
B
R

IC
S

R
S

-95-24
P

.Ø
rbæ

k:
C

an
you

T
rustyourD

ata?

BRICS
Basic Research in Computer Science

Can you Trust your Data?

Peter Ørbæk

BRICS Report Series RS-95-24

ISSN 0909-0878 April 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Can you Trust your Data?

Peter Ørbæk
BRICS, University of Aarhus∗

poe@daimi.aau.dk

March 27, 1995

Abstract

A new program analysis is presented, and two compile time methods for this analysisare
given. The analysis attempts to answer the question: “Given some trustworthy and some
untrustworthy input,can we trust the value of a given variable after execution of some code”.
The analyses are based on an abstract interpretation framework and a constraint generation
framework respectively. The analyses are proved safe with respect to an instrumented
semantics. We explicitly deal with a language with pointers and possible aliasing problems.
The constraint based analysis is relateddirectly to the abstract interpretation and therefore
indirectly to the instrumented semantics1.

1 Introduction

This paper discusses a static program analysis that can be used to check that the validity of
data is only promoted to higher levels of trust in a conscious and controlled fashion.

It is important to stress that the purpose of the analyses isnot to improve run-time
performance, but to give warnings to the programmer whenever untrustworthy data are
being unduly trusted.

In the rest of the paper we try to motivate the need for a trust analysis. We give an
instrumented semantics for a simple first order language with pointers, in effect keeping
track of the trustworthiness of data at run-time. Then an abstract interpretation is pre-
sented, approximating the analysis statically. Finally, in order to gain separate analysis of
separate program modules as well as better time complexity, a constraint based analysis
is presented. The constraint based analysis is proved to be a safe approximation of the
abstract interpretation.

2 Motivation

Many computer systems handle information of various levels of trustworthiness. Whereas
the contents of the company database can usually be trusted, the input gathered via a

∗BasicResearchin ComputerScience,Dept. of Comp. Sci., University of Aarhus, Denmark,
Centre of the Danish National Research Foundation.

1References should point to [8] instead to this report.

1

modem, or from a part-time secretary may not be trusted as much, and data validation and
authentication routines must ensure the validity of data before it is promoted to a higher
level of trust and entered into the database.

That there is a need for some method to control the propagation of trust in real-life
computer programs is witnessed for example by the security hole recently found in the
Unix sendmail program [1]. Sendmail is the mail forwarding program running on
the majority of Unix machines on the Internet. The security hole allowed one to give the
program a certain devious input (in an e-mail message) that would result in having arbitrary
commands executed on the machine with superuser privileges. Had an analysis like the one
described in this paper been run on thesendmail sources it is likely that such a breach
in security could have been noticed in advance. See below.

As an example of the kind of analysis envisioned, Perl [9] implements “taint” checks at
run-time to help ensure that untrustworthy values are not put in places (such as a process'
user-id) where only trusted data should go. This “tainting” is very closely related to the
instrumented semantics given below.

We aim at finding astatic program analysis, i.e. an analysis run only once when a
program is compiled, such that the programmer is warned if and when data is promoted
from untrustworthy to trustworthy in an uncontrolled fashion. Clearly there will be a need
to promote data from untrusted to trusted, but with the envisioned analysis we can guarantee
that the promotion takes place in an explicit and conscious way.

In [3, 4] Denning and Denning present a flow analysis for what they call “secure
information flow”. Their analysis in a sense solves the dual of the problem attacked in
this paper. Their aim is to prevent privileged information from leaking out of a trusted
computer system, whereas “trust analysis” aims at preventing untrustworthy information
from entering into a trusted computer system.

2.1 The Sendmail example

Inside thesendmail C code there is a routine,deliver() , that delivers an e-mail
message to an address:

void deliver(MSG m, ADR a, ...) {
...
setuid(a.uid);
...

}

For some addresses, theuid field makes no sense and is uninitialized. In current
sources, theADRstructure contains a bit that should be set just when theuid field is valid,
and this bit is tested in several places at run-time before theuid field is used. The security
hole existed because the programmer had forgotten to insert enough of these checks and
consequently, under certain circumstances one was able to circumvent the checks and gain
superuser privileges.

With a trust analysis, a reasonable choice is to make thesetuid() system-call accept
only trusted values, as it sets the user-id of the current process. This forcesa.uid to
be a trusted value for compilation ofdeliver() to succeed. One would then have just
oneplace, namely in a validation procedure, where the value of an address'uid field is
promoted to trusted.

ADR validate_address(ADR a) {

2

ADR a1;
... some validation, fill in appropriate parts of a1.
... we may now trust the contents of a.uid.
a1.uid = trust(a.uid);
return a1;

}

The trust analyzer will now be able to ensure the programmer that only trusted values
are passed tosetuid() . And all the run-time checks on the validity bit are no longer
needed as the trust checks are wholly static.

