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Non-primitive Recursive Function Definitions

Sten Agerholm

University of Cambridge Computer Laboratory
New Museums Site, Pembroke Street

Cambridge CB2 3QG, UK

Abstract. This paper presents an approach to the problem of introduc-
ing non-primitive recursive function definitions in higher order logic. A
recursive specification is translated into a domain theory version, where
the recursive calls are treated as potentially non-terminating. Once we
have proved termination, the original specification can be derived easily.
A collection of algorithms are presented which hide the domain theo-
ry from a user. Hence, the derivation of a domain theory specification
has been automated completely, and for well-founded recursive function
specifications the process of deriving the original specification from the
domain theory one has been automated as well, though a user must
supply a well-founded relation and prove certain termination properties
of the specification. There are constructions for building well-founded
relations easily.

1 Introduction

In order to introduce a recursive function in the HOL system, we are required
to prove its existence as a total function in higher order logic (see [9], page 263).
While this has been automated for certain primitive recursive functions in the
type definition package [10], the HOL system does not support the definition of
recursive functions which are not also primitive recursive.

This paper presents an approach to this problem via a simple formalization
of basic concepts of domain theory in higher order logic. The overall idea is to
take a recursive specification, stated in higher order logic and provided by a user,
and translate it automatically into a domain theory version where the recursive
function is defined by the fixed point operator. This recursive specification differs
from the original one since it contains constructs of domain theory to handle
the potentially non-terminating recursive calls. This kind of undefinedness is
represented by adding a new undefined value to types, a standard construction
of domain theory (called lifting).

The original function specification can be derived by eliminating undefined-
ness, i.e. by proving all recursive calls terminate. One approach is to prove that
the argument in each recursive call decreases with respect to some well-founded
relation. A binary relation is well-founded if it does not allow any infinite de-
creasing sequences of values. Hence, by well-founded induction, the recursive
calls will terminate eventually, and the specified function is total.



The definition of well-founded recursive functions has been automated such
that the details of domain theory and the well-founded induction never appear to
the user; she just supplies a recursive specification, a well-founded relation, and
a theorem list of termination properties of the specification. In addition, most
well-founded relations that occur in practice can be proved very easily using a
number of pre-proven constructions.

Our approach is rather pragmatic. While we on one hand want to be able to
treat as many recursive specifications as possible, we also want the formalization
of domain theory and the automated algorithms to be as simple and efficient as
possible. We have therefore identified a number of restrictions of syntactic form
which both simplify the formalization and the algorithms. The formalization is
designed to allow very smooth and easy transitions between higher order logic
and domain theory such that fairly simple tool support can make the domain
theory essentially invisible. A similar methodology of having domain theory be-
hind the scenes may be useful for other purposes.

The rest of the paper is organized as follows. The formalization of domain
theory is introduced in Section 2. Automation for recursive function definitions
in domain theory is presented in Section 3. Section 4 shows how well-founded
recursive functions can be obtained from their domain theory versions. Section 6
treats a well-known example and finally, Section 7 contains the conclusions and
related work.

Note This paper is a condensed version of [5], which contains more examples
and a full list of theorems and tools provided by an implementation in HOL88.

2 Domain Theory

The basic concepts of domain theory (see e.g. [13]) can be formalized in higher
order logic as follows. A partial order is a binary relation R : α → α → bool
which is reflexive, transitive and antisymmetric:

po R
def=

(∀x. R x x) ∧
(∀xyz. R x y ∧R y z ⇒ R x z) ∧ (∀xy. R x y ∧R y x⇒ (x = y)) .

A complete partial order is a partial order that contains the least upper bounds
of all non-decreasing chains of values:

cpo R
def= po R ∧ (∀X. chain R X ⇒ (∃x. islub R X x)) ,

where

isub R X x
def= (∀n. R(X n)x)

islub R X x
def= isub R X x ∧ (∀y. isub R X y ⇒ R x y)

chain R X
def= (∀n. R(X n)(X(SUC n))) .
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Note that we do not require that cpos have a least value, but the concrete cpos
we use later always have one.

Also essential to domain theory is the notion of continuous function, which
is a monotonic function that preserves least upper bounds of chains:

cont f(R,R′) def=
(∀xy. R x y ⇒ R′(f x)(f y)) ∧
(∀X. chain R X ⇒ (f(lub R X) = lub R′(λn. f(X n)))) ,

where lub is defined using the choice operator:

lub R X
def= (εx. islub R X x) .

