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Abstract

We study equational axiomatizations of bisimulation equivalence for the language
obtained by extending Milner’s basic CCS with string iteration. String iteration is a
variation on the original binary version of the Kleene star operation p∗q obtained by
restricting the first argument to be a non-empty sequence of atomic actions. We show
that, for every positive integer k, bisimulation equivalence over the set of processes
in this language with loops of length at most k is finitely axiomatizable. We also
offer a countably infinite equational theory that completely axiomatizes bisimulation
equivalence over the whole language. We prove that this result cannot be improved
upon by showing that no finite equational axiomatization of bisimulation equivalence
over basic CCS with string iteration can exist, unless the set of actions is empty.

AMS Subject Classification (1991): 68Q40, 68Q42.
CR Subject Classification (1991): D.3.1, F.3.2, F.4.2.
Keywords and Phrases: Minimal Process Algebra, Kleene star, string iteration,
equational logic, bisimulation equivalence.

1 Introduction

Process theory aims at providing a framework for the description and analysis of reactive
systems, i.e., systems that compute by reacting to stimuli from their environment. As such
systems tend to be, because of their own nature, non-terminating, all process algebraic
∗On leave from the School of Cognitive and Computing Sciences, University of Sussex. Partially

supported by the HCM project EXPRESS.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.
‡This research has been partly carried out during a visit to Aalborg University.
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specification formalisms (cf., e.g., [2, 20, 27, 4]) include facilities for the specification and
analysis of infinite behaviours. The description of such behaviours has been traditionally
achieved in process theory by means of systems of recursion equations. For example, the
recursion equation

X
def= send · receive ·X(1)

describes a system that is willing to perform alternatively the acts of sending and receiving
ad infinitum. In order to extend axiomatic verification methods to reason about processes
specified by means of recursion equations, several inference rules for proving equalities
involving infinite processes have been studied in the literature. (Cf., e.g., rules like unique
fixed-point induction in its various flavours [27, 4], the approximation induction principle
[7] and ω-induction [19].)

The research literature on process theory has recently witnessed a resurgence of in-
terest in the study of Kleene star-like operations as an alternative, purely algebraic, way
of introducing infinite behaviours in process algebras. (Cf., e.g., the papers [14, 5, 6, 12,
10, 31, 9]). Some of these studies, notably [6], have investigated the expressive power
of variations on standard process description languages in which infinite behaviours are
defined by means of Kleene’s star operation [22, 8] rather than by means of systems of
recursion equations. For example, using the original, binary version of the Kleene star
operation from [22] studied in [6], the system described by the recursion equation (1)
can alternatively be denoted by the term (send · receive)∗δ, and, as shown in [6], any
regular process can be specified in the axiom system ACPτ with Kleene star using only
handshake communication. (Interestingly, as already noted by Milner in [26, Sect. 6], not
every process defined using finite-state systems of recursion equations can be described,
up to bisimulation equivalence, using only regular expressions.)

The possibility of describing infinite behaviours in a purely algebraic syntax has
spurred a flurry of research into the expressive power of equational logic to (finitely)
axiomatize behavioural equivalences over simple languages incorporating variations on
the Kleene star operation. Because of its central nature in process theory, bisimulation
equivalence [29, 27] and variations on its theme have been prime candidates for this type
of investigation. (Examples of contributions along this line of research may be found
in, e.g., [14, 31, 12, 1, 13, 15].) A notable positive result in this direction was obtained
by Fokkink and Zantema, who showed in [14] that the finite equational theory for the
language of basic process algebra with iteration BPA∗ proposed in [6] is indeed complete
for bisimulation equivalence over that language. This remarkable result is in sharp con-
trast with a negative one later obtained by Sewell in [31]. Sewell shows that bisimulation
equivalence cannot be finitely axiomatized over the language BPA∗δ obtained by adding
the stopped process δ to the signature of BPA∗.

The catastrophic effect, for what concerns finite axiomatizability of bisimulation
equivalence, of the addition of the, apparently innocuous, stopped process δ to BPA∗

may be slightly disconcerting. Terms in the language BPA∗ can denote process graphs
with arbitrarily long loops, i.e., sequences of transitions leading back to the state they
started from. However, any BPA∗ term is normed in the sense of [3], i.e., any term is
capable of terminating by performing a finite sequence of transitions. This implies that
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perpetual behaviours like, for instance, that specified by the recursion equation (1) can-
not be denoted by any BPA∗ term. It is the normedness of terms that is lost when δ is
added to BPA∗.

In an attempt to reconcile finite axiomatizability of bisimulation with the presence
of perpetual processes, Fokkink showed in [12] that bisimulation equivalence is finitely
axiomatizable over a language obtained by adding prefix iteration to Milner’s basic CCS.
The language considered by Fokkink in the aforementioned reference allows for the spec-
ification of perpetual behaviours, but such behaviours must have loops of length exactly
one.

It is our thesis that the cause of the impossibility of finitely axiomatizing bisimulation
equivalence over BPA∗δ is the combination of the loss of normedness and of the existence of
unboundedly long loops in behaviours. Intuitively, unlike the case of normed processes,
two perpetual behaviours can be bisimilar even if the lengths of their loops are very
different. For example, the equality

(an)∗δ = a∗δ(2)

holds for every positive integer n with respect to any equivalence in the linear time-
branching time spectrum [16]. However, as it will be made clear by the proof of Thm. 35,
any finite equational theory can only change the length of finitely many loops in terms,
and thus cannot prove every equivalence of the form (2).

To provide a formal justification for our thesis, we have chosen to study the expressive
power of equational logic in characterizing bisimulation equivalence over the simplest
extension of Milner’s basic CCS in which it is possible to express perpetual processes
with unboundedly long loops. More precisely, we consider the subset of CCS consisting of
the basic operations to denote finite synchronization trees, extended with string iteration
w∗P . Intuitively, for a non-empty string of actions w, the term w∗P denotes a process
that can execute the string of actions w repeatedly, and that, after each cycle along the
w-loop, can decide to behave like P , if P can exhibit any transition at all. We denote
the resulting language by MPAs∗(A). An example of a perpetual MPAs∗(A) term is the
term (send · receive)∗δ.

Our first main result of the paper is that bisimulation equivalence can be equationally
axiomatized over the language MPAs∗(A) (cf. Thm. 29). We also prove that, for every
positive integer k, bisimulation equivalence over the set of MPAs∗(A) terms with loops
of length at most k has a finite equational axiomatization. Thus it is indeed the case
that, at least over MPAs∗(A), bisimulation equivalence between perpetual processes with
bounded loops can be finitely axiomatized. On the other hand, if the length of loops in
process behaviours is not bounded from above, the equational theory that characterizes
bisimulation equivalence over the whole of the language MPAs∗(A) is countably infinite.
We show that this result cannot be improved upon by proving that no finite equational
axiomatization of bisimulation equivalence over the language MPAs∗(A) can exist, unless
the set of actions A is empty. (Cf. Thm. 35.) These positive and negative results are
then extended to the language BPAs∗δε(A) obtained by extending MPAs∗(A) with general
sequential composition in lieu of action prefixing, and with the empty process from [23].

In the process of establishing the aforementioned results, we also obtain solutions to
problems of independent interest. In particular, we present a novel, detailed analysis of
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bisimulation equivalence over a class of simple cyclic terms which we refer to as terminal
cycles (cf. Lem. 22). As a technical tool for the study of equalities involving terminal
cycles, we also prove a unique decomposition theorem over finite strings (cf. Thm. 2)
which may be of independent string-theoretic interest.

We conclude this introduction by providing a brief road-map to the contents of this
paper. Section 2 introduces the mathematical results and notations that will be used
throughout the paper. In that section we also present a unique decomposition theorem
for finite strings that will find application in the later developments of the paper. The
language of minimal process algebra with string iteration and its operational semantics are
introduced in Sect. 3. Section 4 is entirely devoted to detailed proofs of our completeness
theorems for bisimulation equivalence over MPAs∗(A). Perhaps surprisingly, the proofs
of the completeness theorems are rather involved, and, for this reason, we have chosen to
present them in great detail in a style which is inspired by [24]. The non-existence of a
finite equational axiomatization for bisimulation equivalence over the language MPAs∗(A)
is presented in Sect. 5. Finally, Sect. 6 is devoted to extensions of our main results to the
language BPAs∗δε (A).

2 Preliminaries on Strings

We begin with some mathematical preliminaries. In particular, we present a basic result
about finite strings which will find application in the remainder of this paper.

Let K be any set. The set of (possibly empty) finite sequences of elements of K,
usually referred to as strings, is denoted by K∗. We shall use the symbols s, u, v, w,
possibly subscripted and/or superscripted, to range over K∗. String concatenation will
be denoted by juxtaposition; λ will be used to denote the empty string, and the sequence
containing one element a ∈ K will be written a. We use wp, where w is a string in K∗

and p is a non-negative integer, to denote the string w · · ·w︸ ︷︷ ︸
p-times

. By convention, w0 will stand

for the empty string λ. As it is standard practice, the set of non-empty strings over K
will be denoted by K+. The length of a string w ∈ K∗ will be denoted by length(w). We
use N = {1,2, 3, . . .} for the set of natural numbers. Throughout the paper, the symbol 4=
will stand for “equals by definition”. For integers p and q, not both zero, we shall write
gcd(p, q) for the greatest common divisor of p and q.

The following notions about strings will be useful in the remainder of this paper.

Definition 1. Let w ∈ K∗. A root decomposition of w is a pair (v, n) ∈ K∗×N such that
w = vn. The string w is a prime root iff (w, 1) is its only root decomposition. A prime
root decomposition of w is a root decomposition (v, n) for it with v a prime root string.

As an example, consider the string w = abab. Both (w, 1) and (ab, 2) are root decompo-
sitions of w. In fact, they are the only root decompositions for that string. As w admits
a non-trivial root decomposition, i.e. (ab,2), it is not a prime root. On the other hand,
the string ab is a prime root, and (ab, 2) is therefore the unique prime root decomposition
for w.
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We shall now prove that, as it was the case in the above example, every string w ∈ K∗
has a unique prime root decomposition. Apart from its intrinsic string-theoretic interest,
this result will be useful to establish an important lemma about the language for processes
studied in this paper (cf. Lem. 19).

Theorem 2 (Unique Prime Root Decomposition Theorem). Every string s ∈ K∗ has a
unique prime root decomposition.

The remainder of this section will be devoted to a proof of the above theorem. In the
proof of this result, we shall make use of a result from number theory that may be found
in, e.g., [28, Chapter 2]. Before stating this number-theoretic result, we recall a basic
notion from number theory.

Definition 3. Let p and q be integers. If a positive integer m divides the difference p−q,
we say that p is congruent to q modulo m and write p ≡ q (mod m). In other words,
p ≡ q (mod m) iff p = q + km for some integer k.

The following result pertaining to the solution of congruence equations will find an im-
portant application in the proof of Thm. 2. The interested reader is referred to, e.g., [28,
Corollary 2.9] for its proof.

