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Abstract

Bistructures are a generalisation of event structures to represent spaces
of functions at higher types; the partial order of causal dependency is re-
placed by two orders, one associated with input and the other output in
the behaviour of functions. Bistructures form a categorical model of Gi-
rard’s classical linear logic in which the involution of linear logic is mod-
elled, roughly speaking, by a reversal of the roles of input and output. The
comonad of the model has associated co-Kleisli category which is equivalent
to a cartesian-closed full subcategory of Berry’s bidomains.

1 Introduction

Girard has shown how to implement and analyse intuitionistic logic in his
more primitive linear logic. When we look to models this is reflected in the
fact that cartesian-closed categories (categorical models for intuitionistic
logic) arise as co-Kleisli categories associated with the categorical models
of linear logic. In particular, linear logic is leading to refined analyses of
the categories of domains used in denotational semantics. For instance,
recent work on sequentiality, obtaining intensional fully-abstract models
of the programming language PCF [1, 6], has been informed by the in-
sight that Berry and Curien’s category of concrete data structures and
sequential algorithms [3] is got as a co-Kleisli category from a games
model of linear logic [3, 7].

Bistructures were introduced in [10] as a generalisation of event struc-
tures to represent a full subcategory of Berry’s bidomains [2]. Bidomains
possess an intensional, stable ordering, based on the method of computa-
tion, and an extensional ordering, inherited from Scott’s domain theory;
their morphisms are functions which respect both, a property shared by
functions definable in PCF. Here we show that, with a small modification

1Basic Research in Computer Science, Centre of the Danish National Research Foundation.
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to their original definition, bistructures can be equipped with morphisms
to form a model of classical linear logic. Through this observation we pro-
vide an explanation of a cartesian-closed full subcategory of bidomains
as the co-Kleisli category got from a linear category of bistructures with
a suitable comonad for the exponential !. This result fits into a more
general programme. We are interested in weaker axioms for bistructures,
variations in the exponential, and extensions of bistructures to models
other than event structures, one motivation being to understand exten-
sional fully abstract models of languages like PCF.

The work presented here can be viewed as generalising Girard’s model
of classical linear logic of webs (E,^) [5]; as morphisms one considers
relations α ⊆ E × E′ where it is required that for a α a′ and b α b′:2

a _^ b⇒ a′ _^ b′ and a′ ^_ b′ ⇒ a ^_ b.

This category is equivalent to the category of coherence spaces and linear
functions. The stable functions are obtained via the co-Kleisli construc-
tion associated with the model. Adding a partial order, we obtain event
structures (E,≤,^) which represent coherent prime algebraic domains
[8], and, with a finiteness axiom added, coherent dI-domains [2, 11, 12].
We can consider the corresponding categories of relations, again repre-
senting the linear stable functions; we must now add the condition:

a α b ≥ b′ ⇒ ∃a′ ≤ a. a′ α b′

However, this only yields a model of intuitionistic linear logic [11, 13]. By
passing to bistructures we add enough objects to obtain again a model
of classical linear logic.

2 Motivation

Recall that an event structure is a structure (E,≤,^) where

• E is a set of events,

• ≤ is a partial order of causal dependency

• ^ is a binary, irreflexive, symmetric relation of conflict
2Throughout this paper we use Girard’s notation: ^_ is the reflexive closure of the irreflexive

relation ^, and _
^, the complement of ^, is the reflexive closure of the irreflexive relation _.

It is clear that specifying one relation determines all the others.

2



satisfying
e ^ e′ ≤ e′′ ⇒ e ^ e′′.

The configurations (or states) of such an event structure are subsets x ⊆ E
which are

• consistent: ∀e1, e2 ∈ x. e1 _^ e2,

• secured: ∀e, e′ ∈ E. e′ ≤ e ∈ x⇒ e′ ∈ x.

