
B
R

IC
S

R
S

-94-36
A

.A
.R

azborov:
O

n
provably

disjointN
P

-pairs

BRICS
Basic Research in Computer Science

On provably disjoint NP-pairs

Alexander A. Razborov

BRICS Report Series RS-94-36

ISSN 0909-0878 November 1994

Copyright c© 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

On provably disjoint NP-pairs

Alexander A. Razborov∗

Steklov Mathematical Institute
Vavilova 42, 117966, GSP–1, Moscow, RUSSIA

November 11, 1994

Abstract

In this paper we study the pairs (U, V) of disjoint NP-sets representable in a
theory T of Bounded Arithmetic in the sense that T proves U ∩ V = ∅. For a
large variety of theories T we exhibit a natural disjoint NP-pair which is complete
for the class of disjoint NP-pairs representable in T . This allows us to clarify the
approach to showing independence of central open questions in Boolean complexity
from theories of Bounded Arithmetic initiated in [11]. Namely, in order to prove the
independence result from a theory T , it is sufficient to separate the corresponding
complete NP-pair by a (quasi)poly-time computable set. We remark that such a
separation is obvious for the theory S(S2) + SΣb

2 − PIND considered in [11], and
this gives an alternative proof of the main result from that paper.

1. Introduction

In this paper we study the class of pairs (U, V), where U and V are disjoint NP-sets.
There are at least two good reasons to be interested in this issue.

Firstly, the question of existence of such a pair not separable by a set in P is closely
connected to the existence of public-key cryptosystems [5].

∗Part of this work was done while the author was visiting BRICS, Basic Research in Computer Science,
Centre of the Danish National Research Foundation. Supported by the grant # 93-011-16015 of the
Russian Foundation for Fundamental Research, and by an AMS-FSU grant.

1

The second motivation comes from the attempts to understand on the formal level the
machinery existing in non-uniform Boolean complexity for proving lower bounds [10, 12,
11]. Of the main importance for this approach is the following observation.

Let U consist of truth-tables of all “simple” Boolean functions, and let

V ⇀↽ {f ⊕ s | f ∈ U } ,

where s is a supposedly complex function in the same number of variables as f . Then
proving that s is indeed complex is equivalent to showing that U ∩ V = ∅.

Based upon the notion of a natural proof [12], it was implicitly shown in [11] that if
sufficiently strong pseudo-random generators exist then these U and V can not be separated
by a quasipolynomial time computable set. It was (also implicitly) shown there that if some
particular system S(S2)+SΣb

2 −PIND of Bounded Arithmetic can prove that U ∩V = ∅
for some NP-pair (U, V) then this pair can not be separated by a quasipolynomial time
computable set. Putting things together, we obtain the independence result modulo the
hardness assumption.

The question if there exist disjoint NP-pairs which can not be separated by a set in
P is open. Moreover, it was shown in [6] that there exists an oracle relative to which
P 6= NP, and still such pairs do not exist. Thus, the assumption of the existence of
P-inseparable disjoint NP-pairs seems to be stronger than merely P 6= NP. It should be
noted, however, that this assumption is implied by both P 6= UP (see e.g. [13, Theorem
9]) and, for obvious reasons, by P 6= NP ∩ co − NP.

It is known [5, Theorem 6] that every disjoint NP-pair is many-one reducible to another
disjoint NP-pair in which both components are NP-complete. However, it is open whether
there exists an NP-pair which is complete in the class of all disjoint NP-pairs under a
natural reduction. The reason lies in the highly non-constructive nature of the condition
U ∩ V = ∅: e.g. we apparently can not enumerate pairs of nondeterministic poly-time
machines producing all disjoint NP-pairs.

In this paper we try to build the hierarchy of disjoint NP-pairs based upon the strength
of logical tools needed for proving the fact U ∩V = ∅. Namely, for a variety of systems T of
Bounded Arithmetic, we consider the class of NP-pairs for which this fact is provable in T .
We exhibit a natural NP-pair which is complete in this class under the many-one reduction.
Roughly speaking, the first component in this pair consists of all satisfiable CNF, and the
second component consists of those unsatisfiable CNF which allow a short refutation in the
propositional proof system associated with T . This reduces the approach suggested in [11]
to the very concrete algorithmic question: for which theories T the associated complete
NP-pair can be separated by a quasipolynomial time computable set? Whenever such a

2

separation exists, we have the independence of NP 6⊆ P/poly from the theory T modulo
the hardness assumption. For the theory S(S2)+SΣb

2 −PIND the separating set is fairly
obvious, and this gives us an alternative, and, perhaps, more natural (not to be confused
with the concept from [12]!) proof of the main result from [11].