Compared to the more powerful formalization presented in [3], a main sim-
plification above is the formalization of partial orders as just relations instead
of pairs of sets and relations. This simplification is possible since we restrict
ourselves to consider only one special case of the cpo construction on continuous
functions, also called the continuous function space. This is important since the
general version of this construction would force us to consider subsets of HOL
types; not all HOL functions are continuous on arbitrary cpos. As it appeared
in [3], this in turn induces the need for partially specified functions, which are
specified on such subsets only. In turn, a new λ-abstraction must be defined
to make these partially specified functions determined by their action on the
subsets, by ensuring that they yield a fixed arbitrary value outside the subsets.
Otherwise, it is not possible to show that continuous functions constitute a cpo
with the pointwise ordering.

We are able to manage the entire development with just two different cpo
relations, called lrel and frel, which both have simple definitions:

lrel x y
def= (x = bot) ∨ (x = y)

frel f g
def= (∀a. lrel(f a)(g a)) .

Here bot is a constructor of a new datatype of syntax, written (α)lift, which
may be specified as follows:

v : (α)lift ::= bot | lift (a : α) .

Note that ‘lift’ is the name of both the type being specified and of one of the two
constructors, though we use different fonts. The relation lrel ensures that bot is
a bottom element, i.e. a least value which can be used to represent undefinedness
in partial functions, and behaves as the discrete ordering on lifted values. The
relation frel is the pointwise ordering on functions and works on functions with
a lifted range type (and an unlifted domain type). It defines a cpo whose bottom
element is the everywhere undefined function, i.e. the constant function that
sends all values to bot.

Recursive functions can be defined as fixed points of continuous functionals.
In the present approach, we restrict ourselves to consider only functions that can
be defined as fixed points of continuous functionals on frel, which is the only
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instance of the continuous function space that we shall use here. Therefore, the
fixed point operator is defined in the following special case

fix f
def= lub frel(λn. power n f) ,

which is not parameterized over a cpo as it generally would be. The variable f
has type (α→ (β)lift)→ (α→ (β)lift) and power is defined by

power 0 f def= (λx. bot)
power(SUC n)f def= f(power n f) .

The fixed point theorem is also stated in a special case:

` ∀f. cont f(frel, frel)⇒ (fix f = f(fix f)) .

This theorem is essential to the automation in Section 3 where it allows a recur-
sive specification to be derived from the fixed point definition of a function.

Note that a recursive function defined as a fixed point has a type of the form
α → (β)lift, where the range type is lifted. This means that recursive calls in
its specification cannot be used directly with other HOL terms, which would
expect an unlifted term of type β. In order to solve this problem, we introduce
a construction ext, called function extension, which can be used to extend HOL
functions in a strict way:

ext f bot
def= bot

ext f(lift x) def= f x .

For instance, the term ext(λx. x+ 5) extends addition to a strict function in its
first argument. In the automation presented next, we shall use function extension
to isolate recursive calls from pure HOL terms.

3 Automation for Fixed Point Definitions

The purpose of the above formalization is to serve as a basis for defining recursive
functions in higher order logic. Given a recursive specification g x = rhs[g, x],
where g has a type of the form α1 × . . . × αn → β and therefore is a paired
(uncurried) function, we translate the rhs (right-hand side) into a domain theory
functional G, which has type (α1×. . .×αn → (β)lift)→ (α1×. . .×αn→ (β)lift)
and is a function on a variant of g with a lifted range type and on x. More
precisely, G stands for λg′x. rhs ′[g′, x], where g′ has type α1× . . .×αn → (β)lift
and rhs ′ stands for a (lifted) domain theory version of rhs. It is constructed by
introducing function extension to separate recursive calls (of lifted type) from
real HOL terms (of unlifted type). Once we have proved that G is continuous, we
can then use the fixed point theorem to obtain ` fix G = G(fix G). From this,
a domain theory version of the recursive specification is obtained immediately:

` fix G x = rhs ′[fix G , x] .
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A domain theory version of g can be defined as fix G , but we usually do not
do that.

This section describes how we can automate these steps for a large and widely
used class of recursive specifications that are written as a list of conditionals:

f x = (b1[f, x]→ h1[f, x] | . . . | bn[f, x]→ hn[f, x] | hn+1[f, x]) .

