
B
R

IC
S

R
S

-95-10
B

reslauer&
D

ubhashi:
Transf.C

om
parison

M
odelLow

erB
ounds

to
the

P
R

A
M

BRICS
Basic Research in Computer Science

Transforming Comparison Model
Lower Bounds to the PRAM

Dany Breslauer
Devdatt P. Dubhashi

BRICS Report Series RS-95-10

ISSN 0909-0878 February 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Transforming Comparison Model Lower Bounds to
the Parallel-Random-Access-Machine∗

Dany Breslauer Devdatt P. Dubhashi

BRICS†
Department of Computer Science

University of Aarhus
DK-8000 Aarhus C, Denmark

Abstract
This note provides general transformations of lower bounds in Valiant’s

parallel comparison decision tree model to lower bounds in the priority
concurrent-read concurrent-write parallel-random-access-machine model.
The proofs rely on standard Ramsey–theoretic arguments that simplify
the structure of the computation by restricting the input domain. The
transformation of comparison model lower bounds, which are usually eas-
ier to obtain, to the parallel-random-access-machine, unifies some known
lower bounds and gives new lower bounds for several problems.

1 Introduction

Valiant’s parallel comparison decision tree model [24] is very attractive for
studying parallel algorithms and lower bounds for order invariant problems
whose solution depends on equality or order relations between the input vari-
ables. One of the major drawbacks of this model, however, is that the infor-
mation obtained by determining the relations between input variables becomes
“common knowledge” and the model fails to capture the difficulty in communi-
cating information between various processing units that run in parallel. The
more realistic parallel-random-access-machine model (PRAM) captures some
issues of communication between the different processing units, what makes it
a more natural model to describe parallel algorithms.

The two models, however, are not comparable is general. While some prob-
lems in the comparison model, e.g. finding the maximum [24], have similar
algorithms in the PRAM model [23], other problems, e.g. finding the median
[1, 5], have only much slower PRAM algorithms [7] with any polynomial number
of processors. On the other hand, there exist problems, e.g. element distinct-
ness, that have slow comparison model algorithms [6] and constant-time PRAM
algorithms on integer input domains.
†Basic Researech in Computer Science, Centre of the Danish National Research Foundation.
∗The reseach reported in this paper was partially supported by ESPRIT Basic Research

Action Program of the EC under contract #7141 (ALCOM II).

1

Since comparison model lower bounds are often easier to obtain than PRAM
lower bounds, it can sometimes be useful to translate comparison model lower
bounds into PRAM lower bounds. Clearly, if a PRAM algorithm can only
access its input by determining the relations between the input variables, then
the comparison model lower bounds will hold for the PRAM. However, this
assumption prevents PRAM algorithms from using their powerful capabilities.
Moreover, solutions to problems that are defined in the equality-comparison
model sometimes benefit from the introduction of an arbitrary order on the
input domain so that order comparisons can be used; e.g. element distinctness.
Since the input variables on the PRAM are usually assumed to be integers, the
input domain is naturally ordered. This makes lower bounds in the equality-
comparison model inapplicable to the PRAM model.

This note gives two general translations of lower bounds in the order-
comparison model to lower bounds in the priority CRCW-PRAM model:

1. Any comparison model lower bound can be converted into a corresponding
lower bound in the priority CRCW-PRAM with bounded memory. By
bounded memory we mean that the memory size is not permitted to grow
as a function of the input domain size.

2. Any comparison model lower bound that holds if the input variables are
known to be all distinct can be converted into a corresponding lower bound
in the priority CRCW-PRAM with infinite memory.

The proof techniques used are standard multi-variable Ramsey–theoretic
arguments that were developed by several authors for studying specific problems
[9, 19]. The main idea is that one can restrict the original input domain in such
a way that the processors must communicate in a manner that depends only on
the relative order between the input variables. This implies that the PRAM can
only determine the relations between input variables that were communicated
to a given processor and not by the communication pattern itself. We then
apply comparison model lower bounds to obtain lower bounds on the PRAM.

