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Optimal Parallel Construction of Minimal Suffix and
Factor Automata

Dany Breslauer® Ramesh Hariharan'

Abstract

This paper gives optimal parallel algorithms for the construction of the
smallest deterministic finite automata recognizing all the suffixes and the
factors of a string. The algorithms use recently discovered optimal parallel
suffix tree construction algorithms together with data structures for the
efficient manipulation of trees, exploiting the well known relation between
suffix and factor automata and suffix trees.

1 Introduction

Blumer et al. [4] showed that the size of partial deterministic finite automata
that recognize the suffixes and the factors (substrings) of a given string is linear
in the length of the string and independent of the alphabet size. Blumer et al. [3]
and Crochemore [5] gave linear-time on-line algorithms for the construction
of the smallest deterministic finite automata recognizing the suffixes and the
factors of a string. Crochemore and Rytter [6] gave parallel algorithms for
the construction of these automata. Their algorithms take O(logn) time and
use superlinear space on an n-processor CRCW-PRAM. All the algorithms
mentioned above exploit in some way or another the close relation between
these automata and the suffix tree of the reversed input string.

The time-processor product is an important measure for the efficiency of
parallel algorithms. An algorithm with time-processor product (work, opera-
tions) that is equivalent to that of the fastest sequential algorithm for the same
problem is said to achieve an optimal-speedup, or to be optimal. Motivated by
the recent discovery of optimal parallel algorithms for the construction of suffix
trees, we show in this paper that for strings drawn from a constant sized alpha-
bet, given the suffix tree of the reverse input string, it is possible to construct
the minimal suffix and factor automata in O(logn) time making O(n) opera-
tions and using O(n) space in the CRCW-PRAM. For strings drawn from a
general ordered alphabet, we show that given the suffix trees of both the input
string and its reverse, it is possible to construct the minimal suffix and factor
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automata in O(logn) time making O(nlog|X|) operations and using O(n) space
in the CRCW-PRAM. As these bounds are dominated by those of the known
suffix tree construction algorithms, the construction of the minimal suffix and
factor automata has the same parallel complexity as the suffix tree construction
algorithm being used.

A list of the known concurrent-read PRAM suffix tree construction algo-
rithms is given below (for strings over a constant sized alphabet). Observe that
although the algorithms given by Crochemore and Rytter [6] for the construc-
tion of the minimal suffix and factor automata use a suffix tree construction
algorithm, their algorithms do not benefit directly from using any of the recent
optimal parallel suffix tree construction algorithms.

Parallel Suffiz Tree Construction Algorithms
Author(s) | Time | Work | Space | Model
Apostolico et al. [1] O(logn) | O(nlogn) | O(n't¢) | CRCW
Sahinalp and Vishkin [11] O(log® n) O(n) O(n'*€) | CRCW
Hariharan [8] O(log*n) O(n) O(n) | CREW
Farach and Muthukrishnan! [7] | O(logn) O(n) O(n) | CRCW

The paper is organized as follows. Sections 2 and 3 define the suffix tree
and the directed acyclic word graph of a string. Sections 4 and 5 give the
construction of the minimal suffix and factor automata. Conclusions and open
problems are given in Section 6.

2 Suffix trees

Let w = wq - - -wy be some string from ¥*, for an arbitrary alphabet ¥. Denote
by € the empty string, by @ = w,, - - -w; the string w reversed, by F(w) the set
of all factors (substrings) of w, and by S(w) the set of all suffixes of w.

The suffiz tree T, of the string w is a rooted tree with edges and nodes
that are labeled with substrings of w. The suffix tree satisfies the following
properties:

1. Edges leaving (leading away from the root) any given node are labeled
with non-empty strings that start with different symbols.

2. Each node is labeled with the string formed by the concatenation of the
edge labels on the path from the root to the node.

3. Each internal (non-leaf) node has at least two descendants. (Except the
root which might have one descendant in the degenerate case where all
symbols of w are the same.)

4. For each factor v € F(w), there exists a node labeled u € F(w), such that
v is a prefix of u.

Las-Vegas type randomized algorithm.