Theorem 4. Let p, q, r be integers with p and q relatively prime, i.e. with gcd(p, q) = 1,
and with q > 0. Then the equation

px ≡ r (mod q)

has a solution x1
4= pφ(q)−1r, where φ(q) is the positive integer associated with q by Euler’s

φ-function1. All solutions are given by x = x1 + jq, where j = 0,±1,±2, . . ..

Our application of the above number-theoretic result will be in the proof of the following
result about strings.

Lemma 5. Let s ∈ K+. Assume that (u, n) and (v,m) are root decompositions of s. Then
(w, k) is a root decomposition of s for some string w of length gcd(length(u), length(v)).

Proof. Let s ∈ K+ and assume that (u,n) and (v,m) are both root decompositions of s.
Let p 4= length(u)/ gcd(length(u), length(v)) and q

4= length(v)/ gcd(length(u), length(v)).
Note, first of all, that p and q are well-defined positive integers because, as s ∈ K+,
both u and v are non-empty strings. Now, both u and v can be expressed (uniquely)
as concatenations of, respectively, p and q substrings of length gcd(length(u), length(v)).
Therefore, let

u = u1 · · ·up(3)
v = v1 · · · vq(4)

1As stated in, e.g., [28, Thm. 2.5], φ(q) is the number of positive integers less than or equal to q that
are relatively prime to q.
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where each ui (1 ≤ i ≤ p) and vj (1 ≤ j ≤ q) is of length gcd(length(u), length(v)). As
(u, n) and (v,m) are both root decompositions of s, it follows from (3) and (4) above
that, for every l ≥ 0,

(u1 · · ·up)ln = (v1 · · · vq)lm .(5)

We claim that the strings ui and vj are equal for every 1 ≤ i ≤ p and 1 ≤ j ≤ q. To
see that this indeed the case, consider arbitrary i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. The
substring ui occurs at positions

i+ px (0 ≤ x ≤ ln− 1)

in the sequence of strings (u1 · · ·up)ln. Similarly, the substring vj occurs at positions

j + qy (0 ≤ y ≤ lm− 1)

in the sequence of strings (v1 · · · vq)lm. If, for some non-negative integers x and y in the
given ranges, we have that:

i+ px = j + qy(6)

then there is a position in the string sl = (u1 · · ·up)ln = (v1 · · · vq)lm at which the sub-
strings ui and vj both occur. As length(ui) = length(vj), ui and vj must be equal, as
desired. So, all we have to do to prove that ui is equal to vj is to solve (6). This is where
Thm. 4 comes into play. In fact, assume, without loss of generality, that j ≥ i. Then, for
all integers x and y,

i+ px = j + qy ⇔ px = (j − i) + qy

⇔ px ≡ (j − i) (mod q) .

Now, because of the way p and q are defined, it follows that gcd(p, q) = 1. Therefore we
may apply Thm. 4 to infer that the congruence equation

px ≡ (j − i) (mod q)

has an infinite family of solutions given by x = x1 +hq for h = 0,±1,±2, . . ., where x1
4=

pφ(q)−1(j− i). Now, pick non-negative integers x 4= x1 and y such that px1 = (j− i) + qy.
(Note that, as x1 ≥ 0 and 0 ≤ j − i ≤ q − 1, it must be the case that y ≥ 0.) Next, pick
l ≥ 0 such that i+ px1 ≤ ln and j + qy ≤ lm. As x1 and y are solutions of Eqn. 6, the
strings ui and vj occur at the same position in the sequence

sl = (u1 · · ·up)ln = (v1 · · · vq)lm

and are therefore equal. As this holds for every i ∈ {1, . . . , p} and j ∈ {1, . . . , q}, it
follows that all the uis and vjs are equal. To finish the proof, it is thus sufficient to take
w
4= u1(= u2 = · · · = up = v1 = · · · = vq) and k 4= np(= mq). 2
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Having established the above result, we are now in a position to prove the promised
unique prime root decomposition theorem.

Proof of Theorem 2. If s is the empty string, then (s, 1) is its unique root decom-
position, which is prime. Assume then that s ∈ K+. Let {(v1, n1), . . . , (vk, nk)} be the
non-empty, finite set of root decompositions of s. Choose 1 ≤ i ≤ k such that ni is the
maximum of the non-empty set of natural numbers {n1, . . . , nk}. It follows that vi is
a prime root and that (vi, ni) is a prime root decomposition of s. This establishes the
existence of such a root decomposition.

We now argue for the uniqueness of such a prime root decomposition. Assume, to-
wards a contradiction, that (vj, nj) is a different prime root decomposition of s. It is
immediate to note that vi 6= vj and ni 6= nj. Moreover, as ni = max{n1, . . . , nk}, it
must be the case that nj < ni and length(vi) < length(vj). Then, as s = vnii = v

nj
j ,

Lem. 5 gives the existence of a root decomposition (w, k) of s, with w a string of length
gcd(length(vi), length(vj)). As length(vi) < length(vj), we have also that length(w) <
length(vj) and that vj = wp for some positive integer p > 1. This implies that (w, p) is a
non-trivial root decomposition of vj , contradicting the assumption that vj were a prime
root. This establishes the uniqueness of the prime root decomposition of s. 2

To conclude this section, we present a result about prime root strings that will find
application in the remainder of this paper. (Cf. Lem. 20.)

Lemma 6. Let s ∈ K∗ and a ∈ A. Assume that the string as is a prime root. Then so
is sa.

Proof. We show the contrapositive statement. To this end, let s ∈ K∗, and a ∈ A.
Assume that sa is not a prime root. We shall prove that as is not a prime root either.

If sa is not a prime root, then there exist a string v ∈ K+ and a natural number
n > 1 such that sa = vn. As sa = vn, v must be of the form ua for some string u ∈ A∗.
Moreover it holds that s = (ua)n−1u. Therefore as = a(ua)n−1u = (au)n. As n > 1, it
follows immediately that as cannot be a prime root. 2

3 Minimal Process Algebra with String Iteration

We assume a finite set A of observable actions. The symbols a, b, c will be used as typical
members of this set. We also assume the existence of a countably infinite set Var of
process variables, ranged over by x, y, z. The language of minimal process algebra with
string iteration MPAs∗(A,Var) is given by the following grammar:

E ::= x | δ | aE | E +E | w∗E

where x ∈ Var, a ∈ A and w ∈ A+. We shall use E,F, G, possibly subscripted
and/or superscripted to range over MPAs∗(A,Var). Instead of repeated action prefix,
e.g. a1a2 . . . anE, we shall often write wE with w = a1a2 . . . an. By convention, λE ≡ E,
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where the symbol ≡ stands for syntactic equality of terms. When writing MPAs∗(A,Var)
terms, we shall sometimes adopt the following parsing conventions: ∗ binds stronger than
a, which in turn binds stronger than +.

For a positive integer k, we say that a term E in MPAs∗(A,Var) is k-bounded if the
length of any string w occurring in sub-terms of E of the form w∗F is smaller than or
equal to k. For a term E, we shall sometimes refer to the smallest k for which E is k-
bounded as the iteration bound of E, notation IB(E). For example, the iteration bound
of the term (ab)∗x+ a∗y is 2.

The set of variables occurring in a term E ∈MPAs∗(A,Var) will be denoted by Var(E).
We shall write MPAs∗(A) for the set of closed terms, i.e. terms without occurrences of
variables, in the language MPAs∗(A,Var). The symbols P,Q,R, T , possibly subscripted
and/or superscripted, will be used to range over closed terms.

A (closed) substitution σ is a mapping from variables in Var to (closed) terms in
MPAs∗(A,Var). For every E ∈ MPAs∗(A,Var) and substitution σ, we shall write Eσ for
the result of substituting each variable x occurring in E with the term σ(x). For every
substitution σ, variable x ∈ Var and term E ∈ MPAs∗(A,Var), we shall use σ[x 7→ E] to
denote the substitution mapping x to E, and agreeing with σ on all the other variables.

Definition 7. The size |P | of an MPAs∗(A) term P is defined by structural recursion as
follows:

|δ| 4= 1

|w∗P | 4= length(w) + |P |
|aP | 4= 1 + |P |

|P +Q| 4= |P |+ |Q|+ 1

The operational semantics of the language MPAs∗(A) is given by the labelled transition
system [21, 30]

(MPAs∗(A), A, { a→| a ∈ A})

where the transition relations a→⊆ MPAs∗(A) × MPAs∗(A) are the least ones satisfying
the operational rules in Table 1.

The following trivial lemma ensures that, for every k ∈ N, the language of k-bounded
terms is closed under transitions. This property will be implicitly used in the proof of
the completeness result for this set of terms.

Lemma 8. Let P be a k-bounded MPAs∗(A) term. Assume that P a→ Q. Then Q is also
k-bounded.

For each w ∈ A∗, we define the derived transition relation w→ by induction on length(w)
in the standard way as follows:

• P λ→ Q iff P ≡ Q, and

• P aw→ Q iff P
a→ P ′

w→ Q for some MPAs∗(A) term P ′.
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aP
a→ P

P
a→ P ′

P +Q
a→ P ′

Q
a→ Q′

P +Q
a→ Q′

(aw)∗P a→ w(aw)∗P P
b→ P ′

(aw)∗P b→ P ′

Table 1: The operational rules for MPAs∗(A) (a, b ∈ A)

For MPAs∗(A) terms P,Q, we say that Q is a state of P iff there exists a string w ∈ A∗
such that P w→ Q. Not surprisingly, a straightforward argument by structural induction
on MPAs∗(A) terms gives that:

Lemma 9. For every P ∈MPAs∗(A), the set of states of P is finite.

The notion of behavioural equivalence over MPAs∗(A) terms that we shall consider in this
paper is that of bisimulation equivalence, due to Park and Milner [29, 27].

Definition 10. A binary relation < over MPAs∗(A) is a bisimulation iff it is symmetric
and whenever P < Q, for all a ∈ A, P ′ ∈ MPAs∗(A):

if P a→ P ′, then, for some Q′ ∈ MPAs∗(A), Q a→ Q′ and P ′ < Q′.

Two MPAs∗(A) terms P,Q are bisimulation equivalent, denoted by P↔––Q, iff there is a
bisimulation relation < such that P < Q.

Bisimulation equivalence can be extended to all of the language MPAs∗(A,Var) in the
following standard fashion:

Definition 11. For all E,F ∈ MPAs∗(A,Var), E↔––F iff Eσ↔––Fσ, for every closed
substitution σ.

It is well known that ↔–– is an equivalence relation, and, as the rules in Table 1 are in
tyft/tyxt-format [17], it is also a congruence relation. Therefore it makes sense to form
the quotient algebra MPAs∗(A)/↔––. The following lemma states a cardinality property of
the algebra MPAs∗(A)/↔–– that will be useful in the developments in Sect. 5 (cf. Lem. 32).

