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The Constructive Lift Monad

Anders Kock

March 28, 1995

The lift monad is the construction which to a poset freely adjoins a bottom
element to it, or equivalently (from the classical viewpoint), the construction
which freely adjoins suprema for subsets with at most one element. In con-
structive mathematics (i.e. inside a topos), these two constructions are no
longer equivalent, since the equivalence is based on the boolean reasoning
that a set with at most one element either is a singleton {x}, or is empty.

Likewise based on boolean reasoning is the proof of two important prop-
erties of the lift monad T :

1) If a poset C has filtered suprema, then so does TC.
2) Every poset with a bottom element ⊥ is ”free”, i.e. comes about by

applying T to some poset (namely the original poset less the bottom).
Both these properties fail to hold constructively, if the lift monad is in-

terpreted as ”adding a bottom”; see Remark below. If, on the other hand,
we interpret the lift monad as the one which freely provides supremum for
each subset with at most one element (which is what we shall do), then the
first property holds; and we give a necessary and sufficient condition that
the second does. Finally, we shall investigate the lift monad in the context
of (constructive) locale theory.

I would like to thank Bart Jacobs for guiding me to the litterature on
Z-systems; to Gonzalo Reyes for calling my attention to Barr’s work on to-
tally connected spaces; to Steve Vickers for some pertinent correspondence.
I would like to thank the Netherlands Science Organization (NWO) for sup-
porting my visit to Utrecht, where a part of the present research was carried
out, and for various travel support from BRICS1

1Basic Research in Computer Science, Centre of the Danish National Research
Foundation.
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The first Section of the present article subsumes my 1992 [15].

1 The lift monad on posets

We shall consistently talk about the arbitrary topos in which we work as if
it were the category of sets.

There are several ways to describe the free cocompletion T (C) of a poset
C with respect to suprema over subterminal sets (i.e. over sets with at most
one element). We shall give two descriptions (equivalent in all toposes).
The first is simpler, and the second makes the monad structure, universal
properties etc. clearer, and in particular, puts the lift monad into the general
context of cocompletion monads.

In the first description, T (C) is given as the set of partial elements of C,
meaning the set of maps U → C with U a subterminal set, i.e. a subset of
the one-point set 1. The set of these partial elements inherits a partial order
from that of C in combination with the partial order on the set of subsets
of 1; we shall describe this partial order in a more general context, replacing
the set 1 by an arbitrary set X; not so much for the added generality, but
for psychological reasons: it is easier to think of the lattice of subsets of an
unspecified set X, rather than on the lattice of subsets of 1 (=the lattice Ω
of truth values).

For any poset C and any set X, we may form a new poset TX(C), fibered
over Ω(X) (= the set of subsets of X) as follows. Its elements are partial
maps from X to C, i.e. maps of form c : U → C, where U ⊆ X is a subset.
The order relation on these partial maps is the obvious one:

(c : U → C) ≤ (d : V → C)

if U ⊆ V and c ≤ d | U (= the restriction of d to U). (Thus TX(C) is the total
space of the fibration over Ω(X) obtained by the Grothendieck construction
for the functor Ω(X)op → Posets sending U to Hom(U,C).)

Proposition 1 If C has filtered suprema, then so does TX(C).

Proof. Let I be a filtered poset, and (ci)i∈I a family of elements of TX(C)
with ci ≤ cj if i ≤ j. Let Ui denote the domain of ci, so also Ui ⊆ Uj for
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i ≤ j. For each fixed i ∈ I , we have a family of elements in Hom(Ui,C)
indexed by ↑ i (= the set of elements in I above i), namely

cj | Ui for j ≥ i. (1)

This evidently is a filtered family, and since Hom(Ui,C) inherits from C the
property of having filtered suprema, the family ( 1) has a supremum, which
we call di.

We claim that
di = dk | Ui for i ≤ k. (2)

For the inequality ≤, let cj | Ui be one of the elements participating in the
supremum defining di. Pick an index l dominating both j and k (using that
I is filtering). Then cj ≤ cl | Uj, so

cj | Ui ≤ cl | Ui = (cl | Uk) | Ui ≤ dk | Ui,

the last inequality because cl | Uk paticipates in the supremum that defines
dk. So di ≤ dk | Ui. For the other inequality: since the restriction map
Hom(Uk,C) → Hom(Ui,C) preserves filtered suprema (in fact all kind of
algebraic structure which C has), it follows that dk | Ui is the supremum of
the family of elements cl | Ui for l ≥ k, thus is ≤ the supremum of the larger
famly of elements cl | Ui for l ≥ i, so is ≤ di. This proves the claim.