3 TheWhile language

Since a large part of security conscious programs today are written in C, a stripped down
imperative C-like language with pointers is explored. The abstract syntax for the language
is defined by the following BNF:

I ::= variable names
P ::= deref P | I
E ::= P | E +E | ... | const | addr I | trust E | distrust E
S ::= while E do S | S;S | P := E

Informally, I denotes identifiers,P denotes pointer expressions,E denotes arithmetic
and boolean expressions andS denotes statements. Initially the language included first
order procedures, but due to lack of space and since they can be added on in a straightforward
way they have been left out. How to do this is briefly discussed in Section 7.

We assume programs arestrongly typed(i.e. like in Pascal), but leave out type declara-
tions such asint or bool as the only thing that matters for our purpose is whether a variable
contains a pointer or a scalar (non-pointer) value.

Deref dereferences pointers.If-statements can be emulated bywhile loops. This saves
a syntactic construct.

Notation: The following conventions are used for meta-syntactic variables:i ranges
over identifiersI ; e, e1 ande2 range over expressionsE; p range over pointer expressions
P ands, s1 ands2 range over statementsS.

4 Instrumented Semantics

In order to keep track the trustworthiness of values at run-time, we give an instrumented
semantics that associate each value with a flag telling whether the value can be trusted or
not. This is to be taken as thedefinitionof the desired analysis.

Below are the definitions of the semantic domains.Addr is the set of possible addresses
in memory. The set of possible program values,Val, includes at least integers, booleans
and addresses. Environments (Env) map identifiers to addresses. Note that environments
are assumed to beinjective.

By strong typing we can assume thattrust is applied to scalar values only. This will
be important for the constraint generation analysis.Notation: The memoryM [v/a] is as
M except that the addressa is mapped to the valuev, and similarly for environments.

3

Tr = {⊥,>}
ValI = Val ×Tr

MemI = Addr → ValI
EI : E → Env → MemI → ValI
SI : S → Env →MemI → Tr →MemI

addrI : P → Env →MemI → Addr
MI ∈ MemI

We equip the setTr with a total ordering (≤) such that⊥ ≤ > in order to make it a
lattice. The least upper bound operation on this lattice will be denoted by∨, which will
also be used to denote thelub of environments by point-wise extension. The idea is that
⊥ corresponds to trusted data, and> corresponds to untrusted data.Notation: 〈·, ·〉 forms
Cartesian products andπn is then' th projection.t ranges overTr andv overVal.

EI i A MI = MI(A(i))
EI [[addr i]] A MI = 〈A(i), ⊥〉
EI [[deref p]] A MI = let 〈v, t〉 = EI p A MI in

〈π1(MI(v)), t ∨ π2(MI(v))〉
EI [[e1 + e2]] A MI = (EI e1 A MI)+̂(EI e2 A MI)
EI [[trust e]] A MI = 〈EI e A MI , ⊥〉

EI [[distrust e]] A MI = 〈EI e A MI , >〉
EI const A MI = 〈const , ⊥〉
〈v1, t1〉+̂〈v2, t2〉 = 〈v1 + v2, t1 ∨ t2〉

The last parameter toSI is used in connection withwhile loops, the reason being that
if the condition in the loop cannot be trusted, then all variables assigned in the loop can no
longer be trusted as they may depend on the number of iterations taken.

addrI i A MI = A(i)
addrI [[deref p]] AMI = π1(MI(addrI p A MI))

SI [[while e do s]] A MI t = let 〈v, t′〉 = EI e A MI in
if v then
SI [[while e do s]] A (SI s A MI (t ∨ t′)) t

else MI

SI [[p := e]] A MI t = let 〈v, t′〉 = EI e A MI in
MI [〈v, t ∨ t′〉/(addrI p A MI)]

SI [[s1; s2]] A MI t = SI s2 A (SI s1 AMI t) t

5 Abstract Interpretation

The instrumented semantics has the drawback that it propagates the trust of variables only
at run-time. Below is presented an abstract interpretation [2] of the language computing an

4

approximation to the trust tags and not the actual values.
Since the actual values are not known during the abstract interpretation neither are

the addresses, hence environments and memories are collapsed into abstract environments
mapping identifiers directly to “trust signatures”.Notation: 2I denotes the set of subsets
of I .

ValA = Tr ∪ 2I

EnvA = I → ValA
EA : E → EnvA → ValA
SA : S → EnvA → Tr → EnvA

addrA : P → EnvA → 2I

asg : ValA → EnvA → ValA → EnvA

MA ∈ MemI

v ∈ ValA
AA ∈ EnvA

We extend the total ordering onTr to a partial ordering onV alA such that

∀v ∈ ValA : ⊥ ≤ v ≤ > anda, b ∈ 2I ⇒ (a ≤ b ⇐⇒ a ⊆ b).
This makesValA a complete lattice, and for any finite collection of programs, finite as
well. ∨ is used for least upper bound on this lattice too.