It is a common practice to work with the suffix tree 7., where § is a special
alphabet symbol that does not appear anywhere in w. This guarantees that the
suffix tree has exactly n + 1 leaves that are labeled with all the distinct suffixes
of w$. Observe that the edge and the node labels can be represented by indices
into the string w, using constant space for each label.

For any node v = vy - - - in 7,g, except the root, define s(v), the suffiz-
link of the node, to be (a pointer to) the node labeled vs - - - v. McCreight [10],
who introduced suffix-links in his sequential suffix tree construction algorithm,
shows that s(v) must also be a node in 7,5. Some of the parallel suffix tree
construction algorithms use suffix-links as well. We show next that the suffix-
links can be efficiently computed given the suffix tree. We will use the following
data structure for the lowest common ancestor problem:

Lemma 2.1 (Schieber and Vishkin [12]) Given an h node rooted tree, it is pos-
sible to pre-process the tree in O(logh) time, O(h) operations and O(h) space,
in the EREW-PRAM, such that queries about the lowest common ancestor of
any pair of nodes can be answered in constant time by a single processor without
modifying the pre-processed data structure.

Lemma 2.2 Given the suffix tree 7,,g, it is possible to compute the suffiz-links
for all nodes in T,g in O(logn) time making O(n) operations in the CREW-
PRAM.

Proof: Recall that there is one-to-one correspondence between the leaves of 7 ¢
and the suffixes of w$. This allows to define an array that will give the leaf in 7,4
that corresponds to each suffix in S(w$). Hence, the suffix-links of the leaves
can be easily computed by setting the suffix-links of the leaf w;w;y1 - - w,$ to
point to the leaf w;y1---w,$ and the suffix-link of the leaf $ to point to the
root which is labeled e.

Next, apply the pre-processing in Lemma 2.1 to the suffix tree 7,g which
has at most 2n + 1 nodes. Then, compute for each internal node v in 7,g,
an arbitrary leaf [(v) that is in the sub-tree rooted at v. This can be done in
O(logn) time and O(n) operation in the EREW-PRAM by a pre-order tour of
the tree [9].

Now, compute in parallel the suffix-links of each internal node (except the
root) as follows. If v = w;---vg is an internal node in 7,g, then it has at
least two descendants y = y1---y, and z = 21 --- 2,4, both have prefix v and
Yk+1 # 2k+1- v is clearly the lowest common ancestor of y and z, and therefore,
also of I(y) and I(2). s(v) is the lowest common ancestor of s(y) and s(z).
But s(l(y)) and s(l(z)) are nodes in the sub-trees rooted at s(y) and s(z),
respectively, and therefore, s(v) is also the lowest common ancestor of s(I(y))
and s(I(z)). Recall that s(I(y)) and s(I(z)) were already computed since [(y)
and [(z) are leaves. Hence, the lowest common ancestor of s(I(y)) and s(I(z))
can be found in constant time using a single processor, by Lemma 2.1. Since
many lowest common ancestor queries are processed in parallel, we need the
CREW-PRAM model. O



Define the extended suffiz tree 7., to be the same as the suffix tree 7,, with
the exception that there is a node labeled with every suffix of w. This allows
nodes that are labeled with suffixes of w to have only one descendant. It is
not difficult to see that ’j'w is an intermediate between 7, and 7,¢. It can be
obtained from 7, by breaking up edges and introducing nodes that correspond
to suffixes of w, or it can be obtained from 7,4 by deleting all the leaves that
the edges leading to them are labeled with $.

Lemma 2.3 [t is possible to construct the extended suffiz tree Ty and its suffiz-
links, given the suffix tree 1,5 and its suffiz-links, in constant time and O(n)
operations in the CREW-PRAM.