It now follows that the di : Ui → C form a compatible family of elements,
i.e. there exists a unique d :

⋃
Ui → C with d | Ui = di for all i. This d

is readily seen to be the supremum in TX(C) of the ci’s. First, ci ≤ di =
d | Ui ≤ d for all i, so it is an upper bound. If, on the other hand, ci ≤ e
in TX(C) for all i, e is defined on a subset W of X containing

⋃
Ui, and we

have ci ≤ cj | Ui ≤ e | Ui for all j ≥ i, and since di was defined as sup
of such cj | Ui, di ≤ e | Ui. This holds for all i, from which follows that
d ≤ (e | ⋃Ui) in Hom(

⋃
Ui,C), so d ≤ e in TX(C). So d is the least upper

bound, as required.

In a similar vein, we have the follwing, easier, Proposition. In the formu-
lation we give, ”sup-lattice” means that all suprema exist; ”inf-lattice” may
be taken to mean either that all infima, or all finite infima only, exist.

Proposition 2 If C is a a sup lattice, resp. an inf lattice, resp. a frame,
then so is TX(C).
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Proof. This is easier than the previous Proposition; the reason (which also
allows one to prove an array of related results) is that C now has all suprema,
implying in particular that left Kan extensions with values in it exist, in
particular, if i : U → V is an inclusion, and a : U → C a map, there is a
smallest a : V → C with a ◦ i = a. To get suprema in TX(C) of a family
ai : Ui → C with Ui ⊆ X, one forms

∨
ai in the frame Hom(

⋃
Ui,C), where

ai denotes the Kan extension of ai to
⋃
Ui. Similarly the meet of a : U → C

and b : V → C is just (a | U∩V )∧(b | U∩V ). We leave the proof of the frame
distributivity law a ∩ ∨ bi =

∨
(a ∩ bi) to the reader: for this, one uses both

the frame distributivity law in the individual hom-sets Hom(U,C), as well
as the frame distributivity law for the lattice Ω(X). (So if C is a coframe,
i.e. Cop is a frame, it does not, similarly, follow that TX(C) is a coframe. In
fact, it won’t be, in general; see the comparison in Section 2 below between
the op-lift and scone monads.)

We leave to the reader to prove the following results in the same spirit.

Proposition 3 If C has and F : C → D preserves filtered suprema, then
TX(F ) : TX(C)→ TX(D) preserves filtered suprema.

Proposition 4 If C has and F : C → D preserves (finite) infima, then
TX(F ) : TX(C)→ TX(D) preserves (finite) infima.

Remark. For the simple monad 1 + − on POS, (”freely adding a bottom
element”), the conclusions of Propositions 1 and 2 fail, unless the topos is a
deMorgan one (in the sense of [6]). For the 1-point poset 1 is a frame, and
(hence) also has filtered sup, but 1+1 cannot be a frame, nor have filtered
sup unless the topos is deMorgan. The first statement is clear from [6], and
the second can be reduced to it: for, if U ⊆ 1 is subterminal, 1 + U is
filtered (filtered, of course, means: inhabited, and ...). (I am indebted to
Steve Vickers for this argument). Therefore the inclusion 1 + U ⊆ 1 + 1 has
a supremum. Thinking of U as a truth value ∈ Ω, this provides a retraction
of Ω onto 1 + 1 ⊆ Ω, and this again implies deMorgan’s law, cf. loc.cit.

The TX, as described, is an endofunctor on the category POS of posets;
we write T for the special case where X = 1. This T is (the functor part
of) the lift monad, in the first description. To describe its monad structure
and further special properties, we give a second description, namely: T (C)
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is the set of quasi-principal subsets of C, in the sense of Definition 2 below.
This second description will also put T into the context of order completion
monads in general, in the sense extensively studied in the literature, cf. e.g.
[1], [11], [17], [21], [23], and in partiular put it into the context of KZ-monads,
[14].