The paper is organized as follows. In Section 2 we recall necessary facts from Bounded
Arithmetic and propositional calculus. In Section 3 we formulate the main concept of
an NP-pair representable in a theory T and formulate our main result. In Section 4 we
demonstrate one nice feature of the split versions introduced in [11]: we show that they
allow some sort of elimination of sharply bounded quantifiers. The next section 5 contains
the proof of our main theorem. In Section 6 we show how to reduce the approach to proving
independence results in Bounded Arithmetic to purely complexity questions. The paper is
concluded by a brief discussion of their status in Section 7.

2. Background from Logic

2.1. Systems of Bounded Arithmetic

We assume the familiarity with [1], and use the now-standard notation for denoting various
hierarchies and fragments of Bounded Arithmetic from that book. L1 is the first order
language which consists of the constant 0, function symbols S, +, ·, b1

2xc, |x|, and of the
predicate symbol ≤. L2 is obtained from L1 by augmenting it with the smash symbol
which has the intended meaning x#y = 2|x|·|y|. Lk(α, β) (k = 1, 2) is the first-order
language obtained from Lk by appending to the latter two new unary predicate symbols
α(a), β(a), and Lk is the second-order language based on Lk. To simplify the notation, we
will sometimes be using several predicate symbols (second-order variables in the case of
Lk) like α1, α2, . . . or β1, β2, . . .: they can always be combined into a single α or β using an
easy encoding.

The theories we are interested in will be either in the language Lk(α, β) or in Lk

(k = 1, 2). All they contain the set BASICk of simple open axioms describing basic
properties of symbols from Lk. On the top of it, second-order theories also always include
the comprehension axiom scheme Σ1,b

0 − CA. The difference between theories is specified
by the amount of induction allowed.

Behind the standard hierarchy Σb
i , Πb

i of bounded formulae we also need its split version
SΣb

i , SΠb
i in the language L2(α, β) [11]. SΣb

0 = SΠb
0 is the set of all bounded formulae which

contain either only occurrences of α or only occurrences of β. The inductive definition of
SΣb

i+1, SΠb
i+1 is the same as for Σb

i+1, Π
b
i+1.

3

The hierarchy Ei, Ui (see e.g. [17]) was defined as the ordinary hierarchy of bounded
formulae in the language of Peano Arithmetic (where we do not have the notion of a
sharply bounded quantifier at all). A bounded formula is Di in a theory T if it is provably
equivalent to an Ei- and Ui-formula in T . We extend this hierarchy to the language L1(α, β)
simply by counting sharply bounded quantifiers exactly as ordinary quantifiers. The split
versions SEi, SUi, SDi of this hierarchy in the language L1(α, β) are defined analogously
to SΣb

i , SΠb
i.

The following table summarizes the definitions of the theories of Bounded Arithmetic
considered in this paper1:

Theory Underlying language Induction scheme
Si

2(α, β) L2(α, β) Σb
i(α, β) − PIND

SSi
2 L2(α, β) SΣb

i − PIND
IEi(α, β) L1(α, β) Ei(α, β) − IND

SIEi L1(α, β) SEi − IND
T i

2(α, β) L2(α, β) Σb
i(α, β) − IND

ST i
2 L2(α, β) SΣb

i − IND
I∆0(α, β) L1(α, β) ∆0(α, β) − IND
S2(α, β) L2(α, β) Σb(α, β) − PIND

U1
1 L1 Σ1,b

1 − PIND

U1
2 L2 Σ1,b

1 − PIND

V 1
1 L1 Σ1,b

1 − IND

V 1
2 L2 Σ1,b

1 − IND

Table 1: Summary of fragments of Bounded Arithmetic

We will need the following easy generalization of [2, Theorem 5] to our setting (see
[11]):

Proposition 2.1. For i ≥ 1, SSi+1
2 is ∀SΣb

i+1-conservative over ST i
2.