Lemma 12. If the set of actions A is non-empty, then the (carrier of the) quotient algebra
MPAs∗(A)/↔–– is countably infinite.

Proof. If A is non-empty, then we can pick an action a ∈ A. For each natural number n,
we may then define the term Pn

4= anδ. It is trivial to see that, for all n,m ∈ N, Pn↔––Pm
iff n = m. 2
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A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x
A6 x+ δ = x

S1 x+w(w∗x) = w∗x
S2 w∗(w∗x) = w∗x
S3 (wn)∗δ = w∗δ
S4 a(ua)∗δ = (au)∗δ

Table 2: The axioms for MPAs∗(A) (w ∈ A+, u ∈ A∗ and n ∈ N)

The main aim of this paper will be to provide a complete equational axiomatization of
bisimulation equivalence over the language MPAs∗(A), and the whole of the next section
will be devoted to this end.

4 An Equational Axiomatization for MPAs∗(A)

The equational axioms in Table 2 will be shown to completely characterize the relation
of bisimulation equivalence between MPAs∗(A) terms. We shall refer to this equational
theory as MPAs∗. By analogy with our terminology for MPAs∗(A,Var) terms, in case the
length of the strings wn, w, ua and au mentioned in axioms S1–S5 does not exceed k we
call these axioms k-bounded. In this case we refer to the resulting set of axioms as MPAs∗k .
Note that, as the set of actions A is finite, the family of axioms MPAs∗k is finite, for every
positive integer k. The equational theory MPAs∗, however, consists of a countably infinite
collection of equations.

Definition 13. For an equational theory E over the signature of MPAs∗(A), we write
E ` P = Q iff the equality P = Q can be derived from those in E using the rules
of equational logic. (For ease of reference, the inference rules of equational logic are
collected in Table 3.) We also write E ` Q ⊆ P , read “Q is a provable summand of P”
or “Q can be absorbed into P”, iff E ` P + Q = P . By convention, all the equational
theories we shall consider in this section will contain axioms A1 and A2.

In equational proofs to follow, we shall find it useful to have the following equations at
hand:

S5 (wn)∗w∗δ = w∗δ
S6 w∗x = w∗x+ x
S7 w∗x = w∗x+ w(w∗x)

Equations S6 and S7 are easily seen to be derivable from S1 and A3. Finally, note that
equation S5 is derivable from axioms S2 and S3 as follows:

(wn)∗w∗δ S3= (wn)∗(wn)∗δ S2= (wn)∗δ S3= w∗δ .

10



E = E
F = E
E = F

E = F F = G
E = G

Eσ = Fσ
(E = F ) ∈ E , σ a substitution

Ei = Fi (1 ≤ i ≤ n)
f(E1, . . . , En) = f(F1, . . . , Fn) f an operation symbol of arity n

Table 3: The inference rules of equational logic

The first main result of this paper can now be stated.

Theorem 14. The axiom system in Table 2 is sound and complete for bisimulation
equivalence over the language MPAs∗(A), i.e. for all MPAs∗(A) terms P and Q,

P↔––Q ⇔ MPAs∗ ` P = Q.

Moreover, for k-bounded MPAs∗(A)-terms P and Q, we find

P↔––Q ⇔ MPAs∗k ` P = Q.

The remainder of this section will be devoted to a detailed proof of the above result. The
proof we present is similar in spirit to those for related results given in, e.g., [18, 1, 13, 15],
but the details will be rather different and, perhaps surprisingly, quite involved.

First of all, we establish the soundness of the equational theory MPAs∗.

Lemma 15 (Soundness). For all MPAs∗(A,Var) terms E,F , MPAs∗ ` E = F implies
E↔––F .

Proof. As bisimulation equivalence is a congruence with respect to the operators of
the language MPAs∗(A,Var), the soundness of the axiom system MPAs∗ can be shown
by establishing that each axiom in MPAs∗ is sound. This easy, but somewhat tedious,
verification is left to the reader. 2

We remark here that the soundness of equation S3 depends crucially on the fact that the
argument of the string iteration construct is a stopped process, i.e., a process that cannot
exhibit any transition. In fact, in general, w∗P 6↔––(wn)∗P . As an example, consider
w
4= a, n 4= 2 and P ≡ bδ. Then a∗P 6↔––(aa)∗P because a∗P ab→ δ, whereas (aa)∗P cannot

perform the string of actions ab.
The rest of this section is devoted to the much more challenging proof of the com-

pleteness of the equational theory MPAs∗ with respect to bisimulation equivalence, which
we shall approach in several intermediate stages.

Lemma 16. Let P be an MPAs∗(A) term such that P↔––δ. Then A6 ` P = δ.
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Proof. A straightforward induction on the structure of P . 2

The following definition introduces a class of processes in MPAs∗(A) that will play an
important role in the proof of our completeness theorem.

Definition 17. An MPAs∗(A) term P is called a terminal cycle if P↔––w∗δ for some string
w ∈ A+. An MPAs∗(A) term P is terminal iff P↔––δ or P is a terminal cycle.

For example, an MPAs∗(A) term of the form u(wu)∗δ, where at least one of the strings
u, v is non-empty, is a terminal cycle because it is bisimulation equivalent to the term
(uw)∗δ.

Lemma 18. Let P be an MPAs∗(A) term and u ∈ A∗. If the term uP is a terminal cycle,
then so is P .

Proof. We prove the thesis by induction on the length of the string u. If u is empty, then
the lemma follows immediately by convention. Otherwise, assume that u = au′ and uP
is a terminal cycle. This means that uP↔––v∗δ for some v ∈ A+. As uP a→ u′P , it must be
the case that v = av′ for some v′ ∈ A∗, and that u′P↔––v′(av′)∗δ. Repeated applications
of the sound equation S4 give that u′P↔––(v′a)∗δ. Hence, the term u′P is itself a terminal
cycle, and, by the inductive hypothesis, so is P . 2

We remark here that the property of being a terminal cycle is not preserved by the action
prefixing operation, i.e. the converse of the above lemma does not hold. For example, the
term a∗δ is obviously a terminal cycle, but b(a∗δ) is not.

The following result, whose proof uses Thm. 2 in an essential way, states an important
property of terminal cycles that will be used in proving the completeness of our axiom
system for that sub-class of processes.

Lemma 19. Let v,w ∈ A+ and P ∈ MPAs∗(A). Suppose that v∗P↔––w∗δ. Then there
exist a prime root string s ∈ A+ and natural numbers k, h such that v = sk and w = sh.

Proof. Assume that v∗P↔––w∗δ. Let n 4= length(w) and m
4= length(v). As v∗P↔––w∗δ,

it follows that vn = wm. By Thm. 2, the strings v and w have unique prime root
decompositions (sv, kv) and (sw, kw), respectively. Therefore the string vn(= um) has
prime root decompositions (sv, nkv) and (sw,mkw). Again by Thm. 2, these two root
decompositions must be equal, i.e., it must be the case that sv = sw and nkv = mkw. To
establish the thesis, it is thus sufficient to take s 4= sv(= sw), k 4= kv and h

4= kw. 2

Lemma 20. Let P be a k-bounded MPAs∗(A) term. Suppose that P is a terminal cycle.
Then P↔––s∗δ for some prime root string s of length at most k.

Proof. Assume that P is a k-bounded terminal cycle. Then there exists a string v ∈ A+

such that P↔––v∗δ. Let (s, n) be the unique prime root decomposition for v given by
Thm. 2. Using the sound equation S3, we derive that P↔––s∗δ. The thesis now follows
from the following claim:

12



Claim. For every k-bounded term P and prime root string s,

P↔––s∗δ implies length(s) ≤ k .

This claim can be proven by structural induction on P . We only examine two of the
possible forms P may take.

• Case: P ≡ aQ.

As P ≡ aQ↔––s∗δ, it is not hard to see that it must be the case that s = as′

and Q↔––(s′a)∗δ for some string s′. By Lem. 6, the string s′a is also a prime root.
As Q is itself k-bounded, we may apply the inductive hypothesis to derive that
length(as′) = length(s′a) ≤ k.

• Case: P ≡ v∗Q.

As P ≡ v∗Q↔––s∗δ and s is a prime root, we may apply Lem. 19 to derive that
v = sh for some natural number h. As P is k-bounded, the length of the string v is
at most k. Thus length(s) ≤ k as desired.

2

Using the above results, we are now in a position to establish the completeness of our
axiom system for terminal cycles.

Notation 21. We shall use TerCycles to denote the equational theory consisting of
equations A3,A6,S2,S3,S4. As usual, for every positive integer k, TerCyclesk will stand
for the equational theory consisting of the k-bounded instances of equations in TerCycles.

Lemma 22. Let P ∈ MPAs∗(A) and w ∈ A+. Assume that P↔––w∗δ. Then TerCycles `
P = w∗δ. Moreover, if P and w∗δ are k-bounded, then TerCyclesk ` P = w∗δ.

Proof. Assume that P↔––w∗δ for some w ∈ A+. We prove the thesis by induction on the
structure of P . We proceed by a case analysis on the form P may take.

• Case: P ≡ δ.
Vacuous, as P 6↔––w∗δ.

• Case: P ≡ aP1.

As P ≡ aP1↔––w∗δ, the string w must be of the form aw′ for some w′ ∈ A∗. In this
case, it is not hard to see that P1↔––(w′a)∗δ. By the inductive hypothesis, it follows
that TerCycles ` P1 = (w′a)∗δ. So, TerCycles ` P = a(w′a)∗δ S4= (aw′)∗δ, as desired.

• Case: P ≡ P1 + P2.

As P↔––w∗δ, it is easy to see that one of the following three cases must hold:

1. P1↔––δ and P2↔––w∗δ, or

13



2. P2↔––δ and P1↔––w∗δ, or

3. both P1 and P2 are bisimulation equivalent to w∗δ.

The first two cases can be easily dealt with using Lem. 16, the inductive hypothesis
and axiom A6. In the last case, using the induction hypothesis, we have that
TerCycles ` Pi = w∗δ for i = 1, 2. So, TerCycles ` P ≡ P1 +P2 = w∗δ +w∗δ

A3= w∗δ.

• Case: P ≡ v∗P1, for some v ∈ A+.

As P↔––w∗δ, by Lem. 19 there exists a prime root string s and natural numbers k, h
such that v = sk and w = sh. We proceed by distinguishing two cases depending
on whether P1 has any transition or not.

1. Case: P1
a→ P ′1 for no a ∈ A and P ′1 ∈ MPAs∗(A).

In this case P1↔––δ. Now Lem. 16 gives that A6 ` P1 = δ. Therefore,

TerCycles ` P
A6= v∗δ

= (sk)∗δ
S3= s∗δ
S3= (sh)∗δ
= w∗δ

and we are done.