Recall that the full cocompletion monad J on the category POS of posets
is the construction which to a poset C associates the set J(C) of all lower
subsets of C, i.e. subsets D ⊆ C such that if b ≤ a ∈ D then b ∈ D.
The order on J(C) is just the inclusion ordering of subsets. Every a ∈ C
gives rise to a ”principal” lower set ↓ (a) = {b ∈ C | b ≤ a}, and the
map ↓: C→ J(C) thus defined is an order-preserving inclusion map.We also
denote it ↓C. To say that C is cocomplete (or union-complete, or supremum-
complete) is to say that ↓C has a left adjoint ξ : J(C) → C; then ξ is
necessarily supremum formation, ξ(D) = supD for any lower subset D of C.
All the order completion constructions Z of [1], [23] are in fact submonads
of this monad, cf. [17], and they share with J the property that left adjoints
for ↓ are exactly supremum formation for the relevant kind of lower sets; (in
fact these left adjoints are also the structure maps in the monad theoretic
sense, since the abstract theory of KZ-monads [14] can be seen to seen to
apply).

The most well known of these submonads Z is the monad Idl, where
Idl(C) is the set of filtering lower subsets of C (ideals, in the terminology
of [7]). This special case led Thatcher, Wagner, Wright, Venugopalan and
others to generalize a family of notions and terminology from continuous
lattice theory to general Z: Z-continuous and Z-algebraic posets, and the Z-
way-below relation. Recall from [16] or [7] that a poset C is called continuous
if ↓: C → Idl(C) not only has a left adjoint (=supremum formation for
filtered lower subset) but this left adjoint in turn has a left adjoint. We
shall study the relationship between these notions for the case of the lift
monad; our main result being that in this case, the notions of continuous
and algebraic agree.

To describe the lift monad we first make the following

Definition 5 A subset D ⊆ C of a poset C is quasi-principal if

(∃a ∈ D)⇒ (∃b ∈ C : D =↓ (b)).
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(Thus, to the extent D is inhabited, it is principal. In classical logic, any
set is either inhabited or empty, so besides the principal subsets ↓ (b), the
only other quasi-principal subset is the empty one.)

The lift monad T is now defined by letting T (C) consist of the quasi-
principal subsets of C. To argue that T (C) ⊆ J(C) is to argue that quasi-
principal subsets are lower sets. This argument goes: if a′ ≤ a ∈ D, where
D is quasi-principal, then D is inhabited, as witnessed by a, so D =↓ (b) for
some b. Since a′ ≤ a ≤ b, a′ ∈↓ (b) = D. Slightly more involved is

Proposition 6 T is a submonad of J .

Proof. First, it is a subfunctor. Recall that J becomes a functor by the
recipe that if f : C → B is an order preserving map between posets, then
J(f) takes the lower set D ⊆ C to ↓ f(D), where generally

↓ X = {y ∈ B | ∃x ∈ X with y ≤ x},

for any subset X of any poset B. Now it is clear that if D is quasi-principal
in C, then J(f)(D) is quasi-principal in B. The unit for J is the formation ↓
of principal lower sets, and it clearly factors through T . It remains to be seen
that the ”multiplication” of J (which is union formation) restricts to one for
T . So we should prove that if F ⊆ J(C) is a quasi-principal family (in the
ordering ⊆) of quasi-principal subsets of C, then

⋃F is a quasi-principal
subset of C. So assume that

⋃F is inhabited. Then there is some a ∈ ⋃F ,
hence there is some D with a ∈ D ∈ F . Then D witnesses F to be inhabited,
hence principal, so there exists some quasi-principal set W ⊆ C such that

F = {V ∈ T (C) | V ⊆ W}.

In particular D ⊆ W . Since a ∈ D ⊆ W , W is inhabited, hence principal,
W =↓ w. We claim that ↓ w =

⋃F , proving the desired principality of
the latter. One inclusion is clear: ifv ≤ w, then v ∈↓ w ∈ F , so v ∈ ⋃F .
Conversely, if v ∈ ⋃F , we have v ∈ V ∈ F for suitable V , but since F is
↓ W , v ∈ V ⊆W =↓ w, so v ≤ w, or v ∈↓ w. This proves the Proposition.