The idea is that⊥ corresponds to trusted scalars. A set of identifiers corresponds to a
trusted pointer that may point to any of the variables mentioned in the set.> corresponds
to untrusted values of any kind. Letting abstract environments map identifiers to sets of
identifiers, instead of keeping both information about the pointer and the data pointed to in
the abstract environment, is done to handle pointer aliasing.Notation: For brevity, define
AA(>) = >, and fora ⊆ I letAA(a) =

⋃{AA(i) | i ∈ a}.

EA i AA = AA(i)
EA [[addr i]] AA = {i}
EA [[deref p]] AA =

∨
AA(EA p AA)

EA [[e1 + e2]] AA = (EA e1 AA) ∨ (EA e2 AA)
EA [[trust e]] AA = ⊥

EA [[distrust e]] AA = >
EA const AA = ⊥

The auxiliaryasgfunction monotonically assigns a new trust value to a set of identifiers
in an abstract environment.addrA p AA yields the set of variables that might be assigned
to whenp is the left hand side of an assignment.Notation: dom(M) denotes the domain of
the mapM .

asg t AA > = {(i 7→ >) | i ∈ dom(AA)}
asg t AA s = {(i 7→ AA(i) ∨ t) | i ∈ s}

∪{(i 7→ AA(i)) | i ∈ dom(AA) \ s}
addrA i AA = {i}

addrA [[deref p]] AA =
∨
AA(addrA p AA)

5

SA [[while e do s]] AA t = let A′A = SA s AA (t ∨ EA e AA)
in if A′A ≤ AA then AA else SA [[while e do s]] A′A t

SA [[p := e]] AA t = asg (EA e AA ∨ t) AA (addrA p AA)
SA [[s1; s2]] AA t = SA s2 (SA s1 AA t) t

To relate the instrumented and abstract semantics an ordering between instrumented
and abstract values is defined relative to an environment:

A ` 〈v, t〉 v a

if and only if a = ⊥ ⇒ t = ⊥ anda ⊆ I ⇒ (t = ⊥ and v ∈ A(a)).
Informally, the first implication means that if the abstract semantics says that a value

is a trustworthy scalar then indeed it is marked trusted in the instrumented semantics. The
second implication means that if the abstract semantics thinks a value is a pointer to one of
the variables in a seta then by the instrumented semantics the value is indeed trustworthy
and is a pointer to one of the variables in the seta.

The relation is extended to relate combined instrumented memories and environments
with abstract environments like this:

MI ◦A v AA

if and only if dom(MI ◦ A) = dom(AA) andA ` (MI ◦A)(i) v AA(i) for all variablesi ∈
dom(AA)

We relate the abstract interpretation to the instrumented semantics in the following way:

Proposition 1 (Safety) If a statement is executed in an environmentA and a memoryMI

by the instrumented semantics, and the abstract environmentAA is a safe approximation
of A andMI then the result of the abstract interpretation is a safe approximation of the
memory resulting from the instrumented semantics. Formally: If

SI s A MI t = M ′, MI ◦A v AA, SA s AA tA = A′ and t ≤ tA

thenM ′ ◦A v A′.

Proof. See Appendix A.
The abstract interpretation terminates. It is clear thatEA terminates as it is defined

inductively in the (finite) structure of expressions, and no fixpoints are computed. The only
possibility forSA to diverge would be in thewhile case where a fixpoint is computed, but
by Lemma 4 the fixpoint is computed of a monotone function over a lattice of finite height,
hence the fixpoint can be found in finite time by iteration.

If we let n denote the number of distinct variables used in a program, letl denote the
number of statements and expressions, and letm denote the greatest depth ofwhile-loop
nests in the program, the number of least upper bound operations onValA executed by the
abstract interpretation will be inO((n + l)2m). In the worst case, the least upper bound
operation onValA can be computed inO(n) time. This sounds worse than it really is. For
ordinary programsmwill be a small constant, and the complexity of analyzing awhile-loop
is at mostO(n2

b) times the complexity of analyzing the loop body. Herenb is the number
of pointervariables occurring in the body of the loop.

If procedures are added to the language, fixpoints need to be computed for each proce-
dure call, hence the time complexity will be even worse in that case.

6

Apart from the time complexity, the main drawback of the abstract interpretation
analysis is that it needs the world to be closed; that is, the analysis cannot be run for each
program module separately. In the next section a separable constraint based analysis is
presented.

6 Constraint Generation

- Or else, what follows?
- Bloody constraint!...

William Shakespeare: Henry V, Act II, Scene 4.

The constraint generator is going to associate three constraint variables to each program
variable. A solution to the generated set of constraints will assign an appropriate trust value
for the program variable to one of these constraint variables.

The constraint analysis constructs constraints from any sequence of statements. This is
more general than simply allowing for separate analysis of individual functions, since any
sequence of statements can be (partly) analyzed out of context. This might for example be
useful with an advanced module system like the Beta fragment system [7].

For the purpose of this article, a program consists of a top fragment that includes zero
or more fragments which may again include smaller fragments and so on. The inclusion
ordering of the fragments form a directed acyclic graph (DAG), as a single fragment may
be included more than once, but we disallow circular dependencies.