2. Case: P1
a→ P ′1 for some a ∈ A and P ′1 ∈ MPAs∗(A).

We claim that, in this case, P1↔––w∗δ. To see that this does hold, note that, as
P1

a→ P ′1 and v∗P1↔––w∗δ, it must be the case that w = aw′ for some w′ ∈ A∗,
and that P ′1↔––w′(aw′)∗δ↔––(w′a)∗δ. Indeed, whenever P1

b→ P ′ for some action
b and MPAs∗(A) process P ′, it follows that a = b and P ′↔––(w′a)∗δ. This implies
that P1↔––a(w′a)∗δ↔––(aw′)∗δ, as claimed.
Now, as P1↔––w∗δ, an application of the inductive hypothesis gives TerCycles `
P1 = w∗δ. Therefore,

TerCycles ` P = v∗(w∗δ)
= (sk)∗((sh)∗δ)
S3= (sk)∗(s∗δ)
S5= s∗δ
S3= (sh)∗δ
= w∗δ

and we are done.

An inspection of the above proof shows that only k-bounded instances of the equations
S2–S4 need be used in the proof if P and w∗δ are both k-bounded. This completes the
inductive argument, and the proof of the lemma. 2

14



As an easy corollary of the above lemma, we can now prove that the equational theory
TerCycles completely characterizes bisimulation equivalence over terminal cycles.

Corollary 23. Let P,Q be terms in MPAs∗(A). Assume that P↔––Q and P is a terminal
cycle. Then TerCycles ` P = Q. Moreover, if P and Q are k-bounded, TerCyclesk ` P =
Q.

Proof. Assume that P↔––Q and P is a terminal cycle. By Def. 17, this means that
P↔––w∗δ for some string w ∈ A+. By Lem. 22 and the fact that bisimulation equivalence
is an equivalence relation, we have that TerCycles ` P = w∗δ = Q, from which the thesis
follows immediately by transitivity. An identical argument shows that if P and Q are
k-bounded, then TerCyclesk ` P = Q. In fact, by Lem. 20, in that case we can choose w
to be a prime root string of length at most k. 2

Terminal cycles are processes with very simple cyclic behaviour. Surprisingly, however,
to the best of our knowledge, the results we have presented so far give the first systematic
investigation of their properties in the literature. In particular, the completeness result
in Corollary 23 appears to be new. As terminal cycles are strongly determinate processes
in the sense of [27, Def. 11.2], by the main result in [11] and [27, Propn. 11.5], all the
equivalences in the linear time-branching time spectrum considered in [16] coincide over
the set of such processes. As a result, Corollary 23 gives a complete axiomatization of all
the equivalences in van Glabbeek’s study [16] over terminal cycles.

The reader might have noticed that in establishing our completeness theorem for
bisimulation equivalence over terminal cycles, we have never needed to use equation S1.
This equation will, however, play a crucial rôle in the extension of the completeness result
to the whole of the language MPAs∗(A). This we now proceed to present.

Definition 24. For every MPAs∗(A) term P we define its minimum distance to a terminal
term by:

|P |min
4= min{length(w) | ∃P ′ : P w→ P ′ and P ′ is a terminal term} .

For example, |P |min = 0 iff P is a terminal term, and |aaδ + a∗δ|min = 1 because
aaδ + a∗δ

a→ a∗δ is the shortest sequence of transitions from aaδ + a∗δ leading to a
terminal term.

The following lemma collects some basic properties of the minimum distance to ter-
minal terms that will find application in the proof of the completeness theorem.

Lemma 25.

1. For every MPAs∗(A) term P , |P |min ∈ N, i.e. | · |min is well defined.

2. Let P and Q be MPAs∗(A) terms. If P↔––Q, then |P |min = |Q|min.

3. Let P be an MPAs∗(A) term and let w ∈ A∗. Assume that |P |min > 0. Then
|wP |min = length(w) + |P |min.
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Proof. Statements 1 and 2 of the lemma are easily seen to hold. Here we present a proof
of statement 3 by induction on the length of the string w.

Suppose that P is an MPAs∗(A) term such that |P |min > 0. Let w ∈ A∗. We aim at
showing that |wP |min = length(w) + |P |min. This is immediate if w is the empty string
λ. For the inductive step, assume that w = aw′ for some action a and string w′. By the
inductive hypothesis, we infer that:

|w′P |min = length(w′) + |P |min .(7)

Note moreover that, as |P |min > 0, by Lem. 18 the term aw′P cannot be terminal. We
can now reason as follows:

|aw′P |min = min{length(v) | ∃P ′ : aw′P
v→ P ′ and P ′ is a terminal term}

(Definition of | · |min)
= min{length(av) | ∃P ′ : w′P

v→ P ′ and P ′ is a terminal term}
(aw′P is not a terminal term)

= min{length(aw′u) | ∃P ′ : P
u→ P ′ and P ′ is a terminal term}

(7)
= length(aw′) + |P |min

(Definition of | · |min)

and the inductive step follows. 2

It is interesting to note that statement 3 in the previous lemma does not hold if the term
P is a terminal cycle. As an example witnessing this fact, consider the term a(a∗δ). Then
|a(a∗δ)|min = 0 6= 1 + |a∗δ|min.

The following result is a variation on the so-called absorption lemma, a standard tool
in proofs of completeness theorems for process algebras (cf., e.g., [18, 27]), and we shall
use it heavily in the proof of our main result.

Lemma 26 (Operational Completeness). Let P be a MPAs∗(A) term. If P a→ P ′ then
the two following statements hold:

• A3, S1 ` aP ′ ⊆ P , and

• if |P ′| ≥ |P | then there exist a string w ∈ A∗ and an MPAs∗(A) term P ′′ such that
P ′ ≡ wP ′′, A3, S1 ` P ′′ ⊆ P and |P ′′| ≤ |P |.

Moreover, if P is k-bounded, then only k-bounded instances of axiom S1 need be used in
the equational proofs.

Proof. We prove both statements by induction on the length of the proof of the transition
P

a→ P ′. We proceed by a case analysis on the last rule used in such a proof.

• Case: P ≡ a.P ′ a→ P ′.

Trivially, A3 ` aP ′ ⊆ P and this establishes statement 1. Statement 2 is vacuous
as |P ′| < |P |.
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• Case: P ≡ P1 + P2
a→ P ′ because Pi

a→ P ′ for some i ∈ {1,2}.
Assume without loss of generality that P1

a→ P ′. To prove that statement 1 holds
it is sufficient to note that the inductive hypothesis for this statement gives that
A3, S1 ` aP ′ ⊆ P1. By the form of P , A3, S1 ` aP ′ ⊆ P follows immediately.

We now show that statement 2 also holds. Assume that |P ′| ≥ |P |. Trivially,
|P ′| > |P1| also holds. We may thus apply the inductive hypothesis for statement 2
to derive that there exist a string w and a term P ′′ such that P ′ ≡ wP ′′, A3, S1 `
P ′′ ⊆ P1 and |P ′′| ≤ |P1|. Clearly, it follows that A3, S1 ` P ′′ ⊆ P1 ⊆ P and
|P ′′| ≤ |P1| < |P |.

• Case: P ≡ (av)∗P1
a→ vP ≡ P ′.

Statement 1 follows immediately by equation S7. To prove statement 2, it is suffi-
cient to take P ′′ 4= P and w 4= v.

• Case: P ≡ v∗P1
a→ P ′ because P1

a→ P ′.

Statement 1 is immediate by induction and equation S6. To prove statement 2,
assume that |P ′| ≥ |P |. As |P | > |P1|, we may apply the inductive hypothesis to
infer that there exist a string w and a term P ′′ such that P ′ ≡ wP ′′, A3, S1 ` P ′′ ⊆
P1 and |P ′′| ≤ |P1|. Therefore, as S6 ` P1 ⊆ P , we conclude that A3, S1 ` P ′′ ⊆ P
and |P ′′| ≤ |P1| < |P | as desired.

An inspection of the above cases shows that if P is k-bounded, then only k-bounded
instances of equation S1 need be used in the proof. This completes the inductive argument
and the proof of the lemma. 2

We now establish a decomposition property of string iteration with respect to the relation
of bisimulation equivalence. A similar decomposition property for the delay operation of
Milner’s SCCS [25] with respect to a notion of strong bisimulation preorder was, to
our knowledge, first shown by Hennessy in [18]. Our proof follows the one given in [1,
Lem. 4.3].

Lemma 27. Let P,Q ∈ MPAs∗(A) and w ∈ A+. Then w∗P↔––w∗Q iff w∗P↔––Q or P↔––w∗Q
or P↔––Q.

Proof. The “if” implication follows immediately from the fact that ↔–– is a congruence
and the soundness of equation S2. To show the “only if” implication, it is sufficient to
prove that:

w∗P↔––w∗Q and w∗P 6↔––Q and P 6↔––w∗Q ⇒ P↔––Q .(8)

We prove that (8) holds. To this end, let us assume that w∗P↔––w∗Q, w∗P 6↔––Q and
P 6↔––w∗Q. By symmetry, to prove that P↔––Q must hold, it is sufficient to show that, for
all a ∈ A, P ′ ∈ MPAs∗(A):

P
a→ P ′ ⇒ ∃Q′ : Q a→ Q′ and P ′↔––Q′ .(9)
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This we now proceed to show. Assume that P a→ P ′. By the operational semantics for
MPAs∗(A), this implies that w∗P a→ P ′. As w∗P↔––w∗Q, it follows that w∗Q a→ Q′ for
some Q′ such that P ′↔––Q′. If Q a→ Q′, then we are done. Otherwise, it must be case
that, for some string w′, w = aw′ and Q′ ≡ w′(w∗Q). We show that this leads to a
contradiction.

Assume that P a→ P ′↔––w′(w∗Q), with w = aw′. Then:

P ↔–– P + aP ′ (By Lemmas 26(1) and 15)
↔–– P + aw′(w∗Q) (P ′↔––w′(w∗Q))
↔–– P + aw′(w∗P ) (w∗P↔––w∗Q)
↔–– w∗P (Soundness of axiom S1 and w = aw′)
↔–– w∗Q (w∗P↔––w∗Q)

This contradicts the assumption that P 6↔––w∗Q. 2

The last stepping stone towards the proof of the completeness theorem we are after is the
following lemma, which states some properties of bisimulation equivalence over MPAs∗(A)
terms which are not terminal.

Lemma 28. Let P,Q ∈ MPAs∗(A). The following statements hold:

1. Assume that |P |min > 0, v ∈ A∗ and avP↔––Q. Then Q cannot have the form w∗Q1

for any w ∈ A+ and MPAs∗(A) term Q1.

2. Let v,w ∈ A∗. Assume that Q ≡ (aw)∗R for some MPAs∗(A) term R, |Q|min > 0
and vP↔––wQ. Then length(v) ≤ length(w) and P↔––uQ for some u ∈ A∗ such that
w = vu.

Proof. We prove the two statements separately.