(One may alternatively see T as a case of the Fam monad (cf e.g. [9]),
namely ”families with at most one member” - which, unlike most Fam-
monads does restrict to a monad on Posets.)
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Let C be a poset. If X ⊆ C is a subset with at most one element (so
X is subterminal, in the terminology of [13]), then the set ↓ X is clearly
quasi-principal. Conversely, if D ⊆ C is quasi-principal, the set

D0 = {b ∈ C | D =↓ b}

is subterminal; and ↓ (D0) = D, (↓ X)0 = X. So there is hereby established
a bijective correspondence

T (C) ∼= C̃,

between the set T (C) of quasi-principal subsets of C and the set C̃ of sub-
terminal subsets of the (underlying set of) C. (The inclusion ordering on
the right is generally weaker than the inclusion ordering on the left, though.)
The bijection has clearly the property that it preserves supremum forma-
tion: the supremum of a subterminal subset X exists iff the supremum of
the quasi-principal ↓ X does, and then these suprema are equal. This proves
the equivalence of the first two assertions in

Proposition/Definition 7 Let C be a poset. Then the following conditions
are equivalent

(1) Every subterminal subset X of C has a supremum
(2) Every quasi-principal subset D of C has a supremum
(3) The order-preserving map ↓: C→ T (C) has a left adjoint (which then

is supremum formation for quasi-principal subsets)
(4) C can be equipped with structure of algebra for the monad T .
If either of these conditions hold, C is called weakly cocomplete.

Proof. The equivalence of (2) and (3) is standard: analyzing the universal
property of supremum formation in adjointness terms. The equivalence of
(3) and (4) follows because the monad T is a KZ-monad in the sense of [14].

We now follow [23] and [21] in generalizing the way-below notion, and
related concepts from continuous lattice theory into general order completion
theory, here for the weak cocompletion (which is a ”union-complete subset
system”, in the terminology of [23]).

Let C be a weakly cocomplete poset, and a,b ∈ C. We say that b is T -
way-below a, written b�T a, if for every quasi-principal D with a ≤ supD,
we have b ∈ D. We say that a is T -compact, or positive if a �T a. We say
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that C is T -continuous if the supremum formation sup : T (C) → C has a
left adjoint ⇓, (which is then necessarily given by ⇓ (a) = the set of elements
T -way-below a), and we say that C is T -algebraic if it is of the form T (B) for
some poset B (which is then necessarily (isomorphic to) the poset of positive
elements of C).

We shall henceforth often omit the subscript T when referring to these
notions.

(Note that in the boolean situation, an element is positive iff it is not
the bottom element; the present positive way of expressing this property is
related to a notion of ”positive elements in locales” considered in [8] and [18].
In fact, for any poset with a top element, an element a is T -compact iff every
cover of a is inhabited.)

For general reasons, we have that b′ ≤ b � a ≤ a′ implies b′ � a′, and
that� satisfies an interpolation property; we shall not recall the latter, since
we in our special case have the much stronger

Proposition 8 Let b� a. Then a� a. (”An element way-above anything
is necessarily positive.”)

Proof. Let D be quasi-principal with a ≤ supD. By the assumption that
b � a, b ∈ D, so D is inhabited, hence principal, D =↓ (c), say. So
a ≤ supD =↓ (c), thus a ≤ c, and therefore a ∈↓ (c) = D.

Corollary 9 If b ≤ a and b is positive, then a is positive.

Proof. We have b� b ≤ a whence b� a, so a is positive, by the Proposition.

Let now C be a (T -) continuous poset, and let Pos(C) be the set of
positive elements in C, with ordering induced from C.

Proposition 10 For any a ∈ C, the set Pos(C)∩ ↓ (a) is quasi-principal
in Pos(C); and ↓ (Pos(C)∩ ↓ (a)) is quasi-principal in C.

Proof. Assume that the set Pos(C)∩ ↓ (a) is inhabited, witnessed by b, say.
Then b ≤ a, and b is positive, so by the Corollary, a is positive, whence the
set in question is the principal lower set of the poset Pos(C) generated by
a. The second assertion is a formal consequence of the first.
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In the generality of Z-continuous posets, it is quite generally the case that
Z-algebraic implies Z-continuous. (It can in fact be proved in the generality
of KZ monads, cf. [14], Theorem 3.2). But for the special T at hand here,
we have, conversely

Theorem 11 Every T -continuous poset is T -algebraic.

Proof. The crux in the proof is the implication⇒ in the following

Lemma 12 A poset C is T -continuous iff every element is supremum of the
positive elements below it.