1we have introduced the natural notation SSi2, ST i2 for the theories S(S2) + SΣbi − PIND, S(S2) +
SΣbi − IND from [11] and SIEi for the split versions of the theories IEi(α, β). Also, Σb ⇀↽

⋃
i≥0 Σbi .

4

2.2. Propositional proof systems

In this paper we will be exclusively working with sequential (= natural deduction) proof
systems. The cut rule will be always present.

Different proof systems are usually specified by the syntactic requirements placed on
the sequents allowed in the proof:

• For a fixed constant w > 0, we denote by Rw the system of bounded resolutions.
All sequents in the proof must have the form `1, . . . , `p −→ `p+1, . . . , `q, where `is
are literals (that is, either propositional variables or their negations) and, moreover,
q ≤ w. Applying cosmetic (¬:right) rule, we can always move all literals to the
succedent, after which the cut rule turns into the familiar resolution rule.

• R, resolutions is the same system as Rw, only without any restrictions on the length
of the sequents.

• Fd is the depth-d Frege system: all formulae appearing in the proof must either have
the form

r1∨
i1=1

r2(i1)∧
i2=1

. . .
rd(i1,...,id−1)∨∧

id=1
`i1...id (1)

(Σd-formulae) or
r1∧

i1=1

r2(i1)∨
i2=1

. . .
rd(i1,...,id−1)∨∧

id=1
`i1...id (2)

(Πd-formulae), where `i1...id are literals. The inference rules are modified for un-
bounded fan-in, e.g. (∧:right) looks like

Γ −→ Ai, ∆ (i ∈ I)
Γ −→ ∧

i∈I Ai, ∆
.

Note that F0 = R.

• F is the ordinary Frege system. At this point it is no longer important that we work
in the sequential calculus, but we prefer to stick to this for the sake of uniformity.

• EF is the extended Frege proof system [18, 4]. It additionally allows us to use ex-
tension axioms of the form p ≡ A, where p is a new propositional variable (called
extension atom) which did not appear earlier in the proof.

5

For an unsatisfiable CNF φ =
∧

i∈I

∨
j∈Ji `ij and a proof system P we denote by

sP (φ) the minimal possible number of logical symbols in a P -derivation of the empty
sequent from the sequents −→ {`ij | j ∈ Ji } (i ∈ I).

2.3. Correspondence between theories of Bounded Arithmetic
and propositional proof systems

For many theories of Bounded Arithmetic T there exists a propositional proof system PT

closely associated with T in the following sense:

a) T proves the soundness of PT ,

b) every proof in T of a formula A with appropriately low logical complexity can be
efficiently transformed into a short PT -proof of the propositional variant of A.

In this section we recall those details of this correspondence which will be important in the
sequel.

Let Tr(a, α, β) be the predicate asserting that the truth assignment α makes the
Boolean formula encoded by the string β(0) . . . β(a − 1) true (truth definition).

Proposition 2.2 ([7]). Tr(a, α, β) has a ∆1,b
1 -definition in U1

1 about which U1
1 proves the

usual Tarski’s conditions.

Let Trd(a, α, β) be the variant of Tr(a, α, β) in which β(0) . . . β(a−1) encodes a Boolean
formula from Σd ∪ Πd. The following is straightforward:

Lemma 2.3. For any fixed d ≥ 0, Trd(a, α, β) has a SDd+1-definition in SIE0 about
which SIE0 proves the usual Tarski’s conditions.

Note for the record that this truth definition can also be assumed to satisfy the natural
property

SIE0 ` ∀x < a(α1(x) ≡ β1(x)) ⊃ (Trd(a, α, α1) ≡ Trd(a, α, β1)). (3)

Let the Σ1,b
0 -formula RefP (a0, a1, β0, β1) assert that the string β0(0) . . . β0(a0 − 1) en-

codes an inference of length ≤ a0 in the propositional proof system P of the empty sequent
from the clauses of the CNF encoded by β1(0) . . . β1(a1−1). The following two propositions
are slight modifications of [7, Theorem 2.4] and [7, Theorem 2.5] respectively (the latter
also follows from earlier results of Cook [3] via the correspondence between PV and S1

2 [1,
Chapter 6] and RSUV -isomorphism [14, 15, 9]):

6

Proposition 2.4. U1
1 ` RefF (a0, a1, β0, β1) ⊃ ¬Tr2(a1, α, β1).

