjunction
and coreflection between nets and asynchronous transition systems lift to a core-
flection between the labelled versions. The modified adjoints are essentially the
adjoints presented in the previous sections, simply carrying the label parts across
from one model to the other. Furthermore, this coreflection is part of a collection
of coreflections as in the diagram below.

SL TL

E0
L A0

L NL

se ��

st //

ea0
//

an0
//

These are accompanied by the coreflection ea : EL → AL between labelled
event structures and asynchronous transition systems in general. When specifying
a functor of one of the coreflections above, we adopt a convention; for example
the left adjoint from SL to TL is denoted st while its right adjoint is ts. The
left adjoints, drawn above, embed one model in another. We have deliberately
overloaded notation, and, for instance, used an0 also for the labelled version of
the embedding of A0

L into NL. For details of the other coreflections we refer to
[27]. The composition of right adjoints ne = ae0 ◦ na0 yields the unfolding of
nets into event structures, familiar from [16] (though the functor adds an extra
marked isolated condition). Coreflections compose so the composition of left
adjoints en = an0 ◦ ea0 forms a coreflection with right adjoint ne. For readers
familiar with net theory, we mention that for a net N , en ◦ ne(N) is simply the
saturated version of the net unfolding of N as defined in [16]. Irritatingly, there
are not coreflections from transition systems TL to the categories of labelled
nets NL or asynchronous transition systems AL or A0

L. This is simply because,
unlike transition systems, both labelled nets and labelled asynchronous transition
systems allow more than one transition with the same label between two states.
This stops the natural bijection required for the “inclusion” of transition systems
to be a left adjoint.
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2.2 Path-lifting morphisms

In this section we briefly present some of the main ideas, definitions and results
from [8], providing a general notion of bisimulation applicable to a wide range of
models. For the missing proofs we refer to [8].

Informally, a computation path should represent a particular run or history of
a process. For transition systems, a computation path is reasonably taken to be
a sequence of transitions. Let’s suppose the sequence is finite. For a labelling set
L, define the category of branches BranL to be the full subcategory of transition
systems, with labelling set L, with objects those finite synchronisation trees with
one maximal branch; so the objects of BranL are essentially strings over alphabet
L. A computation path in a transition system T , with labelling set L, can then
be represented by a morphism

p : P → T

in TL from an object P of BranL. How should we represent a computation path
of a net or an event structure? To take into account the explicit concurrency
exhibited by an event structure, it is reasonable to represent a computation path
as a morphism from a partial order of labelled events, that is from a pomset.
Note that Pratt’s pomsets, with labels in L, can be identified with special kinds
of labelled event structures in EL, those with consistency relation consisting of all
finite subsets of events. Define the category of pomsets PomL, with respect to a
labelling set L, to be the full subcategory of EL whose objects consist exclusively
of finite pomsets. A computation path in an event structure E, with labelling set
L, is a morphism

p : P → E

in EL from an object P of PomL. What about computation paths in nets?
The left adjoint an0 ◦ ea0 of the coreflection EL → NL embeds labelled event
structures, and so pomsets, in labelled nets. This enables us to identify pomsets
P in PomL with their images an0 ◦ ea0(P ) as labelled saturated nets in NL.
Now, we can take a computation path in a net N , with labelling set L, to be a
morphism

p : P → N

in NL from a pomset P , with labelling set L—where the pomset P is understood
as the corresponding labelled saturated net in NL. In future, when discussing
nets, we will deliberately confuse pomsets with their image in NL under the
embedding.

Generally, assume a category of models M (this can be any of the categories
of labelled structures we are considering) and a choice of path category, a subcat-
egory P ↪→M consisting of path objects (these could be branches, or pomsets)
together with morphisms expressing how they can be extended. Define a compu-
tation path in an object X of M to be a morphism

p : P → X,
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in M, where P is an object in P. A morphism f : X → Y in M takes such a
path p in X to the path f ◦ p : P → Y in Y . The morphism f expresses the
sense in which Y simulates X; any computation path in X is matched by the
computation path f ◦ p in Y .