The transformation of the comparison model lower bounds provides a unified
way to obtain lower bounds for the PRAM. It generalises previous results and
provides PRAM lower bounds for problems that had only comparison model
lower bounds. Some of the lower bounds obtainable by the transformation, for
input of size n on a p processor PRAM, are:

1. Sorting requires Ω(n/p+ logd(p/n) logn+1e n) time [9, 19].

2. Element distinctness requires Ω(n/p+logd(p/n) logn+1e n) time if the mem-
ory size is bounded [9, 14, 21].

3. Finding the maximum and merging require Ω(n/p+log logdp/n+1e n) time
[17, 22].

4. String matching and some related problems on strings require, assuming
bounded memory size, Ω(n/p+ log logdp/n+1e n) time.

2

5. Finding an approximate maximum, namely, an element whose rank be-
longs in the top εn ranks, requires Ω(n/p+ log logdp/n+1e (1/ε) + log∗ n−
log∗(p/n)) time1, for 1/n ≤ ε ≤ 1/2.

The paper is organised as follows. §2 and §3 review Valiant’s parallel
comparison-decision-tree and the parallel-random-access-machine models. §4
gives the general PRAM lower bounds and §5 shows how these lower bounds
are applied to specific problems. Conclusions and open problems are given in
§6.

2 Parallel comparison models

The input variables x1, . . . , xn are chosen from some infinite totally ordered
domain D. Denote by Dk the set of all k-tuples of elements of D, by Dk∗ the
set of all k-tuples of D with no two equal elements and by Dk< the set of all
increasing k-tuples of D.

Following the notation of [20], two tuples x1, . . . , xk and y1, . . . , yk are said
to be order equivalent if xi < xj ⇔ yi < yj , for all i, j = 1, . . . , k. (And
hence xi = xj ⇔ yi = yj .) The equivalence class containing x1, . . . , xk is called
the order type of x1, . . . , xk. A decision problem P on the variables x1, . . . , xn
partitions the inputs from Dn into classes P1, . . . ,Pq. P is said to be order
invariant if order equivalent tuples are always in the same class.

A comparison between two variables xi :: xj determines if xi < xj, xi = xj
or xi > xj. We will also consider sometimes the additional relations xi 6=
xj, without order information. These inequality relations, which may not be
established by comparisons, might instead be given a priori , as part of the
definition of a problem. Such a priori restrictions are useful for problems that
are defined on partial domains; e.g. in the merging problem the two lists to be
merged are assumed to be sorted. Restricting the input so that all variables
are distinct, i.e. xi 6= xj, for i 6= j, will be of particular interest in this paper.
We refer to this restriction as the distinctness assumption.

An order invariant problem P(x1, . . . , xn) can be solved by comparing pairs
of input variables until all input tuples satisfying the relations that were estab-
lished are in the same class Pi; e.g. in the problem of finding the maximum it
suffices to discover that some xi ≥ xj, for j = 1, . . . , n, without caring about
the relative order between the other variables. Clearly, sorting is the hardest
problem is this sense since it determines the exact relations between all input
variables and thus the order type of the input.

Valiant’s parallel comparison decision tree model [24] proceeds in rounds in
which up to p pairwise comparisons of input variables are made simultaneously.
According to the outcome of the comparisons, and the relations established in
previous rounds, the comparison model algorithm decides which variables to
compare in the next round, or it may decide to terminate with an answer. We
denote by CP(n, p) the depth of the shallowest comparison decision tree that

1Define log(0) n = n, log(i) n = log log(i−1) n and log∗ n = min{i | log(i) n ≤ 1}. In this
paper logn = max {0, log2 n}.

3

solves the problem P(x1, . . . , xn) using p comparisons in each round. Clearly,
comparing all

(n
2
)

pairs of variables gives complete information about their order
type, and thus, for any problem P , CP(n,

(n
2
)
) ≤ 1.

Boppana [9], following Meyer auf der Heide and Wigderson [19], defines a
similar comparison decision tree model that we call the merging-comparison
decision tree. In the p processor merging-comparison model, each processor
knows a certain subset of the input variables and their order type (initially these
sets are empty). In every round, according the partial order that is formed by
the order types of the subsets of variables known by all processors, the merging-
comparison model decides whether to terminate with an answer or to continue,
letting each processor to merge its set of variable either with the set of variables
known by some other processor at the end of the previous round or with a single
input variable. We denote byMP(n, p) the depth of the shallowest p processor
merging-comparison decision tree for the problem P(x1, . . . , xn). The following
lemma relates lower bounds in the parallel comparison model to the merging-
comparison model.