Proposition 2.5. V 1
1 ` RefEF (a0, a1, β0, β1) ⊃ ¬Tr2(a1, α, β1).

Paris and Wilkie [8] showed that I∆0(α, β) ` RefFd(a0, a1, β0, β1) ⊃ ¬Tr2(a1, α, β1) for
any fixed d ≥ 0. We will need the following refinement of their result:

Lemma 2.6. For any fixed d ≥ 0, SIEd+2(α, β) ` RefFd(a0, a1, β0, β1) ⊃ ¬Tr2(a1, α, β1).

Proof. Assuming Tr2(a1, α, β1), we prove by induction on c that in ANY one of the first c
sequents of the inference encoded by β0 there EXISTS either a formula φ in the antecedent
such that ¬Trd(a1, α, φ) or a formula φ in the succedent such that Trd(a1, α, φ). By Lemma
2.3, the formula expressing this fact is in SUd+2, and SUd+2 −IND is available in SIEd+2.

Let us now fix propositional variables p1, p2, . . . , pn, . . . , q1, q2, . . .

Definition 2.7 (see e.g. [7]). For every A(~a, α, β) ∈ Σ1,b
0 , where all free variables are

displayed, and a tuple of integers ~n we define the propositional formula 〈A(~a)〉~n by induction
on the complexity of A:

a) if A does not contain occurrences of α and β, and A(~n) is true [false] on integers then
〈A(~a)〉~n ⇀↽ 1 [0, respectively];

b) if A(~a) = α(t(~a)) [β(t(~a))] then 〈A(~a)〉~n ⇀↽ pt(~n) [qt(~n), respectively];

c) 〈¬A(~a)〉~n ⇀↽ ¬〈A(~a)〉~n;

d) 〈A(~a) ∗ B(~a)〉~n ⇀↽ 〈A(~a)〉~n ∗ 〈B(~a)〉~n for ∗ ∈ {∧, ∨, ⊃};

e) 〈(∃x ≤ t(~a))A(~a, x)〉~n ⇀↽
∨

m≤t(~n)〈A(~a, b)〉~n,m;

f) 〈(∀x ≤ t(~a))A(~a, x)〉~n ⇀↽
∧

m≤t(~n)〈A(~a, b)〉~n,m.

The following two propositions slightly modify and strengthen [7, Theorems 3.2,3.1]
(the latter also follows from [3]):

Proposition 2.8. Let U1
2 ` A(~a, α, β), where A(~a, α, β) is a Σ1,b

0 -formula with all free
variables displayed. Then there exists a quasipolynomial time2 algorithm which for any
tuple of integers ~n given in the unary form 1~n produces an F -proof of the propositional
formula 〈A(~a)〉~n.

2that is with running time 2(logn)O(1)
. The corresponding class of functions/predicates computable in

quasipolynomial time will be denoted by QP.

7

Proposition 2.9. Let V 1
1 ` A(~a, α, β), where A(~a, α, β) is in Σ1,b

0 . Then there exists a
polynomial time algorithm which for any 1~n produces an EF -proof of 〈A(~a)〉~n.

The same remains true after replacing “V 1
1 ” by “V 1

2 ”, and “polynomial time” by
“quasipolynomial time”.

A similar result about the provability in I∆0(α, β) was established in [8]. It, however,
requires more serious adjustment to our purposes, so we defer this until Section 5.