The use of let-terms nested with the conditionals is also supported, for instance:

f x =
(b1[f, x]→ h1[f, x] |
let y = g[f, x] in b2[f, x, y]→ h2[f, x, y] | h3[f, x, y]) .

The choice of this kind of a “backbone” of conditionals (possibly mixed with
let-terms) is a pragmatic one and not necessary from the viewpoint of domain
theory or the automation of this section (though it is exploited). Most recursive
programs can be conveniently written using conditional control. In the next sec-
tion, the conditions are also used as “context” information to prove termination
of recursive calls.

Not all HOL terms of the above form are allowed. We also require:

– Recursive occurrences of g in rhs must be recursive calls, i.e. g must always
be applied to an argument.

– No recursive call is allowed to appear in the body of a λ-abstraction (unless
it is part of a let-term1).

Both restrictions are introduced to avoid the need for more complex cpos of
continuous functions than those supported by frel, and to allow recursive oc-
currences of a function to be separated from real HOL terms easily. Due to
the restrictions, we avoid function types with a lifted range type in unexpected
places (allowed in arguments of ext only). A functional which take a function
of this type as an argument is not necessarily continuous.

In the rest of this section we first describes an algorithm for generating the
domain theory functional and then an algorithm for proving continuity of the
functional; this property is necessary to exploit the fixed point theorem.

3.1 Generating the Functional

As explained above the goal is to generate a domain theory version of the right-
hand side rhs[g, x]. This is done by two recursive algorithms, one for the back-
bone conditionals and one for branches and conditions. We imagine the backbone
algorithm is called first with the right-hand side of a specification.

In the description below, we use primes to indicate that a term has been
transformed, and therefore has a lifted type. In particular, the function variable
g : α1×. . .×αn → β is replaced by the primed variable g′ : α1×. . .×αn → (β)lift
with a lifted range type. Once rhs has been transformed to rhs ′ the desired
functional called G is obtained by abstracting over g′ and x.
1 Recall that the let-term let a = t in t′[a] parses to the internal syntax LET(λa. t′[a])t.
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In order to be able to follow the descriptions below more easily, the reader
may wish to try them on the following specification of the Ackermann function
(see also Section 6):

ACK (m, n) =
((m = 0)→ SUC n |
(n = 0)→ ACK (PRE m, 1) | ACK (PRE m,ACK (m, PRE n))) ,

which yields the following translated term:

((m = 0)→ lift(SUC n) |
(n = 0)→ ACK ′(PRE m, 1) |
ext(λa. ACK ′(PRE m, a))(ACK ′(m, PRE n))) .

Algorithm for Backbone The input is either a conditional, a let-term, or the
last branch of the backbone conditional:

Conditional: The input term has the form (b→ t1 | t2). The branch t2, which
may be a new condition or let-term in the backbone, is transformed recursive-
ly, and t1 is transformed using the branch and condition algorithm described
below. If the condition does not contain g then the result is (b → t′1 | t′2).
Otherwise, b is transformed using the branch and condition algorithm and
the result is ext(λa. (a → t′1 | t′2))b′, where the condition b has been sepa-
rated from the conditional using function extension.

Let-term: The input has the form let a = t1 in t2, which may use a list of
bindings separated by and’s. Transform t2 recursively and use the branch
algorithm on t1. The result has the form ext(λa. t′2)t′1. Lists of bindings are
transformed into nested uses of function extension.

Otherwise: The term is considered to be the last branch of the backbone and
therefore transformed using the branch algorithm.

Algorithm for Branches and Conditions The input has no particular form.
The purpose of the algorithm is to lift terms that do not contain recursive calls
and to isolate recursive calls using function extension in the terms that do.

No recursive call: If the variable g does not appear in a free position in the
input term t, then return lift t.

Recursive call: Assume the input term is a recursive call g(t1, . . . , tn). Each
ti that contains g must be transformed recursively. Separate these from the
argument pair of g using function extension and replace g with g′ : α1 ×
. . .× αn → (β)lift . Assuming for illustration that g takes four arguments of
which the first and the third ones contain g, then the result has the form

ext(λa1. ext(λa3. g
′(a1, t2, a3, t4))t′3)t′1 .