Fragments are supposed to be analyzed in a bottom-up fashion, first analyzing the leaf
fragments that include no other fragments, then analyzing fragments that include only leaf
fragments and so on. In effect, the fragments are treated in reverse topological order.

The domains used in the definition of the constraint generation analysis are defined
below:

V ::= I |∇I | ∆I
δ, η : V → V

N : P → V

Ct = (V ∪Tr)× V
C = 2Ct

ES : E → C × V
SS : S → C × 2V

G ∈ V

V is the set of constraint variables. For an identifieri, ∆i, and∇i are simply constraint
variables. The intuition is that whereasi will hold the trustworthiness of the value of the
program variablei, ∆i will hold the trust of all the values reachable by dereferencingi any
number of times. Constraint variables∇i are used to hold the trust ofaddr terms.

G is a special constraint variable corresponding to the global trustworthiness of a
memory. That is, if a value is assigned to the target of an untrusted pointer then that value
could end up anywhere, and the trustworthiness of the entire memory is corrupted.

The pair〈s, t〉 ∈ Ct codes the constraints ≤ t. For readability we write{s ≤ t}
for such a constraint and{s = t} as an abbreviation for{s ≤ t, t ≤ s}. The generated
constraints will be of the form{variable or constant ≤ variable}over the two element

7

lattice{⊥,>}, hence they can be solved by simple constraint propagation in linear time.
The existence of a solution is guaranteed since assigning> to all constraint variables will
satisfy the generated constraints.

We assume that any set of constraints include the constraints{i ≤ ∆i} for all identifiers
i.

The functionδ onV “dereferences” constraint variables:

δ ∇i = i

δ i = ∆i
δ ∆i = ∆i

The functionη “safely” takes the address of a constraint variable.

η ∇i = ∇i
η i = ∇i
η ∆i = ∆i

The mapN generates constraint variables from pointer expressionsP :

N i = i

N [[deref p]] = δN (p)

ES generates constraints for expressions together with the variable corresponding to the
given expression. In each casen denotes a freshly created constraint variable.

ES i = 〈∅, i〉
ES[[addr i]] = 〈∅,∇i〉
ES[[deref p]] = let 〈c, v〉 = ES p

in 〈c, δv〉
ES [[e1 + e2]] = let 〈c1, v1〉 = ES e1

〈c2, v2〉 = ES e2

in 〈c1 ∪ c2 ∪ {v1 ≤ n, v2 ≤ n}, n〉
ES [[trust e]] = 〈∅, n〉

ES[[distrust e]] = 〈{> ≤ n}, n〉
ES const = 〈∅, n〉

SS generates constraints for statements. The second part of the result is the set of
constraint variables corresponding to variables assigned to within the statement. This is
used to generate additional constraints forwhile-loops such that variables assigned to in
the loop body are trusted only if the condition of the loop is.

SS[[while e do s]] = let 〈ce, v〉 = ES e
〈cs, a〉 = SS s

in 〈cs ∪ ce ∪ {v ≤ x | x ∈ a}, a〉

8

SS[[p := e]] = let 〈ce, v〉 = ES e
in 〈ce ∪ {v ≤ N (p), δN (p) = δv, ηN (p)≤ G}, {N (p)}〉

SS[[s1; s2]] = let 〈c1, a1〉 = SS s1

〈c2, a2〉 = SS s2

in 〈c1 ∪ c2, a1 ∪ a2〉

A solution to the generated constraints (called amodel) is a mapm giving values to the
constraint variables such that the constraintsc are fulfilled, this is writtenm |= c. Formally:
m |= c if and only if

∀〈s, t〉 ∈ c : m(s) ≤ m(t).

It is clear that ifm |= c1 ∪ c2 thenm |= c1 andm |= c2.
We will consider only a subset of all possible models for a set of constraints, namely

so-calledcoherentmodels. A modelm is coherent if it satisfies

m(a) ≤ m(b) ⇒ m(δa) ≤ m(δb).

It is clear that the model that assigns> to all variables is a coherent model, hence the
existence of a coherent model is assured.

Coherent models and abstract environments can be related to each other in the following
way: We writeAA v m if and only if

AA(i) = > ⇒ m(i) = >

and
a ∈ AA(i) ⇒ m(∆i) = m(a),

or, alternativelym(G) = >.
An intuitive view of the above is that in order for a model to be a safe approximation of

an abstract environment, it must assign conservative trust-values to all variables, and if a
pointerp can point to a number of variables then the constraint variable∆pmust be equated
to the trust-values of all these variables.

The constraint generation analysis is related to the abstract interpretation by the follow-
ing safety statement:

Proposition 2 If

〈c, v〉 = SS s,
m |= c, and m is coherent

AA v m,

∀x ∈ v : t ≤ m(x),
A′A = SA s AA t

thenA′A v m.