Ordered by inclusion, the configurations (Γ(E),⊆), form a coherent
prime algebraic domain [8]; such domains are precisely the infinitely dis-
tributive, coherent Scott domains [12]. An instance of the causal de-
pendency ordering e′ ≤ e when e and e′ are distinct, is understood as
meaning that the event e causally depends on the event e′, that the event
e can only after e′ has ocurred. Given this understanding it is reasonable
to impose a finiteness axiom, expressing that an event has finite causes:

{e′ | e′ ≤ e} is finite, for all events e,

The event structures satisfying this axiom yield domains which are pre-
cisely the coherent dI-domains of Berry [2].

If we ignore for the moment the intended interpretation of event struc-
tures, temporarily forgetting the axiom of finite causes, we can move
quickly to a model of intuitionistic linear logic. The categorical model we
have in mind is equivalent to the category of coherent prime algebraic do-
mains, with additive functions (i.e. functions preserving arbitrary lubs).
The category has as objects event structures (without the axiom of fi-
nite causes) and morphisms configurations of a “function space” of event
structures, constructed as follows:
Let Ei = (Ei,≤i,^i), i = 0, 1, be event structures. Define

E0 ( E1 = (E0 ×E1,≤,^)
where (e0, e1) ≤ (e′0, e

′
1)⇔ e′0 ≤0 e0 & e1 ≤1 e

′
1

and (e0, e1) ^ (e′0, e
′
1)⇔ e0 _^0 e

′
0 & e1 ^1 e

′
1.

The configurations of E0 ( E1 correspond to additive functions from
Γ(E0) to Γ(E1)—additive functions are determined by their action on
complete primes3 which correspond to events. The inclusion ordering

3A complete prime of a Scott domain (D,v) is an element p for which whenever p v ⊔X
then p v x for some x ∈ X .
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on configuration reflects the Scott pointwise ordering on functions; in
particular, the function events (e0, e1) correspond to special step functions
and the order ≤ to the Scott order between them.

A morphism E0 → E1 is defined to be a configuration of E0 ( E1.
As such it is a relation between the events of E0 and E1. Composition in
the category is that of relations. The category is a model of intuitionistic
linear logic, as defined in [9]; for instance, its tensor is given in a coor-
dinatewise fashion: For event structures Ei = (Ei,≤i,^i) , for i = 0, 1,
define

E0 ⊗ E1 = (E0 × E1,≤,^)
where (e0, e1) ≤ (e′0, e

′
1)⇔ e0 ≤0 e

′
0 & e1 ≤1 e

′
1

and (e0, e1) _^ (e′0, e
′
1)⇔ e0 _^0 e

′
0 & e1 _^1 e

′
1.

Monoidal-closure follows from the isomorphism

(E0 ⊗ E1 ( E2) ∼= (E0 ( (E1 ( E2))

natural in event structures E0, E1, E2. Product and coproduct are ob-
tained by disjoint juxtaposition of event structures, extending conflict
across the two event sets in the case of coproduct. The comonad opera-
tion is

!E = (Γ(E)0,⊆, -↑)
for an event structure E, with finite configurations Γ(E)0, on which in-
compatibility with respect to inclusion is denoted by -↑. The continu-
ous functions Γ(E0)→ Γ(E1), between configurations of event structures
E0, E1, are in 1-1 correspondence with configurations of !E0 ( E1

But a price has been paid. In this model of linear logic all hope
of considering the order ≤ as causal dependency is lost. The difficulty
stems from the definition of the order ≤ for (E0 ( E1) of event structures
Ei = (Ei,≤i,^i), i = 0, 1. Its events are ordered by:

(e0, e1) ≤ (e′0, e
′
1) ⇔ e′0 ≤0 e0 & e1 ≤1 e

′
1

The reversal in the ≤0 order can lead to ≤ violating the axiom of finite
causes, even though ≤0 and ≤1 do not: an infinite, ascending chain of
events in E0 can give rise to an infinite, descending chain in E0 ( E1. Of
course, the extensional/Scott ordering on functions never made any pre-
tence of being a relation of causal dependency, so it is not to be expected
that its restriction to step functions ≤ should be finitary.
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However, if we factor ≤ into two orderings, one associated with in-
put (on the left) and output (on the right) we can expose two finitary
orderings. Define

(e0, e1) ≤L (e′0, e
′
1)⇔ e′0 ≤0 e0 & e1 = e′1

(e0, e1) ≤R (e′0, e
′
1)⇔ e′0 = e0 & e1 ≤1 e

′
1.