We might demand a stronger condition of a morphism f : X → Y expressed
succinctly in the following path-lifting condition:

Whenever, for m : P → Q a morphism in P, a “square”

P X

Q Y

m ��

p //

f��q //

in M commutes, i.e. q ◦m = f ◦ p, meaning the path f ◦ p in Y can be extended
via m to a path q in Y , then there is a morphism p′ such that in the diagram

P X

Q Y

m ��

p //

f��
p′

~~
~ ??

q //

the two “triangles” commute, i.e. p′ ◦m = p and f ◦ p′ = q, meaning the path p
can be extended via m to a path p′ in X which matches q. When the morphism
f satisfies this condition we shall say it is P-open.

It is easily checked that P-open morphisms include all the identity morphisms
(in fact, all isomorphisms) of M and are closed under composition there; in other
words they form a subcategory of M.

For the well-known model of transition systems open morphisms are already
familiar:

Proposition 8 With respect to a labelling set L, the BranL-open morphisms
of TL are the “zig-zag morphisms” of [23], the “p-morphism” of [21], the “ab-
straction homomorphisms” of [4], and the “pure morphisms” of [2], i.e. those
label-preserving morphisms (σ, 1L) : T → T ′ on transition systems over labelling
set L with the property that for all reachable states s of T

if σ(s) a→ s′ in T ′ then s a→ u in T and σ(u) = s′,
for some state u of T .

Let us return to the general set-up, assuming a path category P in a category
of models M. Say two objects X1, X2 of M are P-bisimilar iff there is a span of
P-open morphisms f1, f2:

X

X1 X2

f1
}}{{
{ f2CCC!!

For the interleaving models of transition systems and synchronisation trees
with path category P taken to be branches, P-bisimulation coincides with Mil-
ner’s strong bisimulation:
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Theorem 9 Two transition systems (and so synchronisation trees), over the
same labelling set L, are BranL-bisimilar iff they are strongly bisimilar in the
sense of [12].

Clearly, in general, the relation of P-bisimilarity between objects is reflexive
(identities are P-open) and symmetric (in the nature of spans). It is also transitive
provided M has pullbacks, and so an equivalence relation on objects, by virtue
of the following fact:

Proposition 10 Pullbacks of P-open morphisms are P-open.

Transitivity of P-bisimilarity is clear for M with pullbacks; two spans of open
morphisms combine to form a span by pulling back from their vertices, as we can
do for all the models we consider:

Proposition 11 The categories TL,SL,NL,A0
L,AL, and EL have pullbacks.

Proof: We show that NL has pullbacks. There are coreflections from all cate-
gories SL,EL,A0

L into NL. Using the fact that right adjoints preserve limits, and
pullbacks in particular, we obtain pullbacks in any of SL,EL,A0

L as images under
the right adjoints of the pullback in NL of diagrams transported into NL by the
left adjoints. Because there are not coreflections from the categories TL and AL

into nets, they require separate (though simple) treatments (or see [8]).
We construct pullbacks in NL explicitly in the following way. Suppose f1 =

(σ1, η1) : N1 → N0 and f2 = (σ2, η2) : N2 → N0 are morphisms in NL where

Ni = (Bi,Mi, Ei, prei, posti, li), i = 0, 1, 2.

We want to construct a pullback N = (B,M,E, pre, post, l), π1, π2:

N N2

N1 N0

π2 //

π1 �� f2��

f1
//

The construction of the events of N , E, is based on pullbacks in the category of
sets:

E = {(e1, e2) ∈ E1 × E2 | η1(e1) = η2(e2)}
The construction of the conditions of N , B, is based on pushouts in the category
of sets with partial functions. Let R denote the equivalence relation on B1 ∪B2

generated by R0, where

b1 R0 b2 iff there exists b0 in B0 such that
β1(b0) = b1 and β2(b0) = b2
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We define

B = the equivalence classes, c, of R, satisfying
βop1 (c) = βop2 (c).