1. Suppose that |P |min > 0, v ∈ A∗ and avP↔––Q. We prove that Q cannot have the
form w∗Q1 for any w ∈ A+ and MPAs∗(A) term Q1. To this end, assume, towards
a contradiction, that Q ≡ w∗Q1. First of all, note that, as |P |min > 0, Lem. 25(3)
gives that:

|avP |min = length(av) + |P |min .(10)

As avP↔––Q, by Lem. 25(2) we derive that:

|avP |min = |Q|min .(11)

Note that, from the above equalities, we can derive immediately that |Q|min > 0.
Furthermore, again from avP↔––Q, it follows that w = aw′, for some w′ ∈ A∗, and
that vP↔––w′Q. Using this information we can now derive that:

|Q|min = |avP |min (11)
= length(av) + |P |min (10)
= 1 + |vP |min (Lem. 25(3))
> |w′Q|min (Lem. 25(2) and vP↔––w′Q)
≥ |Q|min (By Lem. 25(3) as |Q|min > 0) .

This is clearly a contradiction.
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2. Suppose that Q ≡ (aw)∗R for some MPAs∗(A) term R, |Q|min > 0 and vP↔––wQ.
We prove, first of all, that length(v) ≤ length(w). To this end, assume, towards a
contradiction, that length(v) > length(w). As vP↔––wQ, w must be a proper prefix of
v. This means that there exists a non-empty string u such that v = wu and uP↔––Q.
Because of the form Q takes, uP↔––Q implies that u = (aw)kau′ and P↔––u′′Q for
some k ≥ 0 and strings u′, u′′ such that w = u′u′′. By statements (2) and (3) of
Lemma 25, P↔––u′′Q and |Q|min > 0 imply that |P |min = |u′′Q|min > 0. Thus we
have that uP↔––Q ≡ (aw)∗R, u ∈ A+ and |P |min > 0. This contradicts statement 1
of this lemma. Therefore it must be the case that length(v) ≤ length(w). The fact
that P↔––uQ for some u ∈ A∗ such that w = vu is now immediate.

2

We can now tackle the proof of the promised completeness theorem. Unfortunately, the
proof of this result is combinatorial in nature and consists of the examination of a fairly
large number of cases. For this reason, we have chosen to present the proof in a structured
style following the spirit, albeit not the letter, of the proposal in [24]. We hope that this
type of presentation will help the reader understand easily the details of the proof and
judge its correctness, if he/she wishes to do so.

Theorem 29 (Completeness). For all MPAs∗(A) terms P and Q, P↔––Q implies MPAs∗ `
P = Q. Moreover, if P and Q are k-bounded then MPAs∗k ` P = Q.

Proof. We shall show that the following three statements hold for all P,Q ∈ MPAs∗(A):

1. Suppose that w ∈ A+, |P |min > 0 and wP↔––Q. Then there exists an MPAs∗(A)
term Q′ such that P↔––Q′, MPAs∗ ` Q = wQ′ and |Q′|+ length(w) ≤ |Q|.

2. If P↔––P +Q then MPAs∗ ` Q ⊆ P .

3. If P↔––Q then MPAs∗ ` P = Q2.

We prove these three statements simultaneously by complete induction on |P |+ |Q|. To
this end, let us assume, as our inductive hypothesis, that statements 1–3 hold for all
MPAs∗(A) terms P ′, Q′ such that |P ′|+ |Q′| < |P | + |Q|. We now prove that they hold
for P and Q. We examine each statement in turn.

1. Suppose that w ∈ A+, |P |min > 0 and wP↔––Q. We show that the thesis for
statement 1 above holds by a case analysis on the form Q may take. Throughout
the proof for this statement, we let w = aw′ for some w′ ∈ A∗.

• Case: Q ≡ δ.
The claim is vacuously true because aw′P cannot be bisimilar to δ.

2Strictly speaking, it is not necessary to isolate this statement for the proof below to go through. In
fact, all the uses of statement 3 made in the proof are implied by statement 2. However, we believe that
the current formulation makes it easier to follow our arguments in detail.
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• Case: Q ≡ bQ1.
As aw′P is bisimulation equivalent to Q, it must be the case that a = b and
w′P↔––Q1. We now proceed by distinguishing two cases, depending on whether
the string w′ is empty or not.

– Case: w′ = λ.
The claim follows immediately by taking Q′ 4= Q1.

– Case: w′ ∈ A+.
In this case, we have that w′P↔––Q1, w′ ∈ A+ and |P |min > 0. As |P | +
|Q1| < |P | + |Q|, we may apply the inductive hypothesis for statement 1
to derive that, for some MPAs∗(A) term Q′,

P↔––Q′ and MPAs∗ ` Q1 = w′Q′ and |Q′|+ length(w′) ≤ |Q1| .

It is now a simple matter to show that this term Q′ satisfies all the con-
straints in the thesis of statement 1.

This completes the proof for this case.

• Case: Q ≡ Q1 +Q2.
As aw′P↔––Q, one of the following three cases must hold:

– Q1↔––δ and Q2↔––aw′P , or
– Q2↔––δ and Q1↔––aw′P , or
– Q1↔––Q2↔––aw′P .

In fact, as the first two cases are symmetric, we may restrict ourselves, without
loss of generality, to considering only the first and the third.

– Case: Q1↔––δ and Q2↔––aw′P .
As Q1↔––δ, an application of Lem. 16 gives that

A6 ` Q1 = δ .(12)

As |P | + |Q2| < |P | + |Q|, Q2↔––aw′P and |P |min > 0, we may apply
the inductive hypothesis for statement 1 to derive that there exists an
MPAs∗(A) term Q′ such that P↔––Q′, |Q′|+ length(aw′) ≤ |Q2| and

MPAs∗ ` Q2 = aw′Q′ .(13)

Now,
MPAs∗ ` Q = Q1 +Q2 (Q ≡ Q1 +Q2)

= δ + aw′Q′ (By (12) and (13))
A6= aw′Q′

and |Q′| + length(aw′) ≤ |Q2| < |Q|. This completes the proof for this
case.

– Case: Q1↔––Q2↔––aw′P .
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In this case, as |P | + |Qi| < |P | + |Q| for i = 1, 2, we may apply the
inductive hypothesis for statement 1 to derive that, for i = 1, 2, there
exist MPAs∗(A) terms Q′i such that P↔––Q′i, |Q′i|+ length(aw′) ≤ |Qi| and

MPAs∗ ` Qi = aw′Q′i .(14)

Now, as |Q′i| + length(aw′) ≤ |Qi| < |Q| (i = 1, 2), it follows that |P | +
|Q′i| < |P | + |Q| for i = 1, 2. We may therefore apply the inductive
hypothesis for statement 3 to the equivalences P↔––Q′1 and P↔––Q′2 to derive
that:

MPAs∗ ` P = Q′1 = Q′2 .(15)

Choose Q′
4= Q′1. We have already seen that P↔––Q′ and that |Q′| +

length(aw′) < |Q|. Moreover,

MPAs∗ ` Q = Q1 +Q2 (Q ≡ Q1 +Q2)
= aw′Q′1 + aw′Q′2 (14)
= aw′Q′1 + aw′Q′1 (15)
A3= aw′Q′1

This completes the proof for this case.

The proof for the case Q ≡ Q1 +Q2 is now complete.

• Case: Q ≡ v∗Q1 for some v ∈ A+.
This case is vacuous by Lem. 28(1).

The proof of the inductive step for statement 1 is now complete.

2. Assume that P↔––P + Q. We shall show that MPAs∗ ` Q ⊆ P . To this end, we
consider the following three cases:

(a) P is a terminal term, i.e. |P |min = 0, or

(b) |P |min > 0 and |Q|min = 0, or

(c) |P |min > 0 and |Q|min > 0.

We examine each of these cases in turn.

(a) Case: P is a terminal term, i.e. |P |min = 0.
As |P |min = 0, we have that either P↔––δ or P is a terminal cycle. If P↔––δ↔––P+
Q, then the claim is an immediate corollary of Lem. 16 and transitivity. If P
is a terminal cycle, then the claim follows immediately from Corollary 23.

(b) Case: |P |min > 0 and |Q|min = 0.
Again, as |Q|min = 0, it follows that either Q↔––δ or Q is a terminal cycle. We
proceed by examining these possibilities in turn.
If Q↔––δ, then

MPAs∗ ` P
A3= P + δ
= P +Q (By Lem. 16)
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and we are done.
If Q is a terminal cycle, then Q↔––(aw)∗δ for some action a ∈ A and string
w ∈ A∗. (Note that, by Lem. 20, aw can be chosen to be a prime root string
whose length does not exceed the iteration bound of Q.) By Lem. 22, it follows
that:

TerCycles ` Q = (aw)∗δ .(16)

As ↔–– is a congruence, we infer that P↔––P + (aw)∗δ. Since P + (aw)∗δ a→
w(aw)∗δ, there exists an MPAs∗(A) term P ′ such that

P
a→ P ′ and P ′↔––w(aw)∗δ .

Now, it is easy to see that P ′↔––(wa)∗δ, i.e. P ′ is itself a terminal cycle. By
Lem. 22, it follows that:

TerCycles ` P ′ = (wa)∗δ .(17)

Now we reason as follows:

MPAs∗ ` P = P + a.P ′ (By Lem. 26(1), as P a→ P ′)
= P + a.(wa)∗δ (17)
S4= P + (aw)∗δ
= P +Q (16)

This completes the proof for this case.

(c) Case: |P |min > 0 and |Q|min > 0.
So far, induction has not played any rôle in the proof of this statement and
we have been able to make do with general results about terminal MPAs∗(A)
terms. The inductive hypotheses will, however, play a crucial role in the proof
of the inductive step for this case. We proceed by a case analysis on the form
a term Q with |Q|min > 0 may take.

• Case: Q ≡ Q1 +Q2.
First of all, note that P↔––P +Q and Q ≡ Q1 +Q2 imply that P↔––P +Q1

and P↔––P + Q2. As |P | + |Qi| < |P | + |Q| for i = 1, 2, we may apply
the inductive hypothesis for statement 2 to both these equalities to derive
that, for i = 1, 2:

MPAs∗ ` P = P +Qi .(18)

We now argue as follows:

MPAs∗ ` P = P +Q2 (18)
= P +Q1 +Q2 (18)
= P +Q (Q ≡ Q1 +Q2)

and we are done.
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• Case: Q ≡ a.R.
As P↔––P+Q and P+Q a→ R, there exists an MPAs∗(A) term P ′ such that
P

a→ P ′ and P ′↔––R. We proceed by examining the relationship between
the size of P ′ and that of P .
– Case: |P ′| ≤ |P |.