Then, it is clear that ≤ factors as

(e0, e1) ≤ (e′0, e
′
1)⇔ (e0, e1) ≤L (e′0, e1) & (e′0, e1) ≤R (e′0, e

′
1),

and that this factorisation is unique. Provided the orderings of E0 and
E1 are finitary, then so are ≤R and the converse ordering ≥L. This
factorisation is the first step towards the definition of bistructures. To
indicate its potential, and to further motivate bistructures, we study a
simple example.

Let E0 and E1 be the event structures shown below. Both have empty
conflict relations. Taking advantage of the factorisation we have drawn
them alongside the function space E0 ( E1.
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The conflict relation of E0 ( E1 is empty. So here an additive func-
tion from Γ(E0) to Γ(E1) is represented by a ≤-downwards-closed subset
of events of E0 ( E1. For instance, the events in the diagram (below
left) are associated with the function that outputs e on getting input
event a, outputs f for input b or c, and outputs g for input d. The
extensional/Scott ordering on functions corresponds to inclusion on ≤-
downwards-closed subsets of events. It is clear that such a function is
determined by specifying the minimal input events which yield some
specific output (shown in the diagram below right). This amounts to
the subset of ≤L-maximal events of the function. Following Girard, we
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can call this subset the trace of the function. Notice, though, that this
particular function is not stable; output f can be obtained for two non-
conflicting but distinct events b and c. A stable function should not
have ≤L-downwards compatible distinct events in its trace. For stable
functions, the stable/Berry ordering is obtained as inclusion of traces.
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To summarise:

• additive functions correspond to ≤-downwards-closed, consistent
subsets of events of E0 ( E1,

• the extensional/Scott order corresponds to inclusion of≤-downwards-
closed subsets of events,

• the trace of a function corresponds to its ≤L-maximal events,

• if a function is stable then no two distinct events in its trace are ≤L-
downwards compatible, i.e. for e1, e2 in its trace, e1 ↓L e2 implies
e1 = e2, where e1 ↓L e2 ⇔def ∃e. e ≤L e1 & e ≤L e2.

• the stable/Berry order corresponds to inclusion of traces.

But, of course, several of these observations are based on a spe-
cial case, that where we construct the function space of ordinary event
structures. We have not yet specified how to repeat the function-space
construction at higher orders, when the event structures come already
equipped with ≤L and ≤R orders. And what axioms should such struc-
tures satisfy?

3 Bistructures

The following definition of bistructures provides an answer to the question
just raised as well as yielding a model of classical linear logic.

Definition: A bistructure consists of

(E,≤L,≤R,^)
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where E is a countable set, ≤L,≤R are partial orders on E and ^ is a
binary irreflexive symmetric relation on E for which:

1. Defining ≤= (≤L ∪ ≤R)∗, we have the unique factorisation prop-
erty:

e ≤ e′ ⇒ ∃! e′′. e ≤L e′′ ≤R e′

[It follows that ≤ is a partial order.]

2. Defining �= (≥L ∪ ≤R)∗,

(a) {e′ | e′ � e} is finite, for all e,

(b) � is a partial order.

3. (a) ↓L ⊆ � (b) ↑R ⊆ _
^

The two compatibility relations mean

e ↓L e′ ⇔ ∃e′′. e′′ ≤L e & e′′ ≤L e′

e ↑R e′ ⇔ ∃e′′. e ≤R e′′ & e′ ≤R e′′.

Ordinary, countable event structures, (E,≤,^), satisfying the axiom
of finite causes, yield special bistructures (E, 1E,≤,^), in which the ≤L
order is degenerate.

Definition: A configuration of a bistructure (E,≤L,≤R,^) is a subset
x ⊆ E which is

• consistent: ∀e1, e2 ∈ x. e1 _^ e2,

• secured: ∀e ∈ x∀e′ ≤R e∃e′′. e′ ≤L e′′ ∈ x .