Lemma 2.1 Let

ĈP(n, p) = max
{
t | CP(n, 22(t−1)p) ≥ t

}
.

Then, 2 · CP(n, p) ≥MP(n, p) ≥ ĈP(n, p).

Proof: Clearly, every comparison model round with p comparison can be simu-
lated by at most two rounds of a p processor merging-comparison model, estab-
lishing that 2·CP(n, p) ≥MP(n, p). Inductively, the number of variables known
by each processor after h rounds is at most 2h−1. The relations established by
merging two sets of at most 2h−1 variables can be determined by performing
22(h−1) comparisons. Hence, a p processor merging-comparison model can be
simulated by a comparison model that makes 22(h−1)p comparisons in round
number h + 1. If there are at most t rounds, this can be overestimated by
22(t−1)p comparisons in each round. If CP(n, 22(t−1)p) ≥ t, then even with this
larger number of comparisons the solution of the problem P require at least t
rounds. 2

We say that a comparison model lower bound CP(n, p) is resilient if α ·
ĈP(n, p) + β ≥ CP(n, p) for some constants α and β and all n, p ≥ 1. When
this holds, we write CP(n, p) = Θ(ĈP(n, p)). Resilient comparison model lower
bounds translate to the same lower bounds in the merging-comparison model
(up to constants).

3 The Parallel-Random-Access-Machine

In this paper we consider a powerful version of the priority concurrent-read
concurrent-write parallel-random-access-machine (CRCW-PRAM). The model
consists of p synchronous processors that communicate via a shared memory
with cells of unlimited size. Processors are allowed to read and write simulta-
neously at the same memory location; write conflicts are resolved by accepting
the value that is written by the processor with the highest preassigned priority.

4

We assume that the execution of a PRAM program proceeds in rounds. Each
round consists of a computation phase in which every processor can make any
computation on the information it has obtained before, followed by a write phase
and then by a read phase. Note that these assumptions result in an extremely
powerful model that can compute any function inO(n) steps using one processor
or in O(logn) steps using n/ logn processors. Hence, lower bounds in this
model emphasise the limits of the interprocessor communication. We say that
the PRAM solves an order invariant problem P , if for each pair of order types
in different P–equivalence classes, there exists at least one processor that is able
to distinguish between them.

Let Ri,t, for i ∈ [p], denote the read access function of processor number i at
round t; i.e. at round t, processor i reads the memory cell that whose address
is given by Ri,t. Similarly, let Wi,t, for i ∈ [p], denote the write access function
of processor i at round t; i.e. at round t, processor i writes the value Xi,t into
the memory cell whose address is Wi,t. Ri,t, Wi,t and Xi,t are functions of the
state of processor i at round t. The lower bound argument given next show
that by restricting the input domain, it is possible to simplify the interaction
between processors so that the state of each processor depends only on the
input variables it “knows”.

4 Lower bounds

In this section we show that, under certain assumption, a PRAM algorithm for
an order invariant problem can be simulated by a merging-comparison decision
tree on some restricted input domain. This allows us to transform lower bounds
from the merging-comparison model to lower bounds in the PRAM model.
The arguments are essentially the same as those used by Meyer auf der Heide
and Wigderson [19] and Boppana [9]; we observe that these arguments are
more generally applicable than to the problems considered in those papers and
even when input variables are allowed to be equal. In §4.1 we summarize the
Ramsey–theoretic components of the proofs. In §4.2 we give the lower bounds
for PRAM algorithms with bounded memory and in §4.3 for PRAM algorithms
with unbounded memory, under the distinctness assumption.