Proof. See Appendix B.
The constraint generation analysis is strictly weaker than the abstract interpretation in

the sense that more variables are treated as untrusted, as is demonstrated by the following
example:

9

Program New constraint
p := addr j {∇j ≤ p, ∆p = j}
p := addr i {∇i ≤ p, ∆p = i}
i := distrust 8 {> ≤ i}
k := deref p {∆p ≤ k, ∆k = ∆p}

Remember that the following constraint is implicitly assumed:{p ≤ ∆p}. In the
abstract interpretation, onlyi will be marked untrusted at the end, whereas in the constraint
analysis the trust ofi andj are linked by equality sincep may point to both2.

Generating the constraints for a program of sizen takesO(n2) time in the worst case
assuming that the addition of a single constraint can be done in constant time. The
constraints, being of such simple nature, may be solved by value propagation in linear time
in the number of constraints. All in all constraint generation and (partial) solving can be
done in quadratic time in the size of the program fragment.

7 Extensions

By treating arrays as one logical variable, the analysis is able to handle arrays as well as
scalar data. This means that the analysis cannot know that some elements of an array are
trusted and some are not. Either all elements are trusted or none are. This tradeoff is
necessary for the abstract and constraint analyses since they are unable to compute actual
offsets in the array. This tradeoff in accuracy is the same as encountered in set-based
analysis [5].

Records orstructs can be handled by treating each field of the record as a separate
variable.

Extending the language with first order procedures is simple enough. The abstract
interpretation will simply model the procedure calls directly and compute fixed points in
case of recursion. The constraint generation will first compute constraints for the body of
a procedure and for each call add constraints matching formal and actual parameters. By
copying the constraints generated for the body we can achieve a polyvariant analysis such
that a particular call of the procedure with an untrustworthy argument does not influence
other calls of that procedure.

A “check for trusted value” construct that will raise an error when an untrusted value
is given as parameter is easily added to the language, but makes the semantics larger and a
bit more complicated as it has to deal with abnormal termination. The relation between the
instrumented and abstract interpretation must state that if the instrumented semantics says
that a program will fail then the abstract interpretation will too. Extending the constraint
generation analysis with the “check” construct means that there will only be a model for
the generated constraints if all checks are met.

Extending the analysis to languages with higher order functions while still catering for
pointers and mutable data seems to be more complicated and is left for future research.

The concept of trust can be extended to multiple levels of trust, so that instead of a
binary lattice of trust values, a lattice with longer chains was used. For the instrumented
semantics and the constraint generation, this is a straightforward generalization. For the

2As remarked by one of the referees, it might be possible to detect some of these situations asp is deadafter the
first assignment, so one might remove the constraints added in the first line from the final constraints and thereby
get a better solution. This effect might also be achieved by removing assignments to dead variables before trust
analysis.

10

abstract interpretation, the abstract domain is changed such that all “very trusted” pointers
are below the “lesser trusted” pointers all of which are below>.

8 Conclusion

We have argued that the analysis of the trustworthiness of data is a useful program analysis
in security conscious settings, and we have given two static analyses for this purpose, one
based on abstract interpretation, and another constraint analysis that facilitates separate
analysis of program modules at the cost of slightly less accuracy.

The analyses have been proved safe with respect to an instrumented semantics that has
served as the definition of the goal of the analysis.

The main contribution of this paper is thought to be the introduction of the concept of
trust analysis, and the application of it to a language with pointers and mutable data

Currently, work is in progress together with Jens Palsberg to formulate trust analysis
for a higher order language with polymorphic functions in terms of a type inference system.
There are some similarities between binding-time analysis [6] and trust analysis in this
case, but there are also significant differences. Most notably, in binding-time analysis: if
an argument is used by a function that expects a dynamic argument, the argument itself has
to be marked dynamic, and the “dynamicness” propagates back through the argument. Not
so in trust analysis. There the argument can be “lifted” from trusted to untrusted in that
place without affecting other parts of the program.
Acknowledgments: The author wants to thank Jens Palsberg, Peter D. Mosses and
Neil D. Jones for reading earlier drafts of this paper and giving useful comments. Also the
anonymous referees provided useful feedback.

A Safety of Abstract Interpretation

Fact 1 If a ≤ b andb ∈ s ⊆ V alA thena ≤ ∨ s.
Fact 2 If A ` v v a anda ≤ b thenA ` v v b.

Lemma 1 If MI ◦A v AA thenA ` EI e A MI v EA e AA.

Proof. By structural induction one. We proceed with a case analysis:

• e = i: ShowA ` MI(A(i)) v AA(i) which follows from the definition ofv.

• e = [[addr i]]: ShowA ` 〈A(i),⊥〉 v {i}, and clearlyA(i) ∈ A({i}).
• e = [[deref p]]: Let 〈v, t〉 = EI p A MI anda = EA p AA, show:

A ` 〈π1(MI(v)), t∨ π2(MI(v))〉 v
∨
AA(a).

By induction,A ` 〈v, t〉 v a. By strong typing we can assume thatv is indeed a
pointer and that eithera = > or a ⊆ I . In the first case the desired inequality holds
trivially. In the second case we know thatv ∈ A(a), and also thatt = ⊥. Assume
thatv = A(a0), a0 ∈ a. AsMI ◦A v AA, A `MI(v) v AA(a0), and using Fact 1
and Fact 2 we get the result.