[Notice that e′′ is unique in any consistent set because of Axiom 3(a) on
bistructures.] Write Γ(E) for the set of configurations of a bistructure E.

A helpful case to consider is that where the bistructure represents
a space of functions, as in the introduction. Configurations then corre-
spond to traces. Because ↓L is included in ^

_, consistency has the force
of ensuring the functions represented are stable. The securedness condi-
tion says that for any output, lesser output must have arisen previously
through the same or lesser input.
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Γ(E) possesses two orderings making it into a Berry bidomain; the
inclusion order corresponds to the stable order while the Scott extensional
order is obtained by:

x v y iff ∀e ∈ x∃e′ ∈ y. e ≤L e′

This is equivalent to every event of x being ≤-below some event of y.

Proposition 1 (Γ(E),⊆,v) is a Berry bidomain.

Proof: The proof is essentially as in [10] (Theorem 9.9.8—relying on
9.4.8). 2

4 A category of bistructures

Morphisms between bistructures will correspond to configurations of a
function-space construction. They will determine (special) extensional,
linear (= stable and additive) functions on bidomains. Assuming Ei =
(Ei,≤Li ,≤Ri ,^i), for i = 0, 1, are bistructures, define their linear function
space by

E0 ( E1 = (E0 × E1,≤L,≤R,^)
where (e0, e1) ≤L (e′0, e

′
1)⇔ e′0 ≤R e0 & e1 ≤L e′1

(e0, e1) ≤R (e′0, e
′
1)⇔ e′0 ≤L e0 & e1 ≤R1 e′1

and (e0, e1) ^_ (e′0, e
′
1)⇔ e0 _^0 e

′
0 & e1 ^_1 e

′
1.

We define the category of bistructures BS by taking morphisms E0 to
E1 to be configurations of E0 ( E1, composed as relations. Of course, we
should show that this composition is well-defined and has identities. First
we observe that with this definition, morphisms of bistructures generalise
those of Girard on webs (E,^)—see the introduction:

Proposition 2 A configuration of E0 ( E1, for bistructures E0, E1,
consists of a morphism α from the web of E0 to the web of E1 which
satisfies:

e′0 ≥L e0αe1 ≥R e′1 ⇒ ∃e′′0, e′′1. e′0 ≥R e′′0αe′′1 ≥L e′1
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Proof: Consistency of a configuration of a function space amounts to the
relation being a morphism between the underlying webs. Securedness is
equivalent to the condition of the proposition. 2

Lemma 3 Let α be a configuration of E0 ( E1 and β a configuration
of E1 ( E2. Then their relational composition β ◦ α is a configura-
tion of E0 ( E2. A bistructure E ( E has the identity relation as a
configuration.

Proof: That identity relations are configurations relies, for securedness,
on the factorisation property (1) of bistructures. For the relational com-
position β ◦ α to be a configuration we require it consistent and secured.
Consistent: From the definition of ^_ on function space we require that
for (a, c), (a′, c′) ∈ β ◦ α that

(i) a _^ a′ ⇒ c _^ c′ and (ii) c = c′ ⇒ a ^_ a′,

facts which hold of the composition β ◦ α because they hold of α and β.
Secured: Suppose (a, c) ∈ β ◦ α and that

(a0, c0) ≤R (a, c),

i.e., a ≤L a0 & c0 ≤R c. It is required that there is

(a′, c′) ∈ β ◦ α

such that
(a0, c0) ≤L (a′, c′),

i.e., a′ ≤R a0 & c0 ≤L c′. [In the following argument, it is helpful to refer
to the diagram below.]

As (a, c) ∈ β ◦ α there is b′0 such that (a, b′0) ∈ α and (b′0, c) ∈ β.
Because c0 ≤R c, we obtain that

(b′0, c0) ≤R (b′0, c).