Let-term: The input has the form let a = t1 in t2, which may use a list of
bindings separated by and’s. Transform t1 and t2 recursively. The result has
the form ext(λa. t′2)t′1. Lists of bindings are transformed into nested uses of
function extension.

6



Combination: The term has the form t t1 . . . tn, where t is not a combina-
tion (or an abstraction containing g). Each argument of t that contains g is
transformed recursively and these arguments are separated from the com-
bination using nested function extensions. The combination in the body of
the function extensions is lifted. Assuming for illustration that the input is
t t1 t2 t3 t4, and that t1 and t3 contain g, then the result has the form

ext(λa1. ext(λa3. lift(t a1 t2 a3 t4))t′3)t′1 .

For a simple example consider 5 +g(2, 3) which is transformed into the term
ext(λa. lift(5 + a))(g′(2, 3)).

3.2 The Continuity Prover

The most complicated part of the automation is perhaps the continuity prover.
Given the functional G constructed above, it must prove the continuity state-
ment: cont G(frel, frel).

Recall that G is the abstraction λg′x. rhs ′[g′, x]. We first prove

` ∀x. cont(λg′. rhs ′[g′, x])(frel, lrel)

and then establish the desired result using the continuity-abstraction theorem,
which is stated as follows:

` ∀h. (∀x. cont(λf. h f x)(frel, lrel))⇒ cont(λfx. h f x)(frel, frel) .

To prove the first theorem, we let the conditional and ext term structure of
rhs ′ guide our action in a recursive traversal. At each stage of the recursion, we
have one of the following four cases (selected top-down):

No function call: The term does not contain any free occurrences of g′. The
desired continuity theorem (up to α-conversion) is obtained by instantiating

` ∀t. cont(λf. t)(frel, lrel) .

Function call: The term is a function application g′(t1, . . . , tn). Instantiate the
following theorem with (t1, . . . , tn) and do an α-conversion:

` ∀t. cont(λf. f t)(frel, lrel) .

Conditional: The term is a conditional (b → t1 | t2). Traverse the branches
recursively, yielding

` cont(λg′. t1)(frel, lrel)
` cont(λg′. t2)(frel, lrel) .

Note that the boolean guard b cannot depend on g′ since such dependency
would have been removed when the functional was generated. The desired
result is obtained essentially by instantiating the following theorem (and
using modus ponens):

` ∀f1f2.
cont f1(frel, lrel)⇒ cont f2(frel, lrel)⇒
(∀b. cont(λf. (b→ f1 f | f2 f))(frel, lrel)) .

7



Function extension: The term is an ext term of the form ext(λa. t1)t2. The
terms t1 and t2 are traversed recursively, yielding

` cont(λg′. t1)(frel, lrel)
` cont(λg′. t2)(frel, lrel) .

Next, generalizing over a, the first of these and the continuity-abstraction
theorem can be used to deduce ` cont(λg′a. t1)(frel, frel). The desired
result is obtained essentially by instantiating the following theorem:

` ∀f1f2.
cont f1(frel, frel)⇒ cont f2(frel, lrel)⇒
cont(λf. ext(f1 f)(f2 f))(frel, lrel) .

This completes the description of the continuity prover.

4 Automation for Well-founded Recursive Definitions

In the previous section, it was shown how we can translate a recursive specifi-
cation in higher order logic to a version where domain theory constructs appear
to separate the potentially non-terminating recursive calls from real HOL terms.
We must prove recursive calls terminate to eliminate the domain theory. Both
systematic and ad hoc approaches to such termination proofs can be employed.
This section shows how to automate one of the more powerful systematic ones,
which is based on well-founded induction.

A large class of total recursive functions have well-founded recursive spec-
ifications. This means that the argument in each recursive call decreases with
respect to some well-founded relation. A relation is well-founded if it does not
allow any infinite decreasing sequences of values. Hence, by well-founded induc-
tion, recursive calls will terminate eventually, and the specified function is total.

A user must supply a well-founded relation and prove the proof obligations
for termination, which are the statements saying that arguments in recursive
calls decrease. The well-founded induction and the derivation of the original
specification from the domain theory one can be automated as described in this
section. Well-founded relations are introduced thoroughly in Section 5 below.
In particular, a number of constructions are presented to make the proofs of
well-foundedness essentially trivial for most relations that appear in practice.