4.1 Ramsey theory

Let D be an infinite totally ordered set. We say that a function f is a D fixed
order type function if f is defined on tuples from Dk of a fixed order type, for
some k ≥ 0. The standard form of f is obtained by removing all variables that
f does not depend on and ordering the remaining variables in increasing order
according to their order type. More precisely, the standard form of f is obtained
by removing all but one representative of equal variables (since the domain of
f has a fixed order type, equal variables are equal on all the domain); removing
all variables that f does not depend on; and reordering the remaining variables
in increasing order. Hence the standard form of f is defined on the domain Dl<,
for some l ≤ k.

5

Given a function f that is defined on some subset of Dk, we denote by f |E ,
for E ⊆ D, the restriction of f to Ek. Similarly, if F is a family of functions,
we use the notation F|E := {f |E | f ∈ F}. The following lemma can be derived
from the “canonical” Ramsey theorem due to Erdös and Rado [15]. (See also
§5.5 in [18].)

Lemma 4.1 Let F be a finite collection of D fixed order type functions. Then,
there exists an infinite subset E ⊆ D, such that the standard form of every
function in F|E is injective and every pair of functions in F|E either have
identical standard forms or disjoint ranges. In particular, if the range of the
functions in F is finite, then the functions in F|E are constant.

4.2 Bounded memory

In this section we assume that the memory size m is fixed. Hence all read and
write access functions have the finite range [m]. We will construct a merging-
comparison decision tree that will simulate the computation of the PRAM.

The construction proceeds step by step. We will maintain the set of variable
indices Vi,t ⊆ [n] known by processor i ∈ [p] at round t and an infinite set
St ⊆ N, such that the input tuples will be restricted to Snt . Initially Vi,0 = ∅
and S0 = N, and for t ≥ 1, Vi,t−1 ⊆ Vi,t and St ⊆ St−1, for i ∈ [p]. Also, we
shall maintain that for inputs in St, the state of the processor i in the original
PRAM, and therefore Ri,t, Wi,t and Xi,t, are functions of the variables whose
indices are in Vi,t.

Suppose by induction that we have described the behavior of the merging-
comparison model up to round t. Thus, at the beginning of round t, each
processor i ∈ [p] knows the variables whose indices are in Vi,t and their order
type. Consider the collection of access functions F|St consisting of the access
functions Ri,t and Wi,t′, for i ∈ [p] and 0 ≤ t′ ≤ t. Since we are at a specific
node of the merging-comparison decision tree in which the order types of Vi,t
are fixed, these access functions are St fixed order type functions. By Lemma
4.1, there exists an infinite subset St+1 ⊆ St, such that the access functions in
F|St+1 are constant. (If a processor does not write, it does not write on all the
restricted inputs.)

Let c = Ri,t|St+1 be a read access function and let c = Wi′,t′|St+1 be the write
access function (provided it exists), that corresponds to what Ri,t actually reads
(lexicographically maximal <t′, i′>, corresponding to the most recent write by
highest priority processor). If such Wi′,t′ exists, then processor i reads the
value Xi′,t′ which is also a function of Vi′,t′ ; we can assume that it actually
reads Vi′,t′ ⊆ Vi′,t and computes Xi′,t′ by itself. Define V ′i,t to be Vi′,t if such
Wi′,t′ exists, otherwise V ′i,t = {c′} if memory cell number c initially contains
the input variable xc′ . If neither of these conditions hold, then V ′i,t := ∅. The
merging-comparison model merges in round t the set of variables Vi,t known by
processor i ∈ [p] with V ′i,t. This completely defines the behavior of the merging-
comparison model in round t. Since the PRAM interprocessor communication
pattern is fixed, the state of the processors can depend only on the variables
they know.

6

Suppose the simulating merging-comparison algorithm cannot solve the
problem P in T rounds. Then there are two order types in different P–
equivalence classes that it cannot distinguish from each other. Since the domain
ST is large enough, for each processor i, there are input tuples of these two or-
der types that agree on the variables in Vi,T . But by the invariant maintained,
for inputs in ST , the state of each processor in the original PRAM can only de-
pend on the variables it knows, namely Vi,T . Hence, the original PRAM cannot
distinguish between the inputs either. We conclude:

Theorem 4.2 If a p processor merging-comparison model requires MP(n, p)
rounds to solve the problem P(x1, . . . , xn), then a bounded memory PRAM must
take MP(n, p) time as well.