• e = [[e1 + e2]]: By induction,

A ` (〈v1, t1〉 = EI e1 A MI) v EA e1 AA = a1,

11

A ` (〈v2, t2〉 = EI e2 A MI) v EA e2 AA = a2.

ShowA ` 〈v1 + v2, t1 ∨ t2〉 v a1 ∨ a2. If one of{a1, a2} is>, the result is trivial.
If they are both⊥, botht1 andt2 must be too.

• e = [[trust e′]]: ShowA ` 〈EI e′ A MI , ⊥〉 v ⊥. This follows directly from the
definition ofv.

• e = [[distrust e′]]: Trivial from the definitions.

• e = const : ShowA ` 〈const ,⊥〉 v ⊥, which is trivial.

Lemma 2 If MI ◦A v AA then

A ` 〈addrI p A MI , ⊥〉 v addrA p AA

Proof. By structural induction inp.

• p = i: ShowA ` 〈A(i),⊥〉 v {i} which follows directly from the definition ofv.

• p = [[deref p′]]: ShowA ` 〈π1(MI(addrI p′ A MI)),⊥〉 v
∨
AA(addrA p′ AA).

By induction:A ` 〈addrI p
′ A MI , ⊥〉 v addrA p′ AA. If addrA p′ AA = >

the result is trivial. IfaddrA p′ AA = s ⊆ I then there is an identifiera0 ∈ s such
thatA(a0) = addrI p

′ A MI . ThusA ` MI(A(a0)) v AA(a0) by the assumption
thatMI ◦A v AA, and via Fact 1 and 2 the result follows.

Lemma 3 EA is monotone in its second argument:

AA ≤ A′A ⇒ EA e AA ≤ EA e A′A.

Proof. Trivial by structural induction ine.

Lemma 4 SA is monotone in its second argument:

AA ≤ A′A ⇒ SA s AA t ≤ SA s A′A t

Proof. By structural induction ins.

Proof of Proposition 1 (Safety). We want to prove the following: If

SI s A MI t = M ′, MI ◦A v AA, SA s AA tA = A′A and t ≤ tA

thenM ′ ◦A v A′A.
The proof is by induction in the number of calls ofSI. We proceed by a case analysis

of the syntax ofs:

• s = [[while e do s′]]: By Lemma 1, monotonicity ofEA and Fact 2 we know that
A ` EI e A MI v EA e AA.

If v is false (in the definition ofSI) the result follows from monotonicity.

Otherwise, let〈v, t′〉 = EI e A MI , M ′′ = SI s′ A MI (t ∨ t′) andA′′A =
SA s′ AA (tA ∨ EA e AA). By the above fact one we can apply induction and get
M ′′ ◦A v A′′A.

Now we haveM ′ = SI [[while e do s′]] AM ′′ t and

A′A = SA [[while e do s′]] AA tA = SA [[while e do s′]] A′′A tA.

By induction we getM ′ ◦A v A′A.

12

• s = [[p := e]]: Let 〈v, t′〉 = EI e A MI , vA = EA e AA, a = addrI p A MI and
aA = addrA p AA. We need to show:

MI [〈v, t∨ t′〉/a] ◦A v asg (vA ∨ tA) AA aA.

If aA = > then this follows directly from the definition ofasg. Otherwise by Lemma
2 we haveA ` 〈a,⊥〉 v aA, hence there exists ana0 ∈ aA such thatA(a0) = a. It is
enough to ensure the inequality ata0 since this is the only point where the left hand
side is different fromMI ◦A andasgis clearly monotone in the second argument so
by Fact 2 the inequality holds automatically everywhere else. Evaluating we get:

(asg (vA ∨ tA) AA aA)(a0) = (vA ∨ tA ∨ AA(a0)).

and
(MI [〈v, t∨ t′〉/a] ◦A)(a0) = 〈v, t∨ t′〉.

By Lemma 1 we know thatA ` 〈v, t′〉 v vA. All that remains to show is:A `
〈v, t∨ t′〉 v vA ∨ tA ∨AA(a0) which follows from Fact 1.

• s = [[s1; s2]]: This case follows immediately by two applications of induction.

B Safety of Constraint Generation

Lemma 5 (Addresses)If m is a coherent model,m(G) = ⊥ andAA v m then these two
implications hold:

a ∈ addrA p AA ⊆ I ⇒ m(a) = m(N (p))

and
addrA p AA = > ⇒ > = m(ηN (p))≤ m(N (p)).

Proof. By structural induction inp.

• p = i: addrA i AA = {i} andm(i) = m(N (p)) = m(i).

• p = [[deref p′]]: Note thatm(N (p′)) ≤ m(ηN (p)). First assumea ∈ addrA p AA =∨
AA(addrA p′ AA) ⊆ I . By induction,b ∈ addrA p′ AA ⇒ m(b) = m(N (p′)).