As β is secured there is (b1, c1) ∈ β for which (b′0, c0) ≤L (b1, c1), i.e.,

(b1, c1) ∈ β & b1 ≤R b′0 & c0 ≤L c1. (1β)

As a ≤L a0 and b1 ≤R b′0, we have (a0, b1) ≤R (a, b′0). But α is secured, so
there is (a1, b

′
1) ∈ α for which (a′0, b1) ≤L (a1, b

′
1), i.e.

(a1, b
′
1) ∈ α & a1 ≤R a0 & b1 ≤L b′1. (1α)

9



From (1α) and (1β) we obtain:

a0 ≥R a1 α b
′
1 ≥L b1 β c1 ≥L c0 (1)

This pattern in a1, b
′
1, b1, c1 must repeat by the next argument.

It follows from (1) that (b′1, c1) ≤R (b1, c1) ∈ β. As β is secured, there
is (b2, c2) ∈ β for which (b′1, c1) ≤L (b2, c2), i.e.,

(b2, c2) ∈ β & b2 ≤R b′1 & c1 ≤L c2 (2β)

As b2 ≤R b′1, we have (a1, b2) ≤R (a1, b
′
1) ∈ α. But α is secured, so there

is (a2, b
′
2) ∈ α for which (a1, b2) ≤L (a2, b

′
2), i.e.

(a2, b
′
2) ∈ α & a2 ≤R a1 & b2 ≤L b′2 (2α)

and the pattern in (1) repeats in (2) below—got directly from (2α) and
(2β):

a0 ≥R a2 α b
′
2 ≥L b2 β c2 ≥L c0 (2)

where b2 ≤R b′1. This can be repeated infinitely. In a diagram:

6
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The chain
b′0 ≥R b1 ≤L b′1 ≥R b2 ≤L b′2 ≥R · · ·

must eventually be constant by Axiom 2(a) on bistructures. Hence we
obtain

(an, b′n) ∈ α & bn = b′n & (bn, cn) ∈ β
making (an, cn) ∈ β ◦ α with an ≤R a0 and c0 ≤L cn, i.e. (a0, b0) ≤L
(an, cn)—and (an, cn) fulfils the requirements we seek for (a′, c′). 2

Using the same kind of well-foundedness argument as in the proof of
Lemma 3 above, we can show:
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Proposition 4 Let F be a configuration of E0 ( E1 and x a configura-
tion of E0. Defining

F.x = {b | ∃a ∈ x. (a, b) ∈ F}

yields a configuration of E1. The function x 7→ F.x : Γ(E0) → Γ(E1)
is linear with respect to ⊆ and continuous with respect to v. [Not all
such functions are represented, unless events of E0 correspond to complete
primes of Γ(E0).]

5 A model of classical linear logic

Here we give the constructions showing that BS is a model of classical
linear logic. Define linear negation, the involution of linear logic, by

E⊥ = (E,≥R,≥L,_)

where E = (E,≤L,≤R,^). Clearly (E⊥)⊥ = E. The remaining multi-
plicatives, ℘ (par)and ⊗ (tensor), are determined by the usual isomor-
phisms of classical linear logic

E0 ℘ E1
∼= (E⊥0 ( E1) E0 ⊗ E1

∼= (E0 ( E⊥1 )⊥

and have a form generalising those of Girard’s constructions on coher-
ence spaces. The construction E⊥ is isomorphic to (E ( 1) where
1 = ({•}, 1, 1, ∅) is the unit of ⊗. The product in the category BS is
given by

E0 × E1 = (E0 ∪E1,≤L,≤R,^)

obtained as the juxtaposition of the two bistructures, assumed disjoint,
so for example ^=^0 ∪ ^1. The coproduct E0 + E1, isomorphic to
(E⊥0 × E⊥1 )⊥, is again obtained as the disjoint juxtaposition of the two
bistructures, but this time extending conflict across the two components.

To get the exponential !E, of a bistructure E, we first define orderings
on the finite configurations Γ(E)0. For x, y ∈ Γ(E)0 define

x vR y ⇔x ⊆ y
x vL y ⇔x v y & (∀y′ ∈ Γ(E). x v y′ & y′ ⊆ y ⇒ y = y′).