3. Representations of disjoint NP-pairs in systems
of Bounded Arithmetic

Definition 3.1. Let U and V be two disjoint sets in NP, and T be either a first-order
theory in the language Lk(α, β) or a second-order theory in the language Lk (k = 1, 2).
The pair (U, V) is representable in T if there exist Σ1,b

0 -formulae
A(a, α), B(a, β), C(a, b, α), D(a, b, β) with all free variables displayed such that:

a) for every w = (w0, w1, . . . , wN−1) ∈ {0, 1}N , if w ∈ U then

N |= ∃α (A(N,α) ∧ ∀i < N(C(N, i,α) ≡ wi = 1)) ,

and if w ∈ V then

N |= ∃β (B(N,β) ∧ ∀i < N(D(N, i,β) ≡ wi = 1)) ;

b)
T ` (A(a, α) ∧ B(a, β)) ⊃ ∃x < a(C(a, x, α) 6≡ D(a, x, β)).

Informally, condition a) says that A and B specify some Ũ ⊇ U and Ṽ ⊇ V as pro-
jections of P-sets if k = 1 and QP-sets if k = 2. b) means that Ũ ∩ Ṽ = ∅ is provable in
T .

We exploit the ordinary notion of ≤p
m-reducibility in the context of promise problems.

Namely, (U, V) ≤p
m (U ′, V ′) means that there is a polynomially time computable function

f : {0, 1}∗ −→ {0, 1}∗ such that f(U) ⊆ U ′ and f(V) ⊆ V ′. The variant ≤qp
m of this

reducibility is defined in the same way with the difference that we only require f to be in
QP.

8

Theorem 3.2. a) Let T be one of the theories

SSi
2, IEi, ST i

2 (i ≥ 1), I∆0(α, β), S2(α, β), U1
1 , U1

2 , V 1
1 , V 1

2 .

Then the class of NP-pairs representable in T is closed under ≤p
m-reducibility.

b) If, moreover, T ∈ {SSi
2, ST i

2, S2(α, β), U1
2 , V 1

2 } then this class is closed under ≤qp
m-

reducibility.

Proof. a). Assume that (U, V) is representable in T via bounded formulae
A(a, α), B(a, β), C(a, b, α), D(a, b, β), and let (U ′, V ′) ≤p

m (U, V) via a polynomial time
computable function f . Then for a suitable polynomial p(a) we have Σ1,b

0 -formulae
Prot(a, γ0, γ1), Output(a, b, γ0, γ1) and ∆0-definable in I∆0(γ0, γ1) function symbol
Length(a, γ0, γ1) expressing the following:

• Prot(a, γ0, γ1) – “γ1(0) . . . γ1(p(a) − 1) is (the encoding of) the protocol of the poly-
time computation of f on the input string γ0(0) . . . γ0(a − 1)”;

• Length(a, γ0, γ1) is the length of the output of γ1 if Prot(a, γ0, γ1) and 0 otherwise;

• Output(a, b, γ0, γ1) – “Prot(a, γ0, γ1), b < Length(a, γ0, γ1) and the bth bit of γ1’s
output is equal to 1”.

We now set:

A′(a, α0, α1, α2) ⇀↽ Prot(a, α0, α1) ∧ A(Length(a, α0, α1), α2)
∧ ∀x < Length(a, α0, α1)(C(a, x, α2) ≡ Output(a, x, α0, α1))

B′(a, β0, β1, β2) ⇀↽ Prot(a, β0, β1) ∧ B(Length(a, β0, β1), β2)
∧ ∀x < Length(a, β0, β1)(D(a, x, β2) ≡ Output(a, x, β0, β1))

C ′(a, b, α0, α1, α2) ⇀↽ α0(b)
D′(a, b, β0, β1, β2) ⇀↽ β0(b).

We claim that A′, B′, C ′, D′ provide a representation of (U ′, V ′) in the theory T .
Condition a) from Definition 3.1 is straightforward.
In order to see b), suppose, arguing informally in T , that ∀x < a(α0(x) ≡ β0(x)),

A′(a, α0, α1, α2) and B′(a, β0, β1, β2). Applying SU1 − IND on c ≤ p(a) (which is available
in T) to the formula ∀x < c(α1(x) ≡ β1(x)), we find ∀x < p(a)(α1(x) ≡ β1(x)). Thus,

9

T PT reducibility
SIEi (i ≥ 2) Fi−2 ≤p

m

ST i
2, SSi+1

2 (i ≥ 2) Fi−2 ≤qp
m

U1
2 F ≤qp

m

V 1
1 EF ≤p

m

V 1
2 EF ≤qp

m

Table 2: (SAT ∗, REF (PT)) is complete in the class corresponding to T

Length(a, α0, α1) = Length(a, β0, β1) and ∀x < Length(a, α0, α1)(Output(a, x, α0, α1) ≡
Output(a, x, β0, β1)). From the definition of A′, B′ we conclude

∀x < Length(a, α0, α1)(C(a, x, α2) ≡ Output(a, x, β2)),

and this contradicts condition b) for the original pair (U, V) (after substituting a :=
Length(a, α0, α1), α := α2, β := β2).