Proof: To identify which leaves in 7, have to be deleted to obtain 7y, it
suffices to assign a single processor to each leaf to examine if the edge leading
to the leaf is labeled $. If v is a node in 7y, then clearly s(v) is also a node. To
identify which suffix-link pointers have to be changed from 7,5 to 7., observe
that if the suffix w; - - - w,, is an internal node, then its suffix-link pointer does not
change, since wjy1 - --wy, is also an internal node. This characterizes precisely
those leaves in 7,¢ that are not leaves in ’j'w. Let wy, - - -w, be the longest
suffix of w that occurs at least twice in w (letting h = n + 1 if there is no such
non-empty suffix and taking w,41 = $). Then, the leaf wy - - -w,$ is deleted if
and only if h < g < n+ 1. The only suffix-link pointer in 7,4 that has to be
modified is the suffix-link of the leaf wp_1 ---w, which is set to point to the
internal node wy, - - - w,. This leaf can be identified as the only leaf in 7,4 which
is not deleted and whose suffix-link is deleted. O

Finally, we will need the following processing in order to facilitate the com-
putation in Section 3.

Lemma 2.4 7,5 and Tgg can be pre-processed in O(logn) time and O(n) work
on the EREW-PRAM so that given an internal node w in Tgzg, the node u in
Tws, if it exists, can be found in constant time by a single processor.

Proof: The pre-processing for 7;¢ consists of the following steps. First, an
array L containing the leaves of 7;¢ in order is computed. Second, for each
internal node in 7;g, the offsets of the first and the last leaves in £ which lie
in the subtree rooted at that node are computed. Third, for a leaf I of 7gg,
let prev(l) be the character in w$ which immediately precedes the suffix of w$
corresponding to [; then, for each leaf [, the nearest leaf next(l) to its right in £
such that prev(next(l)) # prev(l) is found. Each of the above three steps can
easily be accomplished in O(logn) time and O(n) work on the EREW-PRAM.

The pre-processing for 7,5 consists only of the lowest common ancestor
pre-processing of Lemma 2.1.

Next, suppose we are given internal node % in Zgg. Note that u is a node in
T.s if and only if there exist two leaves [, I’ in the subtree of 734 rooted at @ such
that prev(l) # prev(l’). This happens, in turn, if and only if next(l”) is in the
above subtree, where [ is the leftmost leaf in this subtree. Clearly, this can be
checked in constant time and work using the above pre-processing. If next(l”)
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is indeed in the above subtree, then I” and next(l”) give two occurrences of u
in w such that the characters following these two occurrences of u are distinct.
Finding the lowest common ancestor in 7,,¢ of the leaves corresponding to the
two suffixes of w$ beginning at these two occurrences of u completes the task
in constant time and work. O

3 The directed acyclic word graph

The discussion in this section follows Blumer et al. [3]. Define the end-set of
a string v in w to be the set of all ending positions of occurrences of u in
w. Formally, end—set,,(u) = {h | u = wh_py41 ~wh} and end—set, () =
{1,...,|w|}. Two strings u and v are said to be end-equivalent in w, denoted
u =y v, if end—sety,(u) = end—set,,(v). Denote by [u], the equivalence class
of u with respect to =,,. The class containing all strings that are not in F(w) is
called the degenerate class. We choose the longest member in each equivalence
class to be the canonical representative of the equivalence class. See the paper
by Blumer et. al. [3] for more detail.

Definition 3.1 The Directed Acyclic Word Graph (DAWG) for the string w is
the directed graph whose set of nodes is the non-degenerate equivalence classes
{lulw | uw € F(w)} and set of edges, which are labeled with alphabet symbols, is
{[u}w = [ualw | u,ua € F(w)}. (One can easily verify that this definition does
not depend on the representatives of the equivalence classes.)

The DAWG of w can be viewed as a partial deterministic finite automaton
with initial state [¢],, and all states being accepting states. This automaton
recognizes exactly the strings in F(w) [3]. In the rest of this section we describe
a new efficient parallel construction of the DAWG of a string.

The relation between the DAWG of w and the suffix tree of @ has been
established in [3, 4, 5], where it is shown that the canonical representatives
of non-degenerate equivalence classes, which correspond to the nodes in the
DAWG, are exactly the reversed labels of the nodes in 75, and that the num-
ber of edges in the DAWG is at most by n larger than the number of nodes,
independent of the alphabet.

Given the extended suffix tree IZA;I), we can copy its nodes to be the nodes of
the DAWG of w, which leaves the problem of finding the edges of the DAWG.
We will use the following data structure for the level-ancestor problem:

Lemma 3.2 (Berkman and Vishkin [2]) Given an h node rooted tree, it is
possible to pre-process the tree in O(logh) time, O(h) operations and O(h)
space, in the CRCW-PRAM, such that level-ancestor queries that find the l-th
node on the path from the node v to the root can be answered in constant time
by a single processor without modifying the pre-processed data structure.