Thus, x vL y means y is a ⊆-minimum configuration s.t. x v y. Now
define

!E = (Γ(E)0,vL,vR, -↑R)

11



where x ↑R y ⇔def ∃z ∈ Γ(E). x, y ⊆ z.

Notation: Let E = (E,≤L,≤R,^) be a bistructure.
Let x ∈ Γ(E). Let e ∈ E be in the ≤-downwards closure of x, i.e.,

e ≤ e′, for some e′ ∈ x. Factorising ≤, we obtain e ≤L e′′ ≤R e′, and as x
is a configuration there is a unique emax ∈ x such that e′′ ≤L emax. This
shows that any event e in the ≤-downwards closure of a configuration x
is ≤L-dominated by a unique event emax in x. We write m(e, x) for this
event emax.

For x ∈ Γ(E)0, we define the relativised relation �x as the reflexive,
transitive closure of �1

x where, for e, e′ ∈ x,

e �1
x e
′ ⇔def ∃e′′. e′′ ≤L e & e′′ ≤R e′.

Lemma 5 For a bistructure E, let x, y ∈ Γ(E)0,

(i) x ↑R y & e ∈ x ∩ y ⇒ (∀e′ ∈ E. e′ �x e⇔ e′ �y e)
(ii) x vL y ⇔ x v y & ∀e′ ∈ y∃e ∈ x. e′ �y m(e, y).

Lemma 6 !E is a bistructure.

Proof: The main difficulty in the proof is in showing that the relation
�!= (wL ∪ vR)∗ of !E is a partial order. We need only show antisymme-
try. Thus suppose for xi, x′i in Γ(E)0 we have:

x0 vR x′0 wL x1 vR x′1 wL · · · wL xn vR x′n & xn = x0 & x′n = x′0 (1)

We shall show xi = x′i = xj = x′j for all i, j. Then by the definition of �!

on !E it follows that �! is antisymmetric.
Define fix = ⋂

i xi. We first show fix ∈ Γ(E). Consistency is obvious.
We show that it is secured. Suppose e ∈ fix and ε ≤R e. Consider the
chain (1). As x0 vR x′0 we have m(ε, x0) = m(ε, x′0) by the consistency
of x′0. At the next link in the chain x′0 wL x1 with ε in the ≤-downwards
closure of x′0 and x1 so m(ε, x′0) ≥L m(ε, x1) by the consistency of x′0.
Continuing in this way along the chain (1) we get:

m(ε, x0) = m(ε, x′0) ≥L m(ε, x1) = m(ε, x′1) ≥L m(ε, x2) = m(ε, x′2) · · · ≥L m(ε, xn)

But x0 = xn so m(ε, x0) = m(ε, xn). As ≤L is a partial order, m(ε, xi) =
m(ε, x0) for all i. Thus m(ε, x0) ∈ fix, so fix is secured.
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Consequently fix ∈ Γ(E) and clearly fix vR xi, x
′
i for all i. It

remains to show fix = xi = x′i for all i. By symmetry, it suffices to show
x0 = x′0 = fix.

Take e ∈ x′0. Then by repeated use of Lemma 5(ii), characterising
vL, we deduce from (1) that

e = e0 �x′0 e
′
0 ≥L e1 �x′1 e

′
1 ≥L e2 · · · ≥L em �x′[m]n

e′m ≥L ėm+1 · · · (2)

for some ei in x[i]n and e′i in x[i]n where i ∈ ω (here [m]n is m modulo n).
The sequence has been continued infinitely by going around and around

the loop (1). As x0 is finite and the sequence (2) visits x0 infinitely of-
ten there must be em, eq in x0 such that m < q and [m]n = [q]n = 0
and em = eq. Then as � is a p.o., em = e′m = em+1 = · · · = eq. Thus
em ∈ fix so the sequence (2) eventually contains an element of fix. We
know fix vR xi, x