And with these events and conditions of N we let:

M = {c ∈ B | c ⊆M1 ∪M2}
pre((e1, e2)) = {c ∈ B | c ⊆ pre1(e1) ∪ pre2(e2)}
post((e1, e2)) = {c ∈ B | c ⊆ post1(e1) ∪ post2(e2)}

l((e1, e2)) = l1(e1)(= l2(e2))

And finally we define the components π1 = (β̄1, η̄1) and π2 = (β̄2, η̄2) of the
pullback as follows:

η̄i((e1, e2)) = ei

β̄i(bi) = the R-equivalence class of bi if this belongs to B,
undefined otherwise.

We leave it to the reader to check that these constructions indeed define a pullback
in NL as required. All the required properties follow by simple calculations. 2

Corollary 12 For all the model categories mentioned in previous proposition,
and for all path categories, PL, the relation of PL-bisimilarity is an equivalence.

Finally, we present a few general facts from [8] about how open morphisms
and bisimilarity are preserved and reflected by functors, especially when part of
a coreflection. For notational simplicity we shall assume the left adjoints of the
coreflections are inclusions. It follows that for the coreflections of Section 2.1 in
which the two categories of models share the same choice of path category, open
morphisms and bisimilarity are preserved in both directions of the adjunction.

Proposition 13 Let M be a full subcategory of N, and P a subcategory of M.
A morphism f of M is P-open in M iff f is P-open in N.

Lemma 14 Let M be a coreflective subcategory of N with R right adjoint to the
inclusion function M ↪→N and P a subcategory of M. Then:

(i) A morphism f of M is P-open in M iff f is P-open in N.

(ii) The components of the counit of the adjunction εX : R(X)→ X are P-open
in M.

(iii) A morphism f is P-open in N iff R(f) is P-open in M.
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Corollary 15 Let M be a coreflective subcategory of N with R right adjoint to
the inclusion function M ↪→N and P a subcategory of M. Then:

(i) M1,M2 are P-bisimilar in M iff M1,M2 are P-bisimilar in N.

(ii) N1, N2 are P-bisimilar in N iff R(N1), R(N2) are P-bisimilar in M.

Proof:
(i) Directly from (i) of Lemma 14.
(ii)
“only if”: By Lemma 14(iii), a span of open morphisms in N has, as image under
R, a span of open morphisms in M. Thus P-bisimilarity of N1, N2 in N implies
P-bisimilarity of R(N1), R(N2) in M.
“if”: Suppose R(N1), R(N2) in M are P-bisimilar in M via a span of open mor-
phisms f1 : M → R(N1), f2 : M → R(N2) in M. By Lemma 14(i), f1, f2 form a
span of open morphisms in N. The components of the counits of the coreflection
ε1 : R(N1) → N1 and ε2 : R(N2) → N2 are open by Lemma 14(ii). Hence the
compositions ε1 ◦ f1, ε2 ◦ f2 form a span of open morphisms in N showing the
P-bisimilarity of N1, N2 in N. 2

2.3 PomL-bisimulation for nets

We have already seen (Lemma 8, Theorem 9) that for the well-known model of
transition systems, the general definition of P-open morphism and P-bisimilarity
coincide with familiar notions; in particular, we recover the equivalence of strong
bisimilarity central to Milner’s work. Here we explore how the general defini-
tions specialise to the models of event structures and nets, with nonsequential
observations in the form of pomsets.

We start by characterising PomL-open morphisms on labelled asynchronous
transition systems. Following our convention, we shall identify pomsets with their
image under the embedding EL→ AL.

Proposition 16 The PomL-open morphisms of AL are precisely those which
satisfy the “zig-zag” condition of Proposition 8 and which, in addition, reflect
consecutive independence, i.e. morphisms satisfying:

η is total and label preserving

whenever (σ(s), e′, u′) ∈ tran2 then there exists (s, e, u) ∈ tran1 such
that η(e) = e′ and σ(u) = u′

whenever (s, e, u), (u, e′, v) ∈ tran1, with s reachable, and η(e)I2η(e′)
in T2, then eI1e′ in T1.
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Proof: The proof of this proposition is a straightforward modification of the
proof of the corresponding result from [8]. We are going to refer to parts of this
proof later, and so present a part in some detail.