4.1 Deriving the Specification

Recall that we derived the domain theory specification

` fix G x = rhs ′[fix G , x]

in the previous section, where G is a meta-variable which stands for the function-
al λg′x. rhs ′[g′, x] and where rhs ′ is a domain theory version of the right-hand
side of the original higher order logic specification g x = rhs[g, x].
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In order to derive the original specification, we first prove

` ∃g. ∀x. lift(g x) = fix G x

by well-founded induction; this proof is described in Section 4.3. Constant spec-
ification then yields a constant g that satisfies ` ∀x. lift(g x) = fix G x.
Rewriting the right-hand side with the domain theory specification above, we
obtain ` ∀x. lift(g x) = rhs ′[fix G , x]. We then prove ` rhs ′[fix G , x] =
lift(rhs[g, x]), by straight-forward case analyzes on the conditional backbone
of rhs, and by exploiting the definition of g. Finally, using that the constructor
lift is one-one, we arrive at the original and desired specification:

` ∀x. g x = rhs[g, x] .

4.2 Generating Proof Obligations for Termination

It is easy to generate the proof obligations for termination by traversing the
conditional structure of the specification. If a recursive call g y appears in the
i’th branch and the conditions are labeled p1, . . . , pi, then the proof obligation
computed for that recursive call is ¬p1 ∧ . . . ∧ ¬pi−1 ∧ pi ⇒ R y x. The first
and last branches are obvious special cases. Nested recursive calls are treated by
replacing each nested call by a new variable2.

4.3 The Well-founded Induction

We wish to prove the statement ∃g. ∀x. lift(g x) = fix G x by well-founded
induction. A user supplies a theorem stating some relation, gR say, is well-
founded and a theorem list of termination properties of the original specification.

The principle of well-founded induction is stated as follows (see Section 5):

` ∀R. wf R = (∀P. (∀x. (∀y. R y x⇒ P y) ⇒ P x)⇒ (∀x. P x)) .

Since our induction proofs always have the same structure, it is advantageous to
derive the desired instance of this theorem once and for all:

` ∀R.
wf R⇒
(∀f.
cont f(frel, frel)⇒
(∀x.

(∀x′. R x′ x⇒ (∃y. fix f x′ = lift y))⇒
(∃y. f(fix f)x = lift y)) ⇒

(∃g. ∀x. lift(g x) = fix f x)) .

This is obtained by a few trivial manipulations. The induction predicate of the
previous theorem is instantiated with λx. ∃y. fix f x = lift y. Then the
2 It may be necessary to restrict the range of the variable in order to prove the proof

obligation. This can be done by introducing a condition in the backbone to express
some property of the nested recursive call, and hence the variable (see [5]).
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consequent of the theorem is skolemized, which means that the existential ∃y
is moved outside the ∀x where it becomes ∃g; note that y is a value while
g is a function. Symmetry of equality is also used on the consequent. Then the
continuity assumption is used to obtain the term ∃y. f(fix f)x = lift y instead
of ∃y. fix f x = lift y in the induction proof (i.e. the third antecedent); the
fixed point theorem justifies this.

Returning to the (high-level) example specification of g, the first two as-
sumptions of the previous theorem are discharged by the user-supplied theorem
` wf gR and the continuity prover (see Section 3.2), respectively. The last as-
sumption yields the induction proof:

∀x.
(∀x′. gR x′ x⇒ (∃y. fix G x′ = lift y)) ⇒
(∃y. G(fix G)x = lift y) .

The proof of this is guided by the syntactic structure of the term G(fix G)x,
which by β-conversion is equal to rhs ′[fix G , x]. A case analysis is done for each
condition of the conditional backbone. For each recursive call, there must be a
termination theorem in the user-supplied theorem list. This allows us to use the
induction hypothesis, i.e. the antecedent above. Hence, from the hypothesis and
some proof obligation we derive that each recursive call terminates, which is the
same as saying that it is equal to some lifted value. In this way, we become able
to reduce away all occurrences of ext, due to the way it behaves on lifted values,
and arrive at statements of the form ∃y. lift t = lift y, which hold trivially.

5 Well-founded Relations

A binary relation is defined to be well-founded on some type if all non-empty
subsets of the type have a minimal element with respect to the relation:

wf R
def= (∀A. A 6= (λx. F)⇒ (∃x. A x ∧ ¬(∃y. A y ∧R y x))) .