Sincem is coherent,m(δb) = m(δN (p′)) = m(N (p)). Also, asAA v m: m(δb) =
m(∆b) = m(a). Combining the equalities we get the desired result.

Secondly, suppose
∨
AA(addrA p′ AA) = >. EitheraddrA p′ AA = > in which

case induction yields> = m(N (p′)) ≤ m(δN (p′)) = m(N (p)), or there is some
b0 ∈ addrA p′ AA such thatAA(b0) = >. Sincem is a safe approximation ofAA
this meansm(b0) = >. By inductionm(b) = m(N (p′)) for all b ∈ addrA p′ AA so
we get> = m(b0) = m(N (p′)) ≤ m(N (p)) which is the required result.

Lemma 6 (Expressions)The constraints generated for expressions safely approximate
the abstract interpretation of expressions.

Suppose〈c, v〉 = ES e, m is a coherent model ofc, AA v m anda = EA e AA then
the following implications hold:

a = > ⇒ m(v) = >

and
a0 ∈ a ⊆ I ⇒ m(a0) = m(δv).

13

Proof. By structural induction ine.

• e = i: EA i AA = AA(i) and 〈c, v〉 = 〈∅, i〉 by definition. If AA(i) = > then
m(i) = m(v) = > asAA v m. If a0 ∈ AA(i) thenm(∆i) = m(δi) = m(a0) by
the same reason.

• e = [[addr i]]: 〈c, v〉 = 〈∅,∇i〉 anda = {i}. What is required to prove thus is
m(a0) = m(δv) = m(i) for a0 ∈ {i} which is clear.

• e = [[deref p]]: 〈c, vp〉 = ES p, v = δvp anda =
∨
AA(EA p AA).

If a = > then eitherEA p AA = > and by induction> = m(vp) ≤ m(δvp) = m(v),
orEA p AA ⊆ I in which case there is somea0 ∈ EA p AA such thatAA(a0) = >. As
AA v m this means thatm(a0) = >. By induction> = m(a0) = m(δvp) = m(v).
If a0 ∈ a ⊆ I then we must showm(a0) = m(δv). By inductionm(a′0) = m(δvp)
for all a′0 ∈ EA p AA ⊆ I . a0 = AA(a′0) for some sucha′0 thus sinceAA v m,
m(∆a′0) = m(a0) and sincem is coherent:

m(a′0) = m(δvp) = m(v)⇒ m(a0) = m(δa′0) = m(δv).

• e = [[e1 + e2]]: Let 〈c1, v1〉 = ES e1 and〈c2, v2〉 = ES e2. We havec = c1 ∪ c2 ∪
{v1 ≤ v, v2 ≤ v} and by induction the implications hold for the two subexpressions.
Supposea = >: This means thatEA ej AA = > for somej ∈ {1, 2} and by
induction this means thatm(vj) = > and by definition ofc we getm(v) = >.

By strong typing, the abstract value for the expression must be either> or⊥ so this
concludes the case.

• e = [[trust e′]]: We havea = ⊥ so the implications hold vacuously.

• e = [[distrust e′]]: We havea = > andc = {> ≤ v} hencem(v) = > as required.

• e = const : We havea = ⊥ so the implications hold vacuously.

Proof of Proposition 2. We want to prove the following: If

〈c, v〉 = SS s, (1)

m |= c, and m is coherent (2)

AA v m, (3)

∀x ∈ v : t ≤ m(x), (4)

A′A = SA s AA t (5)

thenA′A v m.
We proceed by induction in the number of calls toSA. If m(G) = > then the final

inequality holds regardless ofA′A, so assumem(G) = ⊥. A case analysis follows:

• s = [[while e do s′]]: Let 〈ce, ve〉 = ES e and〈cs, vs〉 = SS s′. By definition of
c: x ∈ vs ⇒ m(ve) ≤ m(x) and by Lemma 6EA e AA = > ⇒ m(ve) = > thus
by (4) ∀x ∈ vs : t ∨ EA e AA ≤ m(x). We can now apply induction ons′ and
getA′A = SA s′ AA (t ∨ EA e AA) v m. If this is the same asAA we are done.
Otherwise we apply induction once more and get the result.

• s = [[p := e]]: If addrA p AA = > then by Lemma 5,> = m(ηN (p))≤ m(G) so
in that caseA′A v m by definition ofv.

Now supposea0 ∈ a = addrA p AA ⊆ I . A′A differs fromAA only on the seta by
definition ofasg. Let 〈ce, ve〉 = ES e andae = EA e AA.

14

If A′A(a0) = t ∨ AA(a0) ∨ ae = > we must showm(a0) = >. By (4) t ≤
m(N (p)) = m(a0) where that last equality comes from Lemma 5. By (3)AA(a0) =
> ⇒ m(a0) = >. By Lemma 6ae = > ⇒ m(ve) = >, and by definition ofc,
m(ve) ≤ m(v) = m(N (p)) = m(a0), using Lemma 5 last. ForA′A(a0) to be> at
least one of the parts of the above disjunction must be> (by definition of theValA
lattice) and by the inequalities,m(a0) = > in all cases.