In this case, it follows that |P ′| + |R| < |P | + |Q|. Therefore we
may apply the inductive hypothesis for statement 3 to the equivalence
P ′↔––R to derive that:

MPAs∗ ` P ′ = R .(19)

We may now simply complete the proof thus:

MPAs∗ ` P = P + a.P ′ (By Lem. 26(1), as P a→ P ′)
= P + a.R (19)
= P +Q (Q ≡ a.R)

– Case: |P ′| > |P |.
We proceed by a case analysis on the form P may take. As P a→ P ′

and |P ′| > |P |, there are only two possible cases to consider, namely
P ≡ P1 + P2 and P ≡ w∗T . We shall examine these in turn.
∗ Case: P ≡ P1 + P2

a→ P ′↔––R.
Assume, without loss of generality, that P1

a→ P ′. Then it is easy
to see that P1↔––P1 + a.R. As |P1| + |aR| < |P | + |aR|, we may
apply the inductive hypothesis for statement 2 to the equivalence
P1↔––P1 + a.R to derive that:

MPAs∗ ` a.R ⊆ P1

from which it follows immediately that

MPAs∗ ` a.R ⊆ P .

∗ Case: P ≡ w∗T a→ P ′↔––R.
We proceed by examining the possible form of the transition P ≡
w∗T

a→ P ′. By the operational semantics for MPAs∗(A), there are
two possibilities to consider:
· T a→ P ′, or
· w = aw′ and P ′ ≡ w′P , for some w′ ∈ A+. (Note that, as
|P ′| > |P |, the string w′ cannot be empty.)

We proceed by examing these two possibilities in turn.
· Case: T

a→ P ′.
As T a→ P ′↔––R, it follows that T↔––T + a.R. As |T | + |aR| <
|P |+ |aR|, we may apply the inductive hypothesis for statement
2 to the equivalence T↔––T + a.R to derive that:

MPAs∗ ` a.R ⊆ T .
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Using the derived equation S6, it follows immediately that

MPAs∗ ` a.R ⊆ P .

· Case: w = aw′ and P ′ ≡ w′P , for some w′ ∈ A+.
In this case, we have that w′ ∈ A+, |P |min > 0, and w′P↔––R. As
|R| < |Q|, we have that |R|+ |P | < |Q|+ |P |. We may therefore
apply the inductive hypothesis for statement 1 to derive that, for
some MPAs∗(A) term R′,

P↔––R′ and MPAs∗ ` R = w′R′ and |R′|+ length(w′) ≤ |R| .

As |R′| < |R| < |Q|, it follows that |P | + |R′| < |P | + |Q|. We
may therefore apply the inductive hypothesis for statement 3 to
the equivalence P↔––R′ to derive that:

MPAs∗ ` P = R′ .(20)

We now argue as follows:

MPAs∗ ` P = (aw′)∗T (P ≡ (aw′)∗T )
S7= P + aw′P
= P + aw′R′ (20)
= P + aR (MPAs∗ ` R = w′R′)
= P +Q (Q ≡ aR)

and we are done.
The proof for the case P ≡ (aw)∗T is now complete.

We have now examined all the possible forms that P may take when
P

a→ P ′ and |P ′| > |P |.
This completes the proof for the case Q ≡ aR.

• Case: Q ≡ (aw)∗R.
First of all, note that, as P↔––P+Q, it follows that P↔––P+R. As |P |+|R| <
|P | + |Q|, we may apply the inductive hypothesis for statement 2 to the
equivalence P↔––P + R to obtain that:

MPAs∗ ` R ⊆ P .(21)

This equality will be used repeatedly in the arguments to follow.
As P↔––P +Q and Q a→ wQ, there exists an MPAs∗(A) term P ′ such that
P

a→ P ′ and P ′↔––wQ. We proceed by considering two cases depending on
whether |P ′| < |P | or not.
– Case: |P ′| < |P |.

We proceed by considering two sub-cases, depending on whether w is
the empty string or not. We examine these two possibilities in turn.

24



∗ Case: The string w is empty.
In this case, we have that P ′↔––Q ≡ a∗R. As |P ′| < |P |, it follows
that |P ′| + |Q| < |P |+ |Q|. We may therefore apply the inductive
hypothesis for statement 3 to the equivalence P ′↔––Q to derive that:

MPAs∗ ` P ′ = Q .(22)

We may now argue as follows:

MPAs∗ ` P = P + aP ′ (By Lem. 26(1), as P a→ P ′)
= P + aQ (22)
= P +R+ aQ (21)
S1= P +Q

and we are done.
∗ Case: w ∈ A+.

In this case, we have that w ∈ A+, P ′↔––wQ and |Q|min > 0. As
|P ′| + |Q| < |P | + |Q|, we may apply the inductive hypothesis for
statement 1 to derive that, for some MPAs∗(A) term P ′′,

P ′′↔––Q and(23)
MPAs∗ ` P ′ = wP ′′ and(24)
|P ′′|+ length(w) ≤ |P ′|(25)

By (25) and the fact that |P ′| < |P |, it follows that |P ′′| < |P |.
Therefore |P ′′| + |Q| < |P | + |Q|, and we may apply the inductive
hypothesis for statement 3 to (23) to derive that:

MPAs∗ ` P ′′ = Q .(26)

Now we argue that:

MPAs∗ ` P = P + aP ′ (By Lem. 26(1), as P a→ P ′)
= P + awP ′′ (24)
= P + awQ (26)
= P +R+ awQ (21)
S1= P +Q

and we are done.
This completes the proof for the case |P ′| < |P |.

– Case: |P ′| ≥ |P |.
Assume that P a→ P ′↔––wQ and |P ′| ≥ |P |. We proceed by a case
analysis on the form P may take. Because of the constraints for this
case, P may only take one of the following two forms:
∗ P ≡ P1 + P2 or
∗ P ≡ (bv)∗T .
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We examine these two cases in turn.
∗ Case: P ≡ P1 + P2.

Assume, without loss of generality, that P1
a→ P ′. As |P ′| ≥ |P | >

|P1|, Lem. 26(2) gives, among other things, the existence of an
MPAs∗(A) process P ′′ and of a string v ∈ A∗ such that:

P ′ ≡ vP ′′(27)
|P ′′| ≤ |P1| .(28)

As P ′ ≡ vP ′′↔––wQ, |Q|min > 0 and Q ≡ (aw)∗R, by applying
Lem. 28(2) we derive that either:
· v = w and P ′′↔––Q, or
· vu = w and P ′′↔––uQ for some string u ∈ A+.
We proceed by examing these two cases in turn.
· Case: v = w and P ′′↔––Q

By (28) and the fact that P ≡ P1 + P2, we infer that |P ′′| < |P |.
Therefore |P ′′|+ |Q| < |P |+ |Q|, and we may apply the inductive
hypothesis for statement 3 to the equivalence P ′′↔––Q to derive
that:

MPAs∗ ` P ′′ = Q .(29)

We may now argue as follows:

MPAs∗ ` P = P + aP ′ (By Lem. 26(1), as P a→ P ′)
= P + awP ′′ (v = w and (27))
= P + awQ (29)
= P +R+ awQ (21)
S1= P +Q

and we are done.
· Case: vu = w and P ′′↔––uQ for some string u ∈ A+.

By (28) and the fact that P ≡ P1 + P2, we infer that |P ′′| < |P |.
Hence it follows that |P ′′|+|Q| < |P |+|Q|. Therefore, as u ∈ A+,
P ′′↔––uQ and |Q|min > 0, we may apply the inductive hypothesis
for statement 1 to derive that, for some MPAs∗(A) term P ′′′, the
following facts hold:

P ′′′ ↔–– Q(30)
MPAs∗ ` P ′′ = uP ′′′(31)

|P ′′′|+ length(u) ≤ |P ′′| .(32)

By (32) and |P ′′| < |P |, it follows that |P ′′′| < |P |. Therefore
|P ′′′|+|Q| < |P |+|Q|, and we may apply the inductive hypothesis
for statement 3 to equivalence (30) to derive that:

MPAs∗ ` P ′′′ = Q .(33)
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Thus,

MPAs∗ ` P = P + aP ′ (By Lem. 26(1), as P a→ P ′)
= P + avP ′′ (27)
= P + avuP ′′′ (31)
= P + awQ (w = vu and (33))
= P +R+ awQ (21)
S1= P +Q

This completes the proof for the case P ≡ P1 + P2.
∗ Case: P ≡ (bv)∗T .

In this case, we have that P ≡ (bv)∗T a→ P ′↔––wQ and |P ′| ≥ |P |.
We proceed by examing the possible form of the transition P a→ P ′.
By the operational semantics for MPAs∗(A), there are two cases to
consider:
· T a→ P ′, or
· b = a and P ′ ≡ vP .
We proceed by examining these two cases in turn.
· Case: T

a→ P ′.
As |P ′| ≥ |P | > |T |, we may apply Lem. 26(2) to the transition
T

a→ P ′ to derive that, among other things, for some string u ∈ A∗
and MPAs∗(A) term P ′′,

P ′ ≡ uP ′′(34)
|P ′′| ≤ |T | .(35)

Since P ′ ≡ uP ′′↔––wQ, |Q|min > 0 and Q ≡ (aw)∗R, Lem. 28(2)
gives that either
u = w and P ′′↔––Q, or
w = uu′ and P ′′↔––u′Q for some non-empty string u′ ∈ A+.
We proceed by examining these two cases in turn.

Case: u = w and P ′′↔––Q.
By (35) and the form P takes, it follows that |P ′′| < |P |. There-
fore |P ′′| + |Q| < |P | + |Q|, and we may apply the inductive
hypothesis for statement 3 to the equivalence P ′′↔––Q to derive
that:

MPAs∗ ` P ′′ = Q .(36)

We may now argue as follows:

MPAs∗ ` P
S6= P + T

= P + T + aP ′ (By Lem. 26(2), as T a→ P ′)
= P + awP ′′ (u = w and (34))
= P + awQ (36)
= P +R+ awQ (21)
S1= P +Q
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and we are done.

Case: w = uu′ and P ′′↔––u′Q for some non-empty string u′ ∈ A+.
By (35) and the form P takes, it follows that |P ′′| < |P |. Hence
|P ′′|+ |Q| < |P |+ |Q|. As P ′′↔––u′Q, u′ ∈ A+ and |Q|min > 0, we
may therefore apply the inductive hypothesis for statement 1 to
derive that, for some MPAs∗(A) term P ′′′:

P ′′′ ↔–– Q(37)
MPAs∗ ` P ′′ = u′P ′′′(38)

|P ′′′|+ length(u′) ≤ |P ′′| .(39)

As |P ′′′| < |P ′′| < |P |, it follows that |P ′′′|+ |Q| < |P |+ |Q|. We
may therefore apply the inductive hypothesis for statement 3 to
(37) to infer that:

MPAs∗ ` P ′′′ = Q .(40)

Thus:

MPAs∗ ` P
S6= P + T

= P + T + aP ′ (By Lem. 26(2), as T a→ P ′)
= P + auP ′′ (34)
= P + auu′P ′′′ (38)
= P + awQ (w = uu′ and (40))
= P +R+ awQ (21)
S1= P +Q

and we are done.
This completes the proof for the case T a→ P ′.
· Case: b = a and P ′ ≡ vP .

In this case, we have that P ≡ (av)∗T , Q ≡ (aw)∗R, |P |min > 0,
|Q|min > 0 and vP↔––wQ. By Lem. 28(2) and symmetry, it must
be the case that v = w and P↔––Q. By using Lem. 27, we may
now derive, because of the form P and Q take, that:

T↔––R or P↔––R or T↔––Q .