The HOL theory of well-founded relations presented here was obtained by devel-
oping a special case of the theory presented in [1], which was based on a chapter
of the book by Dijkstra and Scholten [8].

In general, it can be non-trivial to prove a given relation is well-founded. It
is therefore useful to have standard ways of combining well-founded relations to
build new ones easily. The theory provides the following standard constructions
on well-founded relations:

Less-than on numbers: ML name wf_less:

` wf $< .

Product: ML name wf_prod:

` ∀R. wf R⇒ (∀R′. wf R′ ⇒ wf(prod(R,R′))) .

Defined by

prod(R,R′)b c def= R(FST b)(FST c) ∧R′(SND b)(SND c) .
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Lexicographic combination: ML name wf_lex:

` ∀R. wf R⇒ (∀R′. wf R′ ⇒ wf(lex(R,R′))) .

Defined by

lex(R,R′)b c def=
R(FST b)(FST c) ∨ (FST b = FST c) ∧R′(SND b)(SND c) .

Inverse image: ML name wf_inv_gen:

` ∀R. wf R⇒ (∀R′f. (∀xy. R′ x y ⇒ R(f x)(f y)) ⇒ wf R′) .

A useful special case of the construction is (ML name wf_inv):

` ∀R. wf R⇒ (∀f. wf(inv(R, f))) .

Defined by

inv(R, f)x y def= R(f x)(f y) .

Most well-founded relations that appear in practice can be obtained easily by
instantiating these constructions.

When these built-in constructions do not suffice, a relation can be proved to
be well-founded immediately from the definition of wf, or, which is often more
convenient, either from the theorem

` ∀R. wf R = ¬(∃X. ∀n. R(X(SUC n))(X n)) ,

which states that a relation is well-founded if and only if there are no infinite
decreasing sequences of values, or from the principle of well-founded induction:

` ∀R. wf R = (∀P. (∀x. (∀y. R y x⇒ P y) ⇒ P x)⇒ (∀x. P x)) ,

which states that a relation is well-founded if and only if it admits mathematical
induction. Note that this theorem can be used both to prove a relation is well-
founded by proving it admits induction and to perform an induction with a
relation which is known to be well-founded.

6 Example

The theories and algorithms presented above have been implemented in HOL88.
In this section, we illustrate the use of the implemented tools on a famous ex-
ample of a well-founded recursive function: the (binary) Ackermann function.
The theorems and tools of the implementation are described in greater detail in
[5]. In particular, this section only illustrates the automation for well-founded
recursive function definitions. It does not mention the support for generating
the intermediate domain theory specification from which one may then proceed
towards the original specification by any method of proof at hand.
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Often the Ackermann function is specified by a collection of recursion equa-
tions like

A(0, y) = y + 1
A(x + 1, 0) = A(x, 1)

A(x+ 1, y+ 1) = A(x, A(x+ 1, y)) ,

which are equivalent to the following conditional style of specification in HOL:

"ACK(m,n) =
((m = 0) => SUC n |
(n = 0) => ACK(PRE m,1) | ACK(PRE m,ACK(m,PRE n)))" .

In this term, called ack tm below, ACK is a variable; but we wish to obtain a
constant ACK that satisfies the recursive specification. Note that the Ackermann
function is not primitive recursive since it cannot be defined using the syntax of
primitive recursive specifications.

In addition to the recursive specification, we must supply a well-founded
relation and a list of termination properties of the specification. An ML function
calculates the proof obligations for termination:

#calc_prf_obl ack_tm;;
["~(m = 0) /\ (n = 0) ==> R(PRE m,1)(m,n)";
"~(m = 0) /\ ~(n = 0) ==> R(PRE m,k0)(m,n)";
"~(m = 0) /\ ~(n = 0) ==> R(m,PRE n)(m,n)"]
: term list

These are constructed by looking at the arguments of each recursive call as
described in Section 4.2. The variable k0 is introduced due to the nested recursive
call in the last branch. Note that the ML function does not guess a well-founded
relation but uses instead a variable R. We must find a proper instantiation for R
and prove each resulting term is a theorem. It is easy to see that a suitable well-
founded relation in this example is a lexicographic combination of the less-than
ordering on natural numbers with itself. Proving that this relation is well-founded
is trivial since lexicographic combination and the less-than ordering are standard
constructions on well-founded relations (see Section 5):

#let wf_ack = MATCH_MP (MATCH_MP wf_lex wf_less) wf_less;;
wf_ack = |- wf(lex($<,$<))

Hence, we substitute lex($<,$<) for the variable R in the proof obligations above
(there is a separate tool for this). We shall omit the proofs here but assume the
proven termination properties have been saved in the ML variable obl_thl.