4.3 Unbounded memory, distinct inputs

In this section we assume that the input variables are distinct. Similarly to the
previous section, we will construct inductively a merging-comparison decision
tree that will simulate the computation of the PRAM.

Suppose by induction that we have described the behavior of the merging-
comparison model up to round t and let F|St be the collection of the access
functions Ri,t and Wi,t′ , for i ∈ [p] and 0 ≤ t′ ≤ t. Since the order types of Vi,t
are fixed, these access functions are St fixed order type functions and by Lemma
4.1, there exists an infinite subset St+1 ⊆ St, such that the standard forms of
the access functions in F|St+1 are injective and that every pair of functions in
F|St+1 either have identical standard forms or disjoint ranges.

Since the input variables are distinct, identical standard forms of access
functions in F|St+1 are either functions of exactly the same variables, in which
case they are always equal, or have always disjoint ranges. Hence, given the
standard form of each read access function Ri,t|St+1 one can determine pre-
cisely the unique write access function Wi′,t′ |St+1 that corresponds to what Ri,t
actually reads. As in the previous section, this defines V ′i,t and therefore, the
complete behavior of the merging-comparison decision tree. This leads to the
following theorem:

Theorem 4.3 If the p processor merging-comparison model requires MP(n, p)
rounds to solve the problem P(x1, . . . , xn) under the distinctness assumption,
then a PRAM must take MP(n, p) time as well.

5 Applications

We give some applications of the general lower bounds from the previous section.
Some of these bounds were known previously, but we present them in a unified
fashion. We also give some new bounds.

In our discussion below we assume that the input has size n and the number
of processors p satisfies 1 ≤ p ≤

(n
2
)
. Since all the problems we consider depend

on most of their input variables, any PRAM algorithm for these problems must
read Ω(n) variables and thus must takes at least Ω(n/p) time.

7

5.1 Element distinctness and sorting

The Ω(logdp/n+1e n) comparison model lower bound for sorting [6] gives only an
Ω(
√

logn) lower bound in the n processor merging-comparison model. However,
there are better direct lower bounds for sorting in the merging-comparison
model.

Lemma 5.1 (Boppana [9]) Sorting in the p processors merging-comparison
model requires Ω(logd(p/n) logn+1e n) rounds.

Since the merging-comparison model lower bound holds also under the
distinctness assumption, it translates to an Ω(logd(p/n) logn+1e n) time lower
bound for sorting on the PRAM [9, 19]. It is straightforward to establish
that sorting comparison model lower bounds hold for the element distinctness
problem. Hence, the merging-comparison model lower bound translates to an
Ω(logd(p/n) logn+1e n) time lower bound for the element distinctness problem in
the PRAM with bounded memory [9, 14, 21].

5.2 Finding the maximum and related problems

Several problems have Ω(log logdp/n+1e n) rounds lower bounds in the parallel
comparison model. The list includes:

• finding the maximum [24];

• merging two lists of equal length [10];

• string-matching [11];

• two-dimensional array-matching [13];

• testing if a string is square-free [4] and

• finding initial palindromes in a string [12].

The following lemma, whose proof is similar to Lemma 5.3 below, shows that
these lower bounds can be transformed into Ω(log logdp/n+1e n) lower bounds
for the PRAM model.

Lemma 5.2 The Ω(log logdp/n+1e n) lower bounds are resilient.

The comparison model lower bounds for finding the maximum and merg-
ing hold under the distinctness assumption. Hence, these lower bounds can
be transformed into PRAM lower bounds [17, 22]. The comparison model
lower bounds for string-matching and the related problems mentioned above do
not hold under the distinctness assumption, and therefore, these lower bounds
translate only to lower bounds in the PRAM with bounded memory.

8

5.3 Finding an approximate maximum

Alon and Azar [2, 3] give tight lower and upper bounds on the comparison
complexity of several approximation problems. We consider as an example the
problem of finding an approximate maximum (AM). Namely, an element whose
rank belongs in the top εn ranks, 1/n ≤ ε ≤ 1/2. Alon and Azar prove that
under the distinctness assumption,

CAM(n, p) = Ω(log logdp/n+1e (1/ε) + log∗ n− log∗(p/n)).