Let f = (σ, η) : T → T ′ be an open morphism in AL. The function η is total
and label preserving from definition of morphisms in AL, and by considering linear
pomsets, where causal dependency is a total order, it is clear as in Proposition 22,
that f satisfies the “zig-zag” condition. The only nontrivial part is the reflection
of consecutive independence.

Suppose
s

e→ u and u e′→ v,

with s reachable, are two consecutive transitions in T for which

σ(s)
η(e)→ σ(u) and σ(u)

η(e′)→ σ(v)

and assume η(e) and η(e′) are independent in T ′. Assume further l(e) = l(η(e)) =
a and l(e′) = l(η(e′)) = a′.

Because s is reachable there is a chain of transitions

i = s0
e1→ s1

e2→ · · · en→ sn = s

in T from its initial state i. Assume l(ei) = ai. Let P be the linear pomset
with n+ 2 elements, ordered and labelled as indicated in the following associated
labelled asynchronous transition system (only labels indicated for the transitions):

• • • · · · • • • •a1 // a2 // an // a // a′ //

Let p : P → T be that morphism in AL which maps this chain of transitions
to

s0 s1 · · · s u v.
e1 // e2 // en // e // e′ //

in T . Let Q be the pomset differing from P only in that the a and a′ labelled
elements are unordered, i.e. the pomset associated with the following labelled
asynchronous transition system:

•

• • • · · · • • I •

•

a′
>>> ��a1 // a2 // an //

a
??���

a′

>>> �� a

??���

Let q : Q→ T ′ be that morphism in AL mapping these transitions to

σ(u)

σ(s0) σ(s1) · · · σ(s) I σ(v)

•

η(e′)HHH$$η(e1)// η(e2)// η(en)//

η(e)
vv
v::

η(e′)
KKKK%% η(e)ss

ss
99
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in T ′. Letting m : P → Q be the obvious morphism of pomsets, we observe the
commuting diagram:

P T

Q T ′

p //

m
��

f

��
q
//

But f is open, so we obtain a morphism p′ : Q→ T such that the two “triangles”
commute in:

P T

Q T ′

p //

m
��

f

��
q
//

p′

~~
~~
~~
??

Because p′ preserves independence, we see that e and e′ are independent in T .
So because f is open it satisfies the “zig-zag” condition and reflects consecutive
independence.

For the proof in the other direction we refer to [8].
2

And now to the question of bisimulations. In [8] it was shown that in the case
of event structures taking the path category P to be pomsets one gets a reason-
able strengthening of a previously studied equivalence, that of history-preserving
bisimulation. Its definition depends on the simple but important remark, that
a configuration of an event structure can be regarded as a pomset, with causal
dependency relation and labelling got by restricting that of the event structure.

Definition: (Rabinovitch-Trakhtenbrot [20], van Glabeek-Goltz [6])
A history-preserving bisimulation between two event structures E1, E2 consists

of a set H of triples (x1, f, x2) where x1 is a configuration of E1, x2 a configuration
of E2 and f is a isomorphism between them (regarded as pomsets), such that
(∅, ∅, ∅) ∈ H and, whenever (x1, f, x2) ∈ H

(i) if x1
a→ x′1 in E1 then x2

a→ x′2 in E2 and (x′1, f
′, x′2) ∈ H with f ⊆ f ′, for

some x′2 and f ′.

(ii) if x2
a→ x′2 in E2 then x1

a→ x′1 in E1 and (x′1, f
′, x′2) ∈ H with f ⊆ f ′, for

some x′1 and f ′

We say a history-preserving bisimulation H is strong when it further satisfies

(I) (x, f, y) ∈ H & x′ ⊆ x, for a configuration x′ of E1 implies (x′, f ′, y′) ∈ H,
for some f ′ ⊆ f and y′ ⊆ y.