Proof. Assume T -continuity. Let a ∈ C. By the assumption of T -continuity
of C, we have

a ≤ sup{b ∈ C | b� a}.
(Actually, we have equality.) By Proposition 8, the subset over which we are
forming supremum is contained in {b ∈ C | (b ≤ a) ∧ a � a}. If we replace
each b which occurs in this supremum formation with a (which is ≥ each
such b) the supremum will be at least as big. So we have

a ≤ supD,

where D is the (subterminal) subset which consists of a alone, but only to
the extent that a � a, i.e. to the extent that a is positive. Since the other
inequality is clear, a = supD, and now the Lemma is proved by the fact that
D contains only positive elements. (The reader may philosophize over the
plural form used here, since there is at most one element in D; but the English
language deems, apparently, that plural versus singular is not a quantitative
distinction, but a qualitative one: plural is the indefinite number, say 0 or
1,..., whereas singular is the definite one.)

Conversely, assume that every element is sup of the positive elements be-
low it. The adjointness is proved by proving, for each a ∈ C, two inequalities.
First we prove a ≤ sup ⇓ (a). Write a =

∨
bi with the bi’s positive, using

the assumption. So it suffices to prove bi ≤ sup ⇓ a, for each of the bi’s. But
they are positive, so bi � bi ≤ a, so belong to ⇓ a and thus participate in
the sup-formation. The other inequality to be proved is ⇓ sup(U) ⊆ U for
any quasi-principal U . Let a belong to the left hand side, so a � sup(U).
Proposition 8 now implies that sup(U) is positive, and since it is covered by
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U , U therefore is inhabited, hence principal, say U =↓ b. So a� sup(U) = b,
so a ≤ b, so a ∈↓ b = U . This proves the Lemma.

From here on, the argumentation is quite standard. Define f : C →
T (Pos(C)) by

f(a) := Pos(C)∩ ↓ (a),

which is indeed in T (Pos(C), by Proposition 10; and f is clearly order pre-
serving; and define g : T (Pos(C))→ C by

g(D) := sup(D);

we have to argue that this supremum exists (and then, g will clearly be order
preserving). But it is easy to see that ↓ (D) is quasi-principal in C if D is
quasi-principal in Pos(C). So then the supremum of ↓ (D) exists in C, hence
so does the supremum of D.

We finally see that f and g are mutually inverse to another. First, by the
Lemma, we get that g(f(a)) = a for any a ∈ C. Also, for D ∈ T (Pos(C)),

f(g(D)) = f(supD) = Pos(C)∩ ↓ sup(D),

which evidently contains D as a subset. But conversely, if b ∈ f(g(D)), then
b is positive, and b ≤ sup(D) = sup ↓ D. Since ↓ D is quasi-principal in C
and b is positive, this implies that b ∈ D. This proves the Theorem.

Remark 1. If C is a discrete poset, then T (C) consists of the subterminal
subsets of C, so that T (C) = C̃, where the tilde denotes the partial-map
classifier monad in the sense of topos theory, and justifies the use of the
same letter T for the lift monad studied in the present note, and the partial-
map classifier monad studied in [13]. One can, in fact, characterize those
T -continuous posets which are of the form T (C) for C discrete as those
which are shallow in the sense of [13]. For, assume T (C) shallow, and a ≤ b
in C, hence a ≤ b in T (C). By shallowness, a = sup({a} ∩ {b}). But by
the proof of Theorem 7, the elements of C ⊆ T (C) are exactly the positive
elements of T (C). Since a thus is positive in T (C) and a = sup{a} ∩ {b},
a ∈↓ ({a} ∩ {b}) which implies that {a} ∩ {b} is inhabited, hence a = b.

In [13], it is shown that if a setX carries an algebra structure ξ : TX → X
for the partial-map-classifier monad, this structure gives rise to a (shallow)
partial order ≤ on X, with ξ supremum formation; but ξis not adjoint to
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the unit X → TX, since the latter is not order-preserving. So the partial-
map-classifier monad, i.e. the lift monad, on sets, cannot be construed as a
KZ-monad. But in a certain other world of sets, namely the one described in
Synthetic Domain Theory (cf. e.g. [3] and the references therein), every set
acquires a canonical preorder, and in this context, the partial map classifier
is in fact a KZ-monad, as proved in loc. cit.