Theorem 3.3 For strings w drawn from a constant sized alphabet, there exists
an O(logn) time, O(n) operations CRCW-PRAM algorithm that constructs the
DAWG for w given the extended suffix tree Ty and its suffiz-links. The same can



be accomplished for strings drawn from a general alphabet, making O(nlog|X|)
operations, provided that T, is also given.

Proof: As mentioned above, the nodes of the DAWG are exactly the nodes
of 73 and it remains to compute the edges of the DAWG. Recall that if some
canonical representative u is a node in the DAWG, then % is a node in Tg.

Let u be a node in the DAWG and a € X, such that ua € F(w). Then, there
is an edge [u], —? [ua]y, in the DAWG. Let v be the canonical representative
of [ua]y. If v = ua, then & = ai is a node in Ty and its suffix-link s(a@) = @ is
exactly the DAWG edge, reversed. However, in general, this is not necessarily
the case.

Let p(x) be the immediate ancestor of z in Ty and let d(z) denote the
depth of z in 73. The depth of all nodes can be computed in O(logn) time
and O(n) operations in the EREW-PRAM [9]. Let 21 = s(9), 22, ..., zp, for
h = d(s(v)) — d(s(p(?))), be the suffix-link of ¢ and its ancestors, up to and
excluding the suffix-link of p(o). Then, 21, ..., z; are nodes in the DAWG, all
with edges [zi]wy —® [v]w. This characterizes all the edges in the DAWG.

The computation of the edges proceeds as follows. A processor assigned to
each node ¥ in 7y, computes the number of edges that will be coming into the
corresponding node v in the DAWG. There are exactly d(s(0)) —d(s(p(?))) such
edges. By summing the number of edges, processors can be assigned to compute
each edge. This takes O(logn) time and O(n) operations in the EREW-PRAM.

The processors that are assigned to a node to compute its incoming edges
still have to find the nodes on the other side of these edges. After applying
the pre-processing in Lemma 3.2, these nodes can be found by level ancestor
queries, since they all are ancestors of s(?).

Finally, we need to organize the outgoing edges for each node in DAWG.
This is easily done in constant time and O(n) work when the alphabet size
is constant, as every node has a constant sized array representing its outgoing
edges which are updated directly within this array. Consider the case of a larger
alphabet. In this case, we use the suffix tree of the input string w to organize
the edges leaving a given node. We rely on the fact that a node z in the DAWG
has two or more outgoing edges if and only if 2 is a node in 7.

Recall from above that associated with node @ in 7y is a group of processors,
one for each of the nodes z1, Zo, . . ., Z5. Let P; be the processor associated with
Z;. P; executes the following sequence of operations.

First, P; checks if z; is a node in 7,,¢ using Lemma 2.4 (for this, note that
each node in 7y corresponds to a unique node in Tas). This takes constant
time and work on the CREW-PRAM model. There are two cases next. If z; is
not a node in 7,4 then it can be easily seen that node z; in DAWG has only
one outgoing edge, namely to v; in this case, P; simply writes this edge into z;.
Suppose that z; is a node in 7.

We assume that associated with every node y in 7, is a sorted array A,
whose locations correspond to the various characters which are the first char-
acters of the substrings labeling edges leading from y to its children. Note that
the sum of the sizes of the arrays A, over all nodes y of 7, is just the size of
Tws, i-€., O(n). Let a be the first character of 9. P; finds the location in array



A, corresponding to character a and adds a pointer to the node v of DAWG
at this location; this takes O(log|X|) time and work.

At the end, the set of edges leaving z; in DAWG is exactly the set of pointers
in A,,. The above procedure takes O(logn) time and O(nlog|X|) work on the
whole. O

4 The suffix automaton
The minimal suffix automata, henceforth denoted MSA, is characterized next:

Lemma 4.1 (Crochemore [5]) The MSA is the DAWG except that the accepting
states are those equivalence classes that include suffizes of w.