In each of the above cases, we may apply the inductive hypothesis
for statement 3 and substitutivity to infer that at least one of the
following equalities is provable from the theory MPAs∗:

P = Q or (aw)∗P = Q or P = (aw)∗Q .

In each of the above cases we obtain, after possibly applying equa-
tion S2, that MPAs∗ ` P = Q, from which MPAs∗ ` Q ⊆ P follows
immediately by A3. This completes the proof for this case.

The proof for the case P ≡ (bv)∗T a→ P ′ and |P ′| ≥ |P | is now
complete.
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We have therefore examined all the possible cases arising when P
a→

P ′↔––wQ and |P ′| ≥ |P |.
The proof of the inductive step for statement 2 when Q ≡ (aw)∗R is
complete.

We have therefore shown that statement 2 holds for P and Q.

3. Assume that P↔––Q. Then P↔––P +Q and Q↔––Q+P . By statement 2, we infer that
MPAs∗ ` Q ⊆ P ⊆ Q, from which the thesis follows immediately.

An inspection of the above proof, and the fact that the language of k-bounded terms is
closed under transitions by Lem. 8 ensure that if P and Q are k-bounded, then only k-
bounded equations need be used throughout. The proof of the theorem is now complete.

2

5 Bisimulation Equivalence is not Finitely Axiomatizable
over MPAs∗(A)

In the previous section we proved that the equational theory MPAs∗ completely charac-
terizes bisimulation equivalence over the language MPAs∗(A). Moreover, we showed that,
for each positive integer k, the finite equational theory MPAs∗k gives a sound and com-
plete axiomatization of bisimulation equivalence for terms with iteration bound at most
k. This implies that bisimulation equivalence can be finitely axiomatized over MPAs∗(A)
terms provided that the length of all loops occurring in terms is bounded from above.
The equational theory MPAs∗ that axiomatizes bisimulation equivalence over the whole of
the language MPAs∗(A) consists, however, of a countably infinite collection of equations.
This immediately raises the question of whether one can improve upon our completeness
result for MPAs∗(A) by exhibiting a finite equational axiomatization of the relation of
bisimulation equivalence over this language. We shall now prove that no such axiomati-
zation can exist, unless the set of actions A is empty. To establish this negative result, we
shall show that, if A is non-empty, for every finite collection of sound equations E there
is a valid equivalence of the form

(an)∗δ ↔–– (am)∗δ(41)

that cannot be proven to hold from the equations in E . To this end, for every finite
equational theory E , we shall find some property which is enjoyed by every equality
E = F which is derivable from E , but not by some instance of (41). The reader familiar
with [31] might have noticed that terms like those used in (41) play an important rôle
in Sewell’s non-finite axiomatizability result for the language BPA∗δ (cf. [31, Thm. 6.6]).
The strategy of our proof will, however, be very different from the one used by Sewell in
the aforementioned reference.

To obtain the aforementioned negative result, we shall need to introduce a few tech-
nical tools which will be useful for our purposes. First of all, we shall prove an important
property satisfied by every equation E = F which is sound with respect to ↔––; namely,
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we shall show that if E↔––F and the set of actions A is non-empty, then E and F must
have exactly the same variables occurring in them.

Definition 30. The set of strings prefixing occurrences of a variable x in a term E ∈
MPAs∗(A,Var), notation Paths(x,E), is defined by structural recursion on terms thus:

Paths(x, δ) 4= ∅

Paths(x, y) 4=

{
{λ} if x = y
∅ otherwise

Paths(x, aE) 4= {as | s ∈ Paths(x,E)}
Paths(x,E + F ) 4= Paths(x,E) ∪ Paths(x, F )

Paths(x,w∗E) = Paths(x,E)

The following lemma, which can be easily shown by structural induction on terms, gives
all the properties of the sets Paths(x,E) that we shall need for our purposes.

Lemma 31. For every E ∈ MPAs∗(A,Var) and x ∈ Var, the following statements hold:

1. x ∈ Var(E) iff Paths(x,E) 6= ∅.

2. Let σ be a closed substitution. Assume that s ∈ Paths(x,E) and σ(x) a→ P , for
some action a ∈ A and P ∈ MPAs∗(A). Then Eσ

sa→ P .

We are now ready to prove that, if the set of actions A is non-empty, then two terms E
and F can only be bisimulation equivalent if their sets of variables are identical.

Lemma 32. If the set of actions A is non-empty, then, for all E,F ∈ MPAs∗(A,Var),
E↔––F implies Var(E) = Var(F ).

Proof. We prove the contrapositive statement. Assume, without loss of generality, that
there is a variable x ∈ Var(E) − Var(F ). Under this assumption, we shall construct a
closed substitution σ such that Eσ 6↔––Fσ. This will prove that E 6↔––F .

Let x ∈ Var(E)− Var(F ). As x ∈ Var(E), by Lem. 31(1) there exists a string s ∈ A∗
such that s ∈ Paths(x,E). Let σδ be the closed substitution mapping all the variables in
Var to δ. By Lem. 9, the closed term Fσδ has finitely many states. As A is non-empty,
by Lem. 12 we may therefore find a term P ∈ MPAs∗(A) which is not a state of Fσδ up to
bisimulation equivalence, i.e., a term P such that, for no state Q of Fσδ , P↔––Q. Define
now a substitution σ by:

σ
4= σδ[x 7→ aP ]

where a ∈ A. We claim that Eσ 6↔––Fσ. In fact, as s ∈ Paths(x,E) and σ(x) a→ P ,
Lem. 31(2) gives that Eσ sa→ P . On the other hand, as x 6∈ Var(F ), it follows that
Fσ ≡ Fσδ , and, by construction, no state of Fσδ is bisimulation equivalent to P .

We have therefore shown that E 6↔––F , as desired. 2
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The above result does not hold if the set of actions A is empty. In fact, in that, ad-
mittedly pathological, case all the terms in the language MPAs∗(∅) are equivalent to δ,
and the equation x = y is sound (and complete) for bisimulation equivalence over that
language. It is also interesting to remark that Lem. 32 does not hold in general for trace
equivalence and maximal trace equivalence. (The interested reader is invited to consult
the encyclopedic reference [16] for information on these equivalences.) For instance, if
A = {a}, then it is not too hard to see that the terms a∗(aδ) and a∗(aδ)+P are maximal
trace equivalent (and, a fortiori, trace equivalent) for every P ∈ MPAs∗(A). This implies
that, if the set of actions A is the singleton {a}, the equation

a∗(aδ) = a∗(aδ) + x(42)

is sound for maximal trace equivalence. As implied by Lem. 32, equation (42) is, instead,
not sound with respect to bisimulation equivalence. For instance, the terms a∗(aδ) and
a∗(aδ) + aaδ are not bisimilar.

Definition 33. Let E = {Ei = Fi | 1 ≤ i ≤ n} (n ∈ N) be a finite equational theory over
the signature of MPAs∗(A,Var). The iteration bound of E , notation IB(E), is given by:

IB(E) 4= max{IB(Ei), IB(Fi) | 1 ≤ i ≤ n} .

The following lemma is the key to our promised non-finite axiomatizability result. It
states a property that is true of all the equalities that are provable from a finite equational
theory E over the signature of MPAs∗(A,Var), but that is not satisfied by all instances
of equality (41). Intuitively, the lemma states that two terms E and F whose iteration
bound is “large enough” can only be proven equal from the finite theory E iff they have
the same iteration bound.

Lemma 34. Let A be a non-empty set of actions, and let E = {Ei = Fi | 1 ≤ i ≤ n}
(n ∈ N) be a sound, finite equational theory over the signature of MPAs∗(A,Var). Let
E,F ∈ MPAs∗(A,Var). Assume that E ` E = F . Then the following statements hold:

1. IB(E) > IB(E) iff IB(F ) > IB(E);

2. if IB(E) > IB(E) and IB(F ) > IB(E), then IB(E) = IB(F ).

Proof. Let A be a non-empty set of actions, and let E = {Ei = Fi | 1 ≤ i ≤ n} (n ∈ N)
be a sound, finite equational theory over the signature of MPAs∗(A,Var). Assume that
E ` E = F . We prove that both statements of the lemma hold, simultaneously by
induction on the depth of the proof of the equality E = F from the theory E . We
proceed by a case analysis on the last inference rule used in the proof. We shall give the
details of the proof for all the cases, except those in which the equality E = F follows by
reflexivity or symmetry. For each of the cases we consider the two statements in turn.

• Case: The equality E = F is proven by instantiating some equation (Ei = Fi) in
the theory E , i.e., E ≡ Eiσ and F ≡ Fiσ for some equation (Ei = Fi) ∈ E and
substitution σ.
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1. First of all, note that, for every G ∈MPAs∗(A,Var) and substitution τ ,

IB(Gτ) = max(IB(G),max{IB(τ(x)) | x ∈ Var(G)}) .(43)

Using the above equality, the claim is immediate from the following chain of
logical equivalences:

IB(E) > IB(E) ⇔ IB(Eiσ) > IB(E)
(E ≡ Eiσ)

⇔ max(IB(Ei),max{IB(σ(x)) | x ∈ Var(Ei)}) > IB(E)
(43)

⇔ max{IB(σ(x)) | x ∈ Var(Ei)} > IB(E)
(IB(E) ≥ IB(Ei))

⇔ max{IB(σ(x)) | x ∈ Var(Fi)} > IB(E)
(By Lem. 32, as Ei = Fi is sound)

⇔ max(IB(Fi),max{IB(σ(x)) | x ∈ Var(Fi)}) > IB(E)
(IB(E) ≥ IB(Fi))

⇔ IB(Fiσ) > IB(E)
(43)

⇔ IB(F ) > IB(E)
(F ≡ Fiσ)

2. Assume that IB(E) and IB(F ) are both strictly larger than IB(E). We show
that IB(E) = IB(F ). This follows because

IB(E) = max{IB(σ(x)) | x ∈ Var(Ei)}
(By (43) and IB(E) > IB(E) ≥ IB(Ei))

= max{IB(σ(x)) | x ∈ Var(Fi)}
(By Lem. 32, as Ei = Fi is sound)

= IB(F )
(By (43) and IB(F ) > IB(E) ≥ IB(Fi))

• Case: The equality E = F is proven using the transitivity rule, i.e., E ` E = F
because, for some G ∈ MPAs∗(A,Var), E ` E = G and E ` G = F by shorter
inferences.

1. By applying the inductive hypothesis for statement 1 to E ` E = G and
E ` G = F , we derive that:

IB(E) > IB(E) ⇔ IB(G) > IB(E)(44)
IB(G) > IB(E) ⇔ IB(F ) > IB(E)(45)

from which the claim follows immediately.