Remark 2. Let us remark that T is a commutative monad in the sense
of the author, cf. e.g. [12] and the references therin; for, it is a submonad
of J , which is commutative. Since the category POS of posets is Cartesian
closed, the more specific notions of [12] apply. We claim that the equivalent
conditions of loc.cit. Proposition 2.2 hold (so that T is a relevant monad
in the sense of Bart Jacobs, [5]). Here it just means that the two canonical
maps

T (A×B) -κ T (A)× T (B) -ψ T (A×B)

compose to the identity map on T (A × B). In fact, let W ⊆ A × B be
quasi-principal. By the first map, W goes to (proj1(W ), proj2(W )), and this
again by the second to proj1(W ) × proj2(W ). Since the other inclusion is
clear, it suffices to prove

proj1(W )× proj2(W ) ⊆ W.

But if (a, b) belongs to the left hand side, W must be inhabited, hence prin-
cipal, say W =↓ (a0 × b0), and a ∈ proj1(W ) implies a ≤ a0, and similarly
b ≤ b0, so (a.b) ∈↓ (a0, b0) = W .

The other composite

TA× TB -ψ T (A×B) -κ TA× TB

can be shown to be ≤ the identity map on TA×TB, and so κ a ψ, meaning
that T is of the interesting kind of KZ monads studied by Vickers in [22].

Remark 3. Proposition 1 and 3, for X = 1, i.e. for the lift monad T
posets, can easily be upgraded to the statement that there is a distributive
law of the monad Idl over the lift monad T , so that T lifts to a monad on
the category of Idl- algebras (=posets with filtered suprema). One just has
to further observe that f C has filtered suprema, the unit C→ TC preserves
them (as does the multiplication of the monad, being a left adjoint).
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I don’t know to what extent the distributive laws between T and the
”nonempty suprema monad” P+, considered in the context of classical boolean
logic in [5], carry over to the constructive setting.

2 Lift and scone for locales

According to Proposition 2, T (C) is a frame whenever C is, but the monad
T, ↓,⋃ is not a monad on the category FRM of frames, since the unit map
↓: C → T (C) does not preserve bottom element, so is not a frame map.
There is, however, a left adjoint sup : T (C) → C for ↓, since a frame is
cocomplete, hence weakly cocomplete. But it is easy to see, using the frame
distributivity law for C, that sup : T (C) → C is left exact, i.e. preserves
binary inf as well as top element. For binary inf, let D1 and D2 be quasi-
principal sets. Then their meet D1 ∩ D2 is quasi-principal; for, if D1 ∩ D2

is inhabited, then so are D1 and D2, say D1 =↓ d1, D2 =↓ d2, and then
D1 ∩D2 =↓ (d1 ∧ d2), and thus is principal. Thus D1 ∩D2 is the meet of D1

and D2 in the poset T (C) of quasi-principal subsets of C. And applying the
frame distributivity law twice, it is easy to see that∨

D1 ∧
∨
D2 =

∨
d1∈D1

∨
d2∈D2

d1 ∧ d2 ≤
∨
D1 ∩D2,

the other inequality being obvious. Preservation of top element by sup =
∨

is even easier, since the top element of T (C) is not only a quasi-principal
subset of C, but actually the principal ↓ 1. Also the map

⋃
: TTC → TC

has a left adjoint, namely T (↓C), by a general theorem about KZ-monads,
[14] Theorem 3.2. Furthermore, it is easy to see that this T (↓C) is in fact
left exact: First, it preserves top element, since the top element of T (C) is
of form ↓C (1C), and since T (↓C)◦ ↓C=↓TC ◦ ↓C, and this latter composite
is a right adjoint, so preserves top element. Also, T (↓C) preserves binary ∧:
we already argued that ∧ in TC is just ∩. So this means that we should
prove that

T (↓C)(D1) ∩ T (↓C (D2) ⊆ T (↓C)(D1 ∩D2) (3)

for D1 and D2 quasi-principal subsets of C. So assume that F belongs to the
left hand side. But then, for i = 1, 2, T (↓C)(Di) is inhabited (witness F !),
and since T (↓C) is essentially direct image formation (along ↓C), it follows
that the Di’s are inhabited, hence principal, Di =↓C (di). But using again
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T (↓C)◦ ↓C=↓TC ◦ ↓C, it is easy to see that if Di =↓C (di), the two sides in
( 3) are equal. So F belongs to the right hand side as well.