Theorem 4.2 The MSA, recognizing the strings in S(w), can be constructed
in O(logn) time, making O(n) operations and using O(n) space in the CRCW-
PRAM, given the extended suffiz tree Ty.

Proof: By Theorem 3.3, the DAWG can be constructed within these bounds.
So, by Lemma 4.1, it remains to identify the accepting states. Observe that u
is a suffix of w if and only if @ is a prefix of @w. Then, a node @ in Ty is a prefix
of w if and only if it is an ancestor of the node w in 7. These nodes can be
identified by pre-order and post-order tours of 7y in O(logn) time and O(n)
operations in the EREW-PRAM [9]. O

5 The factor automaton

The next lemma follows from [3, 6] and states the relationship between the
DAWG and the minimal factor automaton, henceforth denoted by MFA. Here,
let z be the longest suffix of w, if any, which occurs more than once in w. Note
that z may not be defined. Let a be the character preceding suffix z in w, i.e.,
az is also a suffix of w.

Lemma 5.1 States u and v in the DAWG must be represented by the same
state in MFA if and only if:

1. z is defined.
2. w is a prefix of z.

3. Node @ in Ty has exactly two children, one of which, namely uy, is a leaf,
where w = yz and the first symbol of y is a.

4. Node v in Ty is the child of U such that ua is not a prefix of v.

It follows from Lemma 5.1 that the MFA can be obtained by identifying all
pairs of states u and v in the DAWG which are represented by the same state
in MFA. An important fact to note is that all these pairs are disjoint; this can
be easily seen from Lemma 5.1.



The algorithm for obtaining the MFA from the DAWG is as follows.

Step 1. Determine z and find two occurrences of z in w. Z is simply the parent
of W in IZA;I), so z is easily determined. If z is not defined (i.e., @ is a child of the
root), then nothing further needs to be done. Otherwise, one occurrence of Z is
simply as a prefix of w. If Z is also a suffix of w then another occurrence of Z is
found, otherwise the node Z has a child ¢ in addition to @; in this case the leaf
() gives another occurrence of Z. Clearly, the above step takes constant time
and work on the CREW-PRAM.

Figure 1: Two Occurrences of z.

In order to denote the above two occurrences of z, we let y, 4y’ be such that
w = yz and 'z is a prefix of w. Note that y ends with an a while ¢/ cannot
end with an a and could possibly be the empty string.

Step 2. Determine the u, v pairs as follows. All prefixes u of z are processed
in parallel. Consider one such prefix 4. The node % is found by computing the
lowest common ancestor of ﬂyN’ and 4y in T5. If the leaf uy is a child of @ and @
has exactly two children, then 9 is the other child of @ and a u, v pair is found.
This step takes constant time and O(n) operations on the CREW-PRAM.

Step 3. Merge the u, v pairs found above. These two states will be represented
by one state in the MFA. Merging them involves merging the lists of incident
edges in the DAWG. Since all the pairs are disjoint, this takes O(logn) time
and O(n) work (recall the DAWG has only O(n) edges) on the CREW-PRAM.

Theorem 5.2 The MFA, recognizing the strings in F(w), can be constructed
in O(logn) time, making O(n) operations and using O(n) space in the CREW-
PRAM, given the extended suffix tree 7. The same can be accomplished for
strings drawn from a general alphabet, making O(nlog|X|) operations, provided
that T,g is also given.

6 Conclusion

In this paper we have shown that the minimal suffix and factor automata of
a string can be constructed optimally in parallel. It is not known, however,
if one of the important features of these automata in sequential computation,
namely, the ability to identify substrings and find the information associated
with them, in time that is proportional to the length of the substrings, can be
done as efficiently in parallel.



Blumer et al. [4] and Crochemore [5] show that building on the factor au-
tomata, one can build the complete inverted file and the factor transducer of a
string on-line in linear time. It is not difficult to verify that using standard par-
allel algorithmic techniques, the same information can be computed optimally
in O(logn) time by the CREW-PRAM.

Finally, it would be interesting to find an optimal implementation of the
algorithms presented in this paper in the CREW-PRAM. Notice that we used
the stronger CRCW-PRAM model only in the primitive for computing the level
ancestors (Lemma 3.2).
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