The Ackermann function can now be defined automatically using a derived
definition tool called new_wfrec_definition. This introduces a new constant
ACK and proves that it satisfies the recursive specification presented above:
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#let ACK_DEF = new_wfrec_definition ‘ACK_DEF‘ wf_ack obl_thl ack_tm;;
ACK_DEF =
|- !m n.

ACK(m,n) =
((m = 0) => SUC n |
(n = 0) => ACK(PRE m,1) | ACK(PRE m,ACK(m,PRE n)))

7 Conclusions and Related Work

This work was motivated by previous work on formalizing domain theory in
HOL [3]. The Ackermann example was also considered there, though it was only
treated manually and in a much more complicated domain theoretic framework
than here. Since the present approach exploits domain theory in a very precise
and concrete way, we have been able to instantiate the theory considerably. By
tying domain theory up closely with higher order logic, we become able to restrict
our use to involve only two different cpos and one kind of continuous functional
for recursive definitions via the fixed point operator. We also avoid the need
for a dependent λ-abstraction for writing functions, which was a main reason
for complication in [3]. These simplifications and the design and engineering of
proper tools were the main challenges of this work.

A goal was to make domain theory as invisible as possible. Indeed, in defining
well-founded recursive functions the user never sees any domain theory, and in
other cases the domain theory constructs are introduced automatically and have
a very simple form. Their purpose is to separate the potentially non-terminating
recursive calls from real HOL terms, which do not support a notion of unde-
finedness directly.

There might be recursive definitions that cannot be introduced by the present
approach. A main restriction might be that a recursive call is not allowed to
appear in the body of a λ-abstraction (unless it is part of a let-expression).
The problem occurs when the recursive call uses the variable of the abstraction,
in other cases the call can be moved outside the body. It might be possible
to implement support for abstractions, but this would probably complicate the
domain theory and the associated algorithms considerably. Another potential
restriction is that all recursive occurrences of a function in the right-hand side of
a specification must be applied to arguments, i.e. we do not support unapplied
occurrences of functions. Finally, functions must be specified using conditionals,
possibly nested with let-expressions. This conditional style is fairly powerful but
we have no evidence that it will work for all applications in practice.

Konrad Slind has developed a similar package for well-founded recursive func-
tion definitions (in HOL90), but this does not support other recursive functions.
Its implementation is based on the well-founded recursion theorem, which gives
a more direct and efficient implementation, since all domain theory is avoided.
Further, the well-founded induction is performed once and for all in the proof of
the well-founded recursion theorem, whereas in the present approach an induc-
tion is performed for each definition. However, the advantage of domain theory
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is that it allows a version of a recursive function to be defined directly without
proving whether it is total or not. Sometimes, recursive functions are undefined
for some arguments due to non-terminating recursive calls, or the proof of ter-
mination may depend on correctness properties of the function; in both cases it
is advantageous that we can define a version of the function and reason about
this before deriving the desired function.

Mark van der Voort describes another approach to introducing well-founded
recursive function definitions in [12], inspired by the one employed in the Boyer-
Moore prover [6]. Like Slind, he also avoids domain theory and does not treat
more general recursive functions. Though he supports well-founded recursive
functions, he supplies a natural number measure with each definition instead of
a well-founded relation (following Boyer-Moore). A recursive call must reduce
this measure with respect to the less-than ordering. It seems more direct to use
well-founded relations rather than a measure which destroys the structure of
data. Further, a consequence is that an induction principle must be derived with
each recursive definition.

Tom Melham’s package for inductive relation definitions [11, 7] could be
used to define many recursive functions as well. This would require a recursive
specification to be translated into a set of inference rules that gives an inductive
definition of a relation representation of the function. The recursive function
could then be extracted from the inductively defined relation by a uniqueness
proof, showing that the relation specifies a (potentially partial) function, and
a definedness proof, showing that the relation specifies a total function. It is
difficult to say whether or not such an approach would be simpler than the
present one.
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