′
i, for all i. Now working backwards along the chain

(2), starting at em, it follows that all elements of the chain are in fix—at
≥L-links this follows from the consistency of each x′i and at �x′i-links by
Lemma 5(i). In particular, e0(= e) must be the earliest element of (2) in
fix. But e was chosen to be an arbitrary event in x′0. Thus x′0 = fix.
Therefore x0 = x′0 = fix as required. 2

The bistructure, !E0 ( E1, has configurations in 1-1 correspondence
with elements in the function space [(Γ(E0),⊆,v) → (Γ(E1),⊆,v)] in
the cartesian-closed category of Berry’s bidomains:

Proposition 7 Let E0, E1 be bistructures. For R ∈ Γ(!E0 ( E1) and
x ∈ Γ(E0) define

R̄(x) = {e | ∃x0 ⊆ x. (x0, e) ∈ R}.

Then R̄ is a function Γ(E0)→ Γ(E1) which is continuous with respect to
v and stable with respect to ⊆ on configurations. In fact, R 7→ R̄ is a 1-1
correspondence between configurations of !E0 ( E1 and such functions.

Proof: First observe that the configurations of !E0 are precisely those
sets

x+ = {y ∈ Γ(E0)0 | y ⊆ x}
for some x ∈ Γ(E0)—again Γ(E0)0 denotes the finite configurations of E0.
Noting

R̄(x) = R.(x+), for x ∈ Γ(E0)
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it follows by Proposition 4 that R̄(x) ∈ Γ(E1), so that R̄ is well-defined as
a function Γ(E0)→ Γ(E1). Moreover, the v-continuity and ⊆-stability of
R̄ follow directly from the corresponding properties of the linear function
x 7→ R.x : Γ(!E0)→ Γ(E1).

We now construct an inverse to R 7→ R̄. Suppose f : Γ(E0)→ Γ(E1)
is v-continuous and ⊆-stable. Define ϕ(f) to be the trace of f , i.e.

ϕ(f) = {(x, e) ∈ Γ(E0)0 × E1 | x is minimal s.t. e ∈ f(x)}

We need first that ϕ(f) ∈ Γ(!E0 ( E1), i.e. that ϕ(f) is consistent and
secured:

Consistent: Suppose (x, e), (x′, e′) ∈ ϕ(f) and that (x, e) � (x′, e′)i.e.x ↑R
x′ & e � e′. We show (x, e) = (x′, e′). As e, e′ ∈ f(x ∪ x′), we must have
e _^ e′, which combined with e � e′, entails e = e′. Now, (x, e), (x′, e)
are both in ϕ(f) the trace of f . Because x ↑R x′ and f is ⊆-stable we
conclude that x = x′.

Secured: Suppose (x′, e′) ≤R (x, e) ∈ ϕ(f). Then x vL x′ and e′ ≤R e.
As f is v-monotonic, f(x) v f(x′). Because e′ ≤R e and e ∈ f(x), we
see that e′ is in the ≤-downwards closure of f(x′). Thus

e′ ≤L e′′ (1)

where e′′ = m(e′, f(x′)) ∈ f(x). As f is ⊆-stable, there is

x0 ⊆ x′ (2)

with (x0, e
′′) in its trace, i.e.

(x0, e
′′) ∈ ϕ(f) (3)

Combining (1), (2), (3) we obtain, as required

(x′, e′) ≤L (x0, e
′′) ∈ ϕ(f).

For f a v-continuous, ⊆-stable function Γ(E0)→ Γ(E1) its continuity
with respect to ⊆ entails ϕ(f) = f . For R ∈ Γ(!E0 ( E1) a direct
translation of the definitions yields ϕ(R̄) = R. Thus the map R 7→ R̄ = R
is a 1-1 correspondence. 2

More completely, this section provides the key constructions in show-
ing:

14



Theorem 8 The category BS forms a linear category in the sense of [9].
The exponential ! forms a comonad on the category BS. Together they
form a model of classical linear logic (a Girard category in the sense of
[9]). The associated co-Kleisli category is equivalent to a cartesian-closed
full subcategory of Berry’s bidomains, where morphisms are continuous
with respect to the Scott order and stable with respect to the Berry order.
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