If A′A(a0) = t ∨ AA(a0) ∨ ae ⊆ I then we must show thata′ ∈ A′A(a0) ⇒
m(∆a0) = m(a′). a′ cannot belong tot ast ∈ Tr . If a′ ∈ AA(a0) then (3) secures
the result. Otherwise, ifa′ ∈ ae then by Lemma 6m(a′) = m(δve) = m(δN (p))
where the last equality stems from the definition ofc. By Lemma 5 and coherence
m(δN (p)) = m(δa0) = m(∆a0).

• s = [[s1; s2]]: LetA′′A = SA s1 AA t and〈c1, v1〉 = SS s1. Now c1 ⊆ c andv1 ⊆ v
by definition ofSS, so by induction we getA′′A v m. With this and equivalent
considerations as above we can apply induction toA′′A ands2 and getA′A v m as
required.

References

[1] CERT Advisory 94:12 Sendmail Vulnerability. Technical report, CERT, 1994. URL:
ftp://ftp.cert.org/.

[2] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. InConference
Proceedings of the Fourth ACM Symposium on Principles of Programming Languages,
pages 238–252, Los Angeles, January 1977.

[3] D. E. Denning. A Lattice Model of Secure Information Flow.Communications of the
ACM, 19(5):236–242, May 1976.

[4] D. E. Denning and P. J. Denning. Certifications of Programs for Secure Information
Flow. Communications of the ACM, 20(7):504–512, July 1977.

[5] N. Heintze. Set-Based Analysis of ML Programs. Technical Re-
port CMU-CS-93-193, CMU School of Computer Science, 1993. URL:
ftp://reports.adm.cs.cmu.edu/usr/anon/1993/CMU-CS-93-193.ps.

[6] F. Henglein and C. Mossin. Polymorphic Binding-Time Analysis. In D. Sannella,
editor, Proceedings of the 1994 European Symposium on Programming (ESOP'94),
volume 788 of LNCS, pages 287–301. Springer-Verlag, April 1994.

[7] J. L. Knudsen, M. L̈ofgren, O. L. Madsen, and B. Magnusson.Object Oriented
Environments: The Mjølner Approach. Prentice-Hall, 1993. ISBN 0-13-009291-6.

[8] P. Ørbæk. Can you Trust your Data? In P. D. Mosses, editor,Proceedings of
the TAPSOFT/FASE'95 Conference, volume 915 ofSpringer Lecture Notes in Com-
puter Science, pages 575–590, Aarhus, Denmark, May 1995. Springer-Verlag. URL:
ftp://ftp.daimi.aau.dk/pub/empl/poe/index.html.

[9] L. Wall and R. L. Schwartz.Programming Perl. O' Reilly and Associates, 1991.

15

Recent Publications in the BRICS Report Series

RS-95-24 Peter Ørbæk.Can you Trust your Data?April 1995. 15
pp. Appears in Mosses, Nielsen, and Schwartzbach, edi-
tors, Theory and Practice of Software Development.6th In-
ternational Joint Conference CAAP/FASE, TAPSOFT '95
Proceedings, LNCS 915, 1995, pages 575–590.

RS-95-23 Allan Cheng and Mogens Nielsen.Open Maps (at) Work.
April 1995. 33 pp.

RS-95-22 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing
Processes, Late Approach, Part II: A Behavioural Seman-
tics and Full Abstractness. April 1995. 33 pp.

RS-95-21 Jesper G. Henriksen, Ole J. L. Jensen, Michael E. Jør-
gensen, Nils Klarlund, Robert Paige, Theis Rauhe, and
Anders B. Sandholm. MONA: Monadic Second-Order
Logic in Practice. May 1995. 17 pp.

RS-95-20 Anders Kock.The Constructive Lift Monad. March 1995.
18 pp.

RS-95-19 François Laroussinie and Kim G. Larsen.Compositional
Model Checking of Real Time Systems. March 1995. 20 pp.

RS-95-18 Allan Cheng. Complexity Results for Model Checking.
February 1995. 18pp.

RS-95-17 Jari Koistinen, Nils Klarlund, and Michael I.
Schwartzbach. Design Architectures through Category
Constraints. February 1995. 19 pp.

RS-95-16 Dany Breslauer and Ramesh Hariharan.Optimal Paral-
lel Construction of Minimal Suffix and Factor Automata.
February 1995. 9 pp.

RS-95-15 Devdatt P. Dubhashi, Grammati E. Pantziou, Paul G.
Spirakis, and Christos D. Zaroliagis.The Fourth Moment
in Luby's Distribution. February 1995. 10 pp. To appear
in Theoretical Computer Science.

RS-95-14 Devdatt P. Dubhashi. Inclusion–Exclusion(3) Implies
Inclusion–Exclusion(n). February 1995. 6 pp.