We prove next that this lower bound is resilient. Hence the same lower bound
holds in the merging-comparison and the PRAM models.

Lemma 5.3 The Ω(log logdp/n+1e (1/ε) + log∗ n − log∗(p/n)) lower bound is
resilient.

Proof: We prove that log logdp/n+1e (1/ε) + log∗ n− log∗(p/n) is resilient (con-
stants do not matter). If log logdp/n+1e (1/ε) ≤ log∗ n − log∗(p/n) ≤ log∗ n,
then

log∗n− log∗(p/n) = Θ(log∗n− log∗(2log
∗np/n)).

If log∗ n− log∗(p/n) ≤ log logdp/n+1e(1/ε) ≤ log log(1/ε), we proceed with two
cases. If 1 ≤ p ≤ n log(1/ε), then since log∗n ≤ 1/ε, we get that for large
enough n,

log log(1/ε) ≤ 2 log logdlog2(1/ε)+1e (1/ε) ≤ 2 log logd(p/n) log(1/ε)+1e (1/ε).

If n log(1/ε) ≤ p ≤
(n

2
)
, then

log logd(p/n)+1e (1/ε) ≤ log logd(p/n) log(1/ε)+1e (1/ε) + 1.

Putting the inequalities above together, we establish that

log logdp/n+1e (1/ε) = Θ(log logd(p/n) log(1/ε)+1e (1/ε)). 2

6 Conclusions

By using a finite version of the Erdös–Rado Theorem [16], it is possible to
replace the infinite Ramsey–theoretic arguments in §4.1 by finite ones. However,
the lower bounds obtained by the general transformation would still require that
the input domain is huge. In some cases, direct lower bounds that were given
for specific problems require an input domain that is much smaller [8, 14, 17]. It
would be of interest to extend the lower bounds given here to smaller domains.

9

References

[1] M. Ajtai, J. Komlós, W.L. Steiger, and Szemerédi. Optimal Parallel Se-
lection Has Complexity O(log logn). J. Comput. System Sci., 38:125–133,
1989.

[2] N. Alon and Y. Azar. Finding an approximate maximum. SIAM J. Com-
put., 18(2):258–267, 1989.

[3] N. Alon and Y. Azar. Parallel Comparison Algorithms for Approximation
Problems. Combinatorica, 11(2):97–122, 1991.

[4] A. Apostolico and D. Breslauer. An Optimal O(log logn) Time Parallel
Algorithm for Detecting all Squares in a String. SIAM J. Comput., to
appear.

[5] Y. Azar and N. Pippenger. Parallel Selection. Discrete Applied Mathemat-
ics, 27:49–58, 1990.

[6] Y. Azar and U. Vishkin. Tight Comparison Bounds on the Complexity of
Parallel Sorting. SIAM J. Comput., 16(3):458–464, 1987.

[7] P. Beame and J. Hastad. Optimal bound for decision problems on the
CRCW-PRAM. J. Assoc. Comput. Mach., 36(3):643–670, 1989.

[8] O. Berkman, Y. Matias, and P. Ragde. Triply-Logarithmic Upper and
Lower Bounds for Minimum, Range Minima, and Related Problems with
Integer Inputs. In Proc. 3rd Workshop on Algorithms and Data Structures,
number 709 in Lecture Notes in Computer Science. Springer-Verlag, Berlin,
Germany, 1993.

[9] R. Boppana. Optimal separation between concurrent-write parallel ma-
chines. In Proc. 21st ACM Symp. on Theory of Computing, pages 320–326,
1989.

[10] A. Borodin and J.E. Hopcroft. Routing, merging and sorting on parallel
models of comparison. J. Comput. System Sci., 30:130–145, 1985.

[11] D. Breslauer and Z. Galil. A Lower Bound for Parallel String Matching.
SIAM J. Comput., 21(5):856–862, 1992.

[12] D. Breslauer and Z. Galil. Finding all Periods and Initial Palindromes of
a String in Parallel. Algorithmica, to appear.

[13] R. Cole, Z. Galil, R. Hariharan, S. Muthukrishnan, and K. Park. Parallel
Two Dimensional Witness Computation. Manuscript, 1993.