(II) (x, f, y) ∈ H & y′ ⊆ y, for a configuration y′ of E2, implies (x′, f ′, y′) ∈ H,
for some f ′ ⊆ f and x′ ⊆ x.
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In [8] it is shown that PomL-bisimilarity of event structures in EL coin-
cides with their being strong history-preserving bisimilar. However, this in it-
self does not show that PomL-bisimilarity of event structures in the smaller
category E0

L of coherent event structures also coincides with strong history-
preserving bisimilarity. There might conceivably be a span of open morphisms,
f1 : E → E1, f2 : E → E2, from a noncoherent event structure E relating two
coherent event structures E1, E2 which could never be replaced by a span of open
morphisms from a coherent event structure. In fact, such is not the case, because
for any event structure E in EL there is an open morphism f : E′ → E from
a coherent event structure E′ (Lemma 18). Hence a span of open morphisms
f1 : E → E1, f2 : E → E2 in EL, with E1, E2 coherent, can always be converted
to a span of open morphisms f1 ◦ f : E′ → E1, f2 ◦ f : E′ → E2 in E0

L. Con-
sequently, PomL-bisimilarity in the subcategory of coherent event structures E0

L

coincides with strong history-preserving bisimilarity. This result will also have
implications for PomL-bisimilarity between Petri nets, because of the coreflection
from coherent event structures to nets.

Although we have not insisted on it, a reasonable requirement on event struc-
tures (and the other objects we consider here) is that they be countable. One
might view with suspicion any result which depended crucially on allowing event
structures to be uncountable. For this reason, some care has been taken to give
countable constructions, at the cost of a little extra argumentation.

In preparation for the key lemma, Lemma 18, we first show how any consis-
tency relation on events can be “simulated” by a conflict relation, ignoring for the
moment causal dependency and labelling. A conflict relation consists of (E,#)
where # is a binary irreflexive relation on E in accord with the terminology for
event structures, we say a set X ⊆ E is consistent iff

∀e1, e2 ∈ X. ¬e1#e2.

A consistency relation consists of (E,Con) where Con is a family of finite subsets
of E satisfying the following property familiar from event structures:

{e} ∈ Con,
Y ⊆ X ∈ Con⇒ Y ∈ Con,

for all elements e, e′ and subsets X, Y of E. Of course, a conflict relation (E,#)
determines a consistency relation (E,Con) in Con which consists of the finite
consistent subsets of (E,#).3

Lemma 17 Let Con be a consistency relation on a set A. There is #, a conflict
relation on a set B and a function f : B → A such that:

3Conflict and consistency relations play a role in models of constructive logic, where they
correspond to Girard’s coherent and qualitative domains [5].
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(i) If X is a finite consistent subset of (B,#), then fX ∈ Con, and

∀b1, b2 ∈ X. f(b1) = f(b2)⇒ b1 = b2.

(ii) If X is a finite consistent subset of (B,#) and

fX ⊆ Y, for Y ∈ Con,

then there is a finite consistent subset Z of (B,#) such that

X ⊆ Z and fZ = Y.

Moreover, if A is countable/finite then B can also be chosen to be countable/finite
respectively.

Proof: Assuming a consistency relation (A,Con) we first define M to consist of
the minimal inconsistent subsets of A, i.e.

M = {X ⊆ A | X /∈ Con & ∀Y $ X.Y ∈ Con}.

Note sets in M are always finite. For a ∈ A, define

M(a) = {X ∈M | a ∈ X}.

Now, define the set B to consist of elements of A with a twist. Formally,
define the elements of B to be pairs

(a, t)

where a ∈ A and t, a twist, is a tuple 〈tX〉X∈M(a) of integers tX, indexed by
X ∈ M(a), such that 0 < tX < |X|—here |X| denotes the size of X. (In
particular, for a ∈ A, if M(a) = ∅, then a’s only twist is the empty tuple,
whereas if M(a) consists solely of (unordered) pairs then all entries of its twists
will be 1). Define a conflict relation on B, by setting

(a, t)#(a′, t′) iff a = a′ & t 6= t′

or
a 6= a′ & ∃X ∈M(a) ∩M(a′). tX = t′X.

Define f : B → A to be the projection (a, t) 7→ a. We should show (i) and (ii)
above.

We first observe the following “counting property” of consistent sets of (B,#):

If X is a consistent set of (B,#) and Y ∈M , then

|{tY | ∃a ∈ Y. (a, t) ∈ X}| = |Y ∩ (fX)|.
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To justify the counting property let

S = {(a, t) ∈ X | a ∈ Y }.