If we now (like in [7]) take the category of locales LOC to be the category
of those order preserving maps f = f∗ between frames which have left exact
left adjoints f∗, then T, ↓,⋃ is a monad on the category LOC. If we make
LOC into a 2-category, by letting the 2-cells be the inequalities between the
f∗’s, the 2-cells we already have between the f∗’s making T, ↓,⋃ into a KZ
monad on POS, give, by mating, 2-cells in the opposite direction between
the f∗’s, so therefore T, ↓,⋃ is an op-KZ monad when considered on the
category LOC, i.e. a monad where structures are right adjoint to units.

Concerning the algebras for this lift monad T on LOC, we have the
following result. Recall (Theorem 11 and Lemma 12) that a T -continuous
poset is a (weakly cocomplete) poset such that every element in it is a sup
of positive elements. (For frames/locales, this in turn can be expressed: C
is an open locale, cf. [8].)

Theorem 13 Let C be a locale. Then t.f.a.e:
1) C admits a structure (necessarily unique) for T
2) the positive elements in C are stable under finite intersections; and C

is T -continuous.
3) for any locale D, the poset LOC(D,C) has a maximal element, pre-

served by composition with any locale map D′ → D; and C is T -continuous.
4) (If C corresponds to a sober topological space X) X has a maximal

point in the specialization ordering (i.e. X is a totally connected space, in
the sense of Barr [2]).

Proof. Assume 1). A T -structure is a right adjoint (locale-) map for the
locale map ↓, or equivalently, passing to their left adjoints, a left adjoint
(frame-) map for the frame map sup : T (C)→ C. Such a left adjoint is then
necessarily given by the recipe a 7→⇓ a, the set of elements T -way below
a. This map is therefore a frame map, in particular preserves finite infima.
Assume that a and b are positive, so a � a and b � b, and hence 0 � a
and 0� b, so 0 ∈⇓ a∩ ⇓ b ⊆⇓ (a∧ b), the last inclusion because ⇓ preserves
binary inf. But by Proposition 8, this implies that a∧b is positive. Similarly,
since ⇓ preserves top element, ⇓ 1 =↓ 1, so 1 � 1, so 1 is positive. Finally,
the mere existence of such left adjoint on the level of posets already means
that it is T -continuous. This proves 2).
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Assume 2). To prove 3), it suffices to prove existence of a maximal frame
map C→ D, (preserved by post-composition with any frame map D→ D′);
we construct a frame map π : C→ Ω, and then post-compose that with the
unique frame map δ : Ω→ D. This π, we define as follows: for a ∈ C, π(a)
is taken to be the truth value of the statement that a is positive. This is
a left adjoint (cf. [8]) so preserves sup, and the assumption 2) implies that
it preserves finite infs as well, so it is a frame map, as required. To see the
maximality of δ ◦π in FRM(C,D) , let ε : C→ D be any other frame map,
and let a ∈ C. We write a =

∨{a | a is positive} (using the assumption of
T -continuity of C, cf. the proof of Lemma 12). Then

ε(a) =
∨
{ε(a) | a is positive} ≤

∨
{1D | a is positive} = δ(π(a)).

The preservation by post-composition is now clear, so 3) holds.
Assume 3). Then in particular there is a ”universally” maximal frame

map π : C → Ω (i.e. preserved by post-composition). By the universality,
µ ◦ π is a maximal frame map C→ C (where µ : Ω→ C denotes the unique
such frame map), and hence µ ◦ π ≥ identity map of C, which is one of the
inequalities for proving π left adjoint to µ; the other inequality is trivially
an equality, since Ω is an initial frame. But now this adjointness π a µ
implies that π(a) in fact is the truth value of ”a is positive”, cf. again [8].
To prove 1), we construct a left adjoint frame map ξ : C → T (C) for sup.
The candidate we present for this is given by