[14] J. Edmonds. Lower Bounds With Smaller Domain Size On Concurrent
Write Parallel Machines. In Proc. 3st ACM Symp. on Parallel Algorithms
and Architectures, pages 322–331, 1991.

10

[15] P. Erdös and R. Rado. A Combinatorial Theorem. J. London Math. Soc.,
25:249–255, 1950.

[16] P. Erdös and R. Rado. Combinatorial theorems on classifications of subsets
of a given set. Proc. London Math. Soc., 2:417–439, 1952.

[17] F.E. Fich, F. Meyer auf der Heide, and A. Wigderson. Lower bounds
for parallel random-access machines with unbounded shared memory. Ad-
vances in Computing Research, 4:1–15, 1987.

[18] R.L. Graham, B.L. Rothschild, and J.H. Spencer. Ramsey Theory (Second
Edition). John Wiley & Sons, New York, NY, U.S.A., 1990.

[19] F. Meyer auf der Heide and A. Wigderson. The complexity of parallel
sorting. SIAM J. Comput., 16(1):100–107, 1987.

[20] S. Moran, M. Snir, and U. Manber. Applications of Ramsey’s Theorem to
Decision Tree Complexity. J. Assoc. Comput. Mach., 32(4):938–949, 1985.

[21] P. Ragde, W. Steiger, E. Szemerédi, and A. Wigderson. The parallel
complexity of element distinctness is Ω(

√
logn). SIAM J. Disc. Math.,

1(3):399–410, 1988.

[22] B. Schieber and U. Vishkin. Finding all nearest neighbors for convex poly-
gons in parallel: a new lower bound technique and a matching algorithm.
Discrete Applied Mathematics, 29:97–111, 1990.

[23] Y. Shiloach and U. Vishkin. Finding the maximum, merging and sorting
in a parallel computation model. J. Algorithms, 2:88–102, 1981.

[24] L.G. Valiant. Parallelism in comparison models. SIAM J. Comput., 4:348–
355, 1975.

11

Recent Publications in the BRICS Report Series

RS-95-10 Dany Breslauer and Devdatt P. Dubhashi.Transforming
Comparison Model Lower Bounds to the Parallel-Random-
Access-Machine. February 1995. 11 pp.

RS-95-9 Lars R. Knudsen.Partial and Higher Order Differentials
and Applications to the DES. February 1995. 24 pp.

RS-95-8 Ole I. Hougaard, Michael I. Schwartzbach, and Hosein
Askari. Type Inference of Turbo Pascal. February 1995.
19 pp.

RS-95-7 David A. Basin and Nils Klarlund.Hardware Verification
using Monadic Second-Order Logic. January 1995. 13 pp.

RS-95-6 Igor Walukiewicz. A Complete Deductive System for the
µ-Calculus. January 1995. 39 pp.

RS-95-5 Luca Aceto and Anna Inǵolfsdóttir. A Complete Equa-
tional Axiomatization for Prefix Iteration with Silent Steps.
January 1995. 27 pp.

RS-95-4 Mogens Nielsen and Glynn Winskel.Petri Nets and Bisim-
ulations. January 1995. 36 pp. To appear in TCS.

RS-95-3 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing
Processes, Late Approach, Part I: A Denotational Model
and Its Complete Axiomatization. January 1995. 37 pp.

RS-95-2 François Laroussinie, Kim G. Larsen, and Carsten Weise.
From Timed Automata to Logic - and Back. January 1995.
21 pp.

RS-95-1 Gudmund Skovbjerg Frandsen, Thore Husfeldt, Pe-
ter Bro Miltersen, Theis Rauhe, and Søren Skyum.Dy-
namic Algorithms for the Dyck Languages. January 1995.
21 pp.

RS-94-48 Jens Chr. Godskesen and Kim G. Larsen.Synthesizing
Distinguishing Formulae for Real Time Systems. Decem-
ber 1994. 21 pp.

RS-94-47 Kim G. Larsen, Bernhard Steffen, and Carsten Weise.A
Constraint Oriented Proof Methodology based on Modal
Transition Systems. December 1994. 13 pp.