Then S, being a subset of X, is consistent in (B,#). The first clause in the
definition of the conflict relation # on B ensures that |S| = |fS|. Clearly,
fS = Y ∩ (fX), so

|S| = |Y ∩ (fX)|.
The second clause in the definition of #, ensures that

|S| = |{tY | ∃a ∈ Y. (a, t) ∈ X}|.

This establishes the counting property.
We now prove (i) and (ii).
(i) If (i) were to fail, there would be a consistent set X of (B,#) and Y ∈M

such that Y ⊆ fX. But then by the counting property

|{tY | ∃a ∈ Y. (a, t) ∈ X}| = |Y |.

However this is impossible as each tY is bounded within the interval {k | 0 < k <
|Y |}, of size |Y | − 1.

(ii) It suffices to show the following claim:

Suppose X is a consistent set of (B,#) and (fX)
·
∪ {a′} is a consistent

set of (A,Con). Then there is a twist u such that (a′, u) ∈ B and
X
·
∪ {(a′, u)} is a consistent set of (B,#).

[The notation x = y
·
∪ z means x = y ∪ z & y ∩ z = ∅.]

To construct a suitable twist u we need to find an assignment uY , for each Y ∈
M(a′), such that

uY /∈ {tY | ∃a ∈ Y. (a, t) ∈ X}.
This is impossible only if

|{tY | ∃a ∈ Y. (a, t) ∈ X}| = |Y | − 1.

By the counting property, if this were so, then

|Y ∩ (fX)| = |Y | − 1.

But then
Y ⊆ (fX)

·
∪ {a′},

contradicting the consistency of (fX)
·
∪ {a′}. Thus we can find a twist u =

〈uY 〉Y ∈M(a′) such that X ∪ {(a′, u)} is consistent.
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The construction of (B,#) from (A,Con) can yield an uncountable set B
even though A is countable. Suppose, for instance, that there is a ∈ A for which
M(a) contains infinitely may sets of size greater than 2. Then B will include
uncountably many elements of the form (a, t). However there will be a countable
(B,#) fulfilling the conditions of the lemma when A is countable. The argument
involves a little model theory. We can express the conditions on f : B → A as a
countable theory in a predicate calculus. Our construction shows the theory to
be consistent. It thus has a countable model (see e.g. Proposition 2.12, P.65 of
[11]), from which we can extract the required countable (B,#) and f .

In more detail, we take a predicate calculus with equality, over two sorts α
and β, a single unary operation F from β to α, binary relation # on β, and for
each n ≥ 0 predicates Conαn and Conβn on α and β respectively. If A is finite
the construction above clearly yields a finite B, so we can restrict attention to
countably infinite A enumerated as

a0, a1, . . . , am, . . . .

We extend our language by constants a0, a1, . . . , am, . . . of sort α. The theory T
is to consist of:

• those atomic assertions and their negations which hold of A, i.e. those as-
sertions ai = aj, ¬(ai = aj), Conαn(ai1, . . . , ain), ¬Conαn(ai1, . . . , ain), which
are true interpreted as assertions of consistency.

• the properties required of #, Conαn, Conβn, e.g. assertions such as

∀x1, . . . , xn : β. Conβn(x1, . . . , xn)↔
∧
i,j

¬xi#xj

—here
∧
i,j ¬xi#xj abbreviates a finite conjunction

· · · ∧ ¬xi#xj ∧ · · · where i, j ≤ n,

saying consistency in β is equivalent to conflict freeness, and others saying
that consistency predicates are invariant under permutation, that consis-
tency is closed under inclusion and contains all singletons.

• the conditions required on F , of the form

∀x1, . . . , xn : β. Conβn(x1, . . . , xn)→
(Conαn(F (x1), . . . , F (xn)) & (

∧
i,j

F (xi) = F (xj)→ xi = xj))

∀x1, . . . , xn : β, y : α. Conβn(x1, . . . , xn) ∧ Conαn+1(F (x1), . . . , F (xn), y)

→ (∃x : α. F (x) = y ∧ Conβn+1(x1, . . . , xn, x)).