ξ(a) := {b ∈ C | b ≤ a; and π(a)},

which clearly is quasi-principal (namely inhabited iff π(a) is the truth value
true, in which case ξ(a) =↓ (a)). First, ξ is a splitting of sup; for, sup({b ∈
C | b ≤ a; and π(a)}) = a, by the proof of Lemma 12. Secondly, to prove
the other adjunction inequality ξ(sup(D)) ⊆ D for any quasi-principal D,
let a belong to the left hand side. So a ≤ sup(D) and π(sup(D)); so sup(D)
is positive; so if s ≤ sup(D), it follows that s ∈ D, so that D is principal.
But this applies in particular to s = sup(D). So sup(D) ∈ D. But then the
fact that D is a lower set and a ≤ sup(D) implies a ∈ D. This proves the
adjointness required for 1), but we still have to argue that the constructed ξ is
a frame map, i.e. that it commutes with finite inf; this is an easy consequence
of the fact that π and sup do. So 1) is proved.

Assume finally that the frame C comes from a sober topological space
X, C = O(X). Assume 3). Then in particular, the maximal frame map
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π : O(X) → Ω corresponds, by soberness, to a unique point x0 of X, maxi-
mal with respect to the specialization ordering. Conversely, if 4) holds, the
assumed maximal point witnesses that the space X is inhabited, and for any
inhabited space X, O(X) is evidently T -continuous. The maximal point cor-
responds to a maximal frame map O(X) = C→ Ω, and we have to see that
it remains maximal by post-composition with any frame map. Let D be any
frame, let ε : C→ D be an arbitrary frame map, and µ : Ω→ D the unique
such frame map. To prove ε(a) ≤ µ(π(a)), it suffices, since O(X) is sup-
generated by inhabited subsets, to consider the case when a is an inhabited
subset. But then x0 ∈ a, being maximal in the specialization ordering, and
so π(a) is true ∈ Ω, so µ(π(a)) = 1, so the inequality is trivial. This proves
3), and thus the Theorem.

Classically, i.e. in a boolean topos, the lift monad T on LOC considered
here just freely adds a bottom element to (the underlying poset of) the frame
C. One may also want, instead, to freely add a top element to it C + 1, as
is done in e.g. [4] p. 122, to get a co-lift monad on LOC. This works in
a boolean topos; but it does not work in general, for the similar reason as
considered before, namely that 1 is a frame, but 1+1 not. And now the formal
dual of the lift monad does not work either: it is the functor C 7→ (T (Cop))op

which to a poset freely adjoins subterminal infima, and reasonably could
be called the (constructive) op-lift monad. For, when applied to a frame,
the resulting poset will not in general be a frame. To wit, applied to the
one-element frame 1, the op-lift monad gives Ωop which is not a frame, in
general.

However, a construction that works in general has been considered, (at
least for toposes rather than locales), namely the scone construction, cf.
loc.cit. p. 190. For locales this construction S may be described as follows.
Let C be a frame. Let Ω be the frame of truth values. There is a unique frame
map γ∗ : Ω→ C, with right adjoint (locale map) γ∗ : C→ Ω. Then S(C) is
the subframe of Ω×C consisting of pairs (λ, a) with γ∗(λ) ≤ a or equivalently
λ ≤ γ∗(a). (Thus, S(C) arises as the comma construction γ∗ ↓ C). Note
that the constructive lift monad on locales, considered above, may also be
described by a comma category construction, namely T (C) = C ↓ γ∗.

The scone construction on LOC carries a monad structure, it is in fact a
KZ monad (structures are left adjoint to units; but recall that the direction
of the 2-cells is governed by the inverse image maps (frame maps)).
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The following result is basically known (except possibly for the condition
2)), from [10], (cf. also [9], [4]), and is included for completeness, and for
comparison with the previous theorem on the lift monad T on LOC

Theorem 14 Let C be a locale. Then t.f.a.e.
1) C admits a structure for the scone-monad S on LOC.
2) The map γ∗ : C→ Ω is a fibration of posets
3) The topos sh(C) defined by the locale C is local in the sense of [10].
4) For any locale D, there is a minimal element in LOC(D,C), preserved

by pre-composition with any locale map D′ → D.
5) (If C corresponds to a sober topological space X) The space has a

minimal point in the specialization ordering (i.e. is a focal space, in the
sense of [4]).

(The reason for the equivalence of condition 2) and 1) is that the scone
construction is really a special case of that ”comma-category” op-KZ-monad
on CAT/S whose algebras Street in [20] identified as being the fibrations
over S (”Chevalley Criterion”); here, S is taken to be the poset Ω.)
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