2. Assume that IB(E) > IB(E) and IB(F ) > IB(E). By (44) and (45), we also
have that IB(G) > IB(E). We may therefore apply the inductive hypothesis
for statement 2 to the inferences E ` E = G and E ` G = F to derive that
IB(E) = IB(G) = IB(F ), as desired.
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• Case: The equality E = F is proven using the substitutivity rule for action
prefixing, i.e., E ` E = F because, for some action a ∈ A and terms E ′, F ′ ∈
MPAs∗(A,Var), E ≡ aE ′, F ≡ aF ′ and E ` E ′ = F ′ by a shorter inference.

Both statements follow immediately by induction and the fact that, for every G ∈
MPAs∗(A,Var), IB(aG) = IB(G).

• Case: The equality E = F is proven using the substitutivity rule for summation,
i.e., E ` E = F because, for some terms E ′, E ′′, F ′, F ′′ ∈ MPAs∗(A,Var), E ≡
E ′ + E ′′, F ≡ F ′ + F ′′ and the equalities (E ′ = F ′) and (E ′′ = F ′′) are provable
from E by shorter inferences.

1. Note, first of all, that, for all E1, E2 ∈ MPAs∗(A,Var),

IB(E1 +E2) = max(IB(E1), IB(E2)) .(46)

Now we may argue thus:

IB(E) > IB(E) ⇔ IB(E ′) > IB(E) or IB(E ′′) > IB(E) (46)
⇔ IB(F ′) > IB(E) or IB(F ′′) > IB(E) (By induction)
⇔ IB(F ) > IB(E) (46)

and we are done.

2. Assume that IB(E) > IB(E) and IB(F ) > IB(E). By (46) we may assume,
without loss of generality, that IB(E) = IB(E ′). By the inductive hypothesis
for statement 1, we derive that IB(F ′) > IB(E). Therefore, using the inductive
hypothesis for statement 2, we may infer that IB(E) = IB(E ′) = IB(F ′). By
(46), the claim will now follow if we prove that

IB(F ′′) ≤ IB(F ′) .

As, by our assumptions IB(F ′) = IB(E) > IB(E), this is immediate if IB(F ′′) ≤
IB(E). Otherwise, we have that IB(F ′′) > IB(E). By the inductive hypothesis
for statement 1, we infer that IB(E ′′) > IB(E). We may therefore apply the in-
ductive hypothesis for statement 2 to derive that IB(F ′′) = IB(E ′′) ≤ IB(E) =
IB(E ′) = IB(F ′), as desired.
Hence we have proven that IB(E) = IB(F ).

• Case: The equality E = F is proven using the substitutivity rule for string it-
eration, i.e., E ` E = F because, for some string w ∈ A+ and terms E ′, F ′ ∈
MPAs∗(A,Var), E ≡ w∗E ′, F ≡ w∗F ′ and the equality (E ′ = F ′) is provable from
E by a shorter inference.

1. Note, first of all, that, for all G ∈ MPAs∗(A,Var),

IB(w∗G) = max(length(w), IB(G)) .(47)

The claim now follows immediately by this fact and the inductive hypothesis
for statement 1.
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2. Assume that IB(E) > IB(E) and IB(F ) > IB(E). We shall prove that IB(E) =
IB(F ). We proceed by distinguishing two cases depending on whether IB(E ′) >
IB(E) or not.

– Case: IB(E ′) > IB(E).
In this case, the inductive hypothesis for statement 1 gives that IB(F ′) >
IB(E). Therefore we may apply the inductive hypothesis for statement 2
to the inference E ` E ′ = F ′ to derive that:

IB(E ′) = IB(F ′) .(48)

The claim now follows from the following chain of equalities:

IB(E) = max(length(w), IB(E ′)) (47)
= max(length(w), IB(F ′)) (48)
= IB(F ) (47)

– Case: IB(E ′) ≤ IB(E).
In this case, the inductive hypothesis for statement 1 gives that IB(F ′) ≤
IB(E) also holds. The claim now follows because, as IB(E) and IB(F ) are
strictly greater than IB(E) by the assumptions of the statement, it must
be the case that

IB(E) = length(w) = IB(F ) .

This completes the proof of the lemma. 2

Using Lem. 34, we can finally prove that bisimulation equivalence cannot be finitely
axiomatized over MPAs∗(A), unless the set of actions A is empty.

Theorem 35. Assume that the set of actions A is non-empty. Then no finite collection
of sound equations over the signature of MPAs∗(A,Var) can be complete for bisimulation
equivalence over the language MPAs∗(A).

Proof. Assume that A is a non-empty set of actions. Let E be a finite collection of sound
equations over the signature of MPAs∗(A,Var). We exhibit a sound equality P = Q that
E cannot prove, thus showing the incompleteness of the theory E .

Let k 4= IB(E). Consider the pair of terms P 4= (ak+1)∗δ and Q
4= (ak+2)∗δ. It

is not hard to see that P↔––Q. In fact, this follows from Lem. 15 and the fact that
MPAs∗ ` P = Q by using equation S3 twice. However, by Lem. 34(2), E 6` P = Q
because IB(P ) > k and IB(Q) > k, but IB(P ) 6= IB(Q). 2

6 Extensions to BPAs∗
δε(A)

The results that we have presented so far can be extended to the language BPAs∗δε (A),
obtained by augmenting BPAδ [4] with the empty process ε from [23] and with string
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a
a→ ε ε

X→ δ

P
µ→ P ′

P +Q
µ→ P ′

Q
µ→ Q′

P +Q
µ→ Q′

P
a→ P ′

PQ
a→ P ′Q

P
X→ P ′ Q

µ→ Q′

PQ
µ→ Q′

(aw)∗P a→ w(aw)∗P P
µ→ P ′

(aw)∗P µ→ P ′

Table 4: The operational rules for BPAs∗δε (A) (a ∈ A, µ ∈ AX)

iteration. We shall spare the reader the tedious details of the proofs, and only indicate
the extra ingredients needed for the proofs presented so far to go through over this
language, when there are any.

The language of BPAs∗δε (A,Var) terms is generated by the following grammar:

E ::= a | δ | ε | x | E + F | EF | w∗E

where a ∈ A, w ∈ A+ and x ∈ Var. The notion of k-bounded term introduced in
Sect. 3 applies equally well to terms in the language BPAs∗δε(A,Var), and we shall take
the liberty of talking about k-bounded BPAs∗δε (A,Var) terms in the technical statements
of this section. The set of closed terms generated by the above grammar will be denoted
by BPAs∗δε (A) (P,Q,P ′ . . . ∈ BPAs∗δε (A)).

The operational semantics for the language BPAs∗δε (A) is given by the labelled transi-
tion system

(BPAs∗δε(A), AX, {
µ→| µ ∈ AX})

specified by the Plotkin-style operational rules in Table 4, where AX
4= A ∪ {X} and X

is a fresh action symbol used to denote successful termination. The operational rules
in Table 4 are by now completely standard; here we only remark that the operational
treatment of sequential composition we adopt is taken from [17]. It is easy to see that
whenever the transition P X→ Q can be derived from the rules in Table 4, then Q ≡ δ.

Bisimulation equivalence over BPAs∗δε(A), denoted by ↔–– with abuse of notation, is
defined by extending the notion of bisimulation relation given in Def. 10 with the extra
requirement that whenever P < Q and P X→ P ′, then Q

X→ Q′ for some Q′.
As the rules in Table 4 are in tyft/tyxt-format [17], bisimulation equivalence is a

congruence over the language BPAs∗δε (A). We shall now show how the results on axioma-
tizations of bisimulation equivalence presented in the previous sections can be extended
to the language BPAs∗δε (A).
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A4 (x+ y)z = xz + yz
A5 (xy)z = x(yz)
A7 δx = δ
A8 xε = x
A9 εx = x

S8 (w∗x)y = w∗(xy)

Table 5: The extra axioms for BPAs∗δε (A) (w ∈ A+)

Let BPAs∗δε denote the equational theory obtained by extending the one in Table 2 with
the equations in Table 5. Equations A4, A5 and A7–A9 are familiar from the various
flavours of the algebra BPA [4] with or without features like the deadlocked process δ and
the empty process ε. Equation S8 is an instance of law SEI2 from [6]. Versions of this
equation dealing with the so-called prefix iteration may be found in [13, 15]. By analogy
with our previous terminology, we say that an equation (E = F ) in the theory BPAs∗δε is
k-bounded if both E and F are k-bounded BPAs∗δε (A,Var) terms.

Theorem 36. The axiom system BPAs∗δε is sound and complete for bisimulation equiva-
lence over the language BPAs∗δε (A), i.e. for all BPAs∗δε(A) terms P and Q,

P↔––Q ⇔ BPAs∗δε ` P = Q.

Moreover, for k-bounded BPAs∗δε (A)-terms P and Q, if P↔––Q then the equality P = Q
can be proved by using only k-bounded equations in the theory BPAs∗δε .

Proof. (Sketch) We only give a hint on how the proof of Thm. 29 can be adapted to
show the completeness of the theory BPAs∗δε for bisimulation equivalence over the language
BPAs∗δε (A).

First of all, note that it is sufficient to prove completeness of the theory BPAs∗δε for
bisimulation equivalence over a subset of BPAs∗δε (A), namely that of basic terms. A
BPAs∗δε (A) term is said to be basic iff it can be generated by the following grammar:

P ::= δ | ε | aP | P + P | w∗P .

Intuitively, basic terms are BPAs∗δε (A) terms in which action prefixing is used in lieu of
general sequential composition. A straightforward argument by induction on the size of
of BPAs∗δε (A) terms shows that, for every BPAs∗δε (A) term P , there exists a basic term Q
such that

A4,A5,A7–A9,S8 ` P = Q .

This statement justifies our previous claim that it is sufficient to show completeness for
basic terms.

The fact that the theory BPAs∗δε is complete for bisimulation equivalence over basic
terms can be shown by a painstaking reworking of the proof of Thm. 29 for this language.
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Here we confine ourselves to remarking that in the reworking of the proof of the inductive
step for the statement

P↔––P +Q implies BPAs∗δε ` Q ⊆ P

we make use of the following addition to Lem. 26, which shows how to absorb X-labelled
transitions:

For all P,P ′ ∈ BPAs∗δε (A), P
X→ P ′ implies A3,A4,A9,S1 ` ε ⊆ P .

2

As it was the case for the language MPAs∗(A), the above result shows that, for every pos-
itive integer k, bisimulation equivalence can be finitely axiomatized over the language of
k-bounded BPAs∗δε (A) terms. The equational theory BPAs∗δε that axiomatizes bisimulation
equivalence over the whole of BPAs∗δε(A) is, however, infinite. A careful reworking of the
proof of Thm. 35 shows that, unless the set of actions A is empty, no finite, complete
axiomatization of bisimulation equivalence over BPAs∗δε(A) can exist

Theorem 37. Assume that the set of actions A is non-empty. Then no finite collection
of sound equations over the signature of BPAs∗δε (A,Var) can be complete for bisimulation
equivalence over the language BPAs∗δε (A).
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