30



The theory T is countable, and is satisfied by our construction, so consistent.
Every countable consistent first-order theory has a countable model (see e.g.
Proposition 2.12, P.65 of [11]). In particular, the theory T has a countable model
in which F is interpreted as a function f ′ from a countable set B′ to a countable
set A′ which includes A. Restricting f ′ to the inverse image B = f ′−1A we
obtain a function f : B → A fulfilling the conditions required above, but now
with respect to a countable (B,#) and (A,Con). 2

Lemma 18 Let A = (A,≤, Con, l) be a labelled event structure. Then, there
is a labelled coherent event structure E = (E,≤′,#′, l′) and an open morphism
g : E → A.

Moreover, if A is countable/finite then so can E be taken to be countable/finite
respectively.

Proof: There is a set B with binary conflict # and a function f : B → A
satisfying the conditions of Lemma 17 with respect to the consistency relation
Con on A. We first construct a labelled coherent asynchronous transition system
T . Its states are finite consistent subsets x of (B,#) for which the direct image
fx is a configuration of A. Its set of events is B with independence relation I
where

b1Ib2 iff ¬b1#b2 & f(b1)cof(b2).

Its labelling function is l ◦ f . Its transitions are all (x, b, x′) where x′ = x
·
∪ {b}

for x, x′ and b ∈ B.
It can be verified that T is a labelled coherent asynchronous transition system.

For example, to show property (3), assume x is a state of T with transitions
(x, b1, x1) and (x, b2, x2) where b1Ib2. Then x ∪ {b1, b2} is a consistent set of
(B,#). Hence because f preserves consistency, fx ∪ {f(b1), f(b2)} ∈ Con. The
two sets fx1 = fx∪{f(b1)} and fx2 = fx∪{f(b2)} are configurations of A and so
≤-downwards closed. Hence their union fx ∪ {f(b1), f(b2)} is consistent and ≤-
downwards closed, and so a configuration of A. This ensures that u = x∪{b1, b2}
is a state of T with transitions (x1, b2, u), (x2, b1, u), as required by (3).

There is an open morphism (σ, f) : T → ea(A) in AL, where σ(x) = fx.
Here we have recourse to Lemma 16 characterising open morphisms in AL and
make essential use of the properties of f , expressed in Lemma 17. The right
adjoint ae of the coreflection between EL and AL preserves open morphisms, by
Lemma 14(iii), and there is an isomorphism h : ae◦ea(A)∼= A, by the coreflection.
Hence g = h ◦ ae(σ, f) : ae(T )→ A, being the composition of an open morphism
with an isomorphism, is itself an open morphism in EL. Because T is coherent it
unfolds under ae to an event structure of the form ae(T ) = (E,≤′,#′, l′).

Because the constructions used in this proof preserve countability and finite-
ness, we see from Lemma 17, that in the proof B, and so E, may be made
countable or finite according to whether A is countable or finite.
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[We remark that an alternative proof is obtained by recognising that the states
of T form the finite elements of a coherent stable family, and so of a coherent prime
algebraic domain D. The event structure E is obtained, to within isomorphism,
from the complete primes of D—see [25].] 2

At long last we can show that restricting the category of event structures to
those which are coherent does not effect the relation of bisimilarity.

Corollary 19 Let E1, E2 be coherent event structures with labelling sets L. The
following are equivalent:

(i) E1, E2 are PomL-bisimilar in E0
L.

(ii) E1, E2 are PomL-bisimilar in EL.

(iii) E1, E2 are strong history-preserving bisimilar.

Proof: The equivalence between (i) and (ii) follows by Lemma 18. A span of
open morphisms f1 : E → E1, f2 : E → E2 in EL, with E1, E2 coherent, can be
converted to a span of open morphisms f1 ◦ f : E′ → E1, f2 ◦ f : E′ → E2 in E0

L,
where f : E′ → E is the open morphism provided by Lemma 18. The equivalence
between (ii) and (iii) is shown in [8]. 2

Via the coreflection between event structures and Petri nets, we can draw
characterisations of PomL-bisimilarity on nets.

Theorem 20 Let N1, N2 be nets with labelling sets L. The following are equiv-
alent:

(i) The nets N1, N2 are PomL-bisimilar in NL.

(ii) The reachable case graphs na0(N1), na0(N2) are PomL-bisimilar in A0
L.

(iii) The case graphs na(N1), na(N2) are PomL-bisimilar in AL.

(iv) The unfoldings to event structures ne(N1), ne(N2) are strong history-preserving
bisimilar.

Proof: The equivalence between (i) and (ii) follows by Corollary 15 applied to
the coreflection A0

L → NL. Because of the coreflection E0
L → A0

L, Corollary 15
yields the equivalence of (ii) with:

(iv)′ The unfoldings to event structures ne(N1), ne(N2) are PomL-bisimilar in
E0
L.

As we have seen (Corollary 19), we have that (iv)′ is equivalent to (iv). Finally,
(ii) and (iii) are equivalent by Proposition 13 because A0

L is a full subcategory of
AL. 2
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So, for general reasons, the notion of bisimilarity for nets agrees with the
notion of bisimilarity for the associated case graphs and unfoldings (where it
amounts to strong history-preserving bisimilarity). Results expressing agree-
ments of this kind would probably be required of any notion of bisimilarity,
and, without the help of some categorical machinery, would seem to require sep-
arate proofs. Of course, now we have characterised PomL-bisimilarity on nets as
strong history-preserving bisimilarity of their unfoldings to event structures, we
may produce a characterisation in terms of nets and their “processes” along the
lines of [24].

Many attempts have been made to define bisimilarity for noninterleaving mod-
els like Petri nets. The idea of parameterizing such definitions on a notion of
observation is not new, see e.g. [3]. However, there are major differences with
previous approaches. To point out one, we briefly address the question of ro-
bustness of our notion of bisimilarity. Of course, the results Corollary 19 and
Theorem 20 show that the notion is robust across a range of models. But an-
other issue is the sensitivity of our notion of PomL-bisimilarity for nets to the
particular choice of path category PomL. The notion of PomL-bisimilarity might
seem questionable to those who view general pomsets as not observable.

However, let us define a pomset to be an almost totally ordered multiset iff it
is of one of the two simple forms considered in the proof of Proposition 16, i.e.
allowing at most two (maximal) elements to be unordered. Note that in the range
of subclasses of pomsets considered in the literature, [19], this class is as close to
BranL as one can get! Let us denote the full subcategory of PomL consisting of
object of this simple form by AtomL.

Corollary 21

(i) A morphism in NL is PomL-open iff it is AtomL-open.

(ii) Two nets are PomL-bisimilar iff they are AtomL-bisimilar.

Proof: Clearly (ii) follows from (i), so we concentrate on a proof of (i).
The “only if” part of (i) follows immediately from definition of open maps.

By inspecting the proof of Proposition 16, we observe that a morphism in AL

is PomL-open if it is AtomL-open. By Proposition 13, a similar statement also
holds of the category A0

L. Finally, a similar statement (the if part of (i)) holds
also in NL by Lemma 14. 2

Remark Similar results hold for the alternative category of Petri nets men-
tioned in Section 1.2. In particular because there is also a coreflection between
event structures and that category, PomL-bisimiliarity of nets in that framework
will also amount to strong history-preserving bisimilarity of their event-structure
unfoldings—another example of the robustness of the definitions.
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3 Concluding remarks

We have illustrated how to introduce bisimilarity for Petri nets following a general
pattern, a pattern which automatically guarantees consistency with bisimilarity
on a number of related models. This sets the scene, but many questions are left
open, including a theory of our bisimulation for nets parallelling the well estab-
lished theory of bisimulation for transition systems. Some initial ideas may be
found in the game theoretic and logical characterizations for PomL-bisimilation
for transition systems with independence given in [15], which may be transferred
immediately to nets, following the results of this paper. A particular unresolved
issue is that of the decidability of our PomL-bisimilarity on finite nets and asyn-
chronous transition systems.
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