Part b) is proved in exactly the same way.

Let now SAT ∗ ⇀↽ {〈φ, 1t〉 | φ is a satisfiable CNF}. For a propositional proof sys-
tem P , let REF (P) ⇀↽ {〈φ, 1t〉 | φ is an unsatisfiable CNF and sP (φ) ≤ t}. Obviously,
SAT ∗, REF (P) ∈ NP and SAT ∗ ∩ REF (P) = ∅. The following theorem is the main
result of this paper.

Theorem 3.3. Let T be one of the theories in the left column of Table 2, and PT be the
corresponding proof system in the middle column. Then (SAT ∗, REF (PT)) is complete in
the class of disjoint NP-pairs representable in T with respect to the reducibility given in
the right column.

The proof of this theorem will be given in two subsequent sections.
We conclude this section with the following corollary asserting a certain symmetry of

pairs (SAT ∗, REF (P)):

Corollary 3.4. (REF (Fd), SAT ∗) ≤p
m (SAT ∗, REF (Fd)) (d ≥ 0), (REF (F), SAT ∗) ≤qp

m

(SAT ∗, REF (F)), and (REF (EF), SAT ∗) ≤p
m (SAT ∗, REF (EF)).

Proof. Immediately follows from Theorem 3.3 since the notion of a pair representable in
a theory T is symmetric with respect to the two components U, V .

10

4. Elimination of sharply bounded quantifiers in
split versions

Let us consider the analogue E#
i , U#

i of the hierarchy Ei, Ui in the language L2, and its split
versions SE#

i , SU#
i in the language L2(α, β). Thus, SE#

i , SU#
i differ from SEi, SUi only

in the underlying language, whereas the syntactic inductive definitions for both hierarchies
are the same. The theories IE#

i , SIE#
i have the obvious meaning. In this section we prove

the following:

Theorem 4.1. SIE#
i = ST i

2 for all i ≥ 0.

Proof. Since SE#
i ⊆ SΣb

i , it suffices to show that SIE#
i ` SΣb

i − IND. This will be
immediately implied by the following

Claim 4.2. Let 0 ≤ j ≤ i. Then every SΣb
j-formula is equivalent in SIE#

i to a SE#
j -

formula.

Proof of Claim 4.2. W.l.o.g. we may assume that A ∈ SΣb
j contains only connectives

{¬, ∧, ∨} and, moreover, that negations appear on atomic subformulae only. Now we apply
induction on 〈j, |A|〉.

Base j = 0 is obvious since SΣb
0 = SE#

0 .
Inductive step. Let j > 0 and A ∈ SΣb

j. If A ∈ SΠb
j−1, we convert (¬A) into the

equivalent form Ā ∈ SΣb
j−1 obeying the above restrictions, and apply to Ā the inductive

assumption with j := j − 1. If A = B ∗ C or A = (∃x ≤ t)B(x), the inductive step is
obvious (SE#

j is closed under these operations).
The only nontrivial case is A = (∀x ≤ |t|)B(x). By the inductive assumption, B(a) is

equivalent in SIE#
i to a SE#

j -formula, and we can further assume that this formula is in
the prenex normal form. That is to say,

SIE#
i ` A ≡ ∀x ≤ |t|∃y1 ≤ s1 . . .∃y` ≤ s`∀~z(2) ≤ ~r(2) . . . Q~z(j) ≤ ~r(j)C(x, ~y, ~z(2), . . . , ~z(j)),

where C is a Boolean combination of SE#
0 -formulae. The crucial point is that since SIE#

i

contains S1
2 , it can also define all Σb

1-definable in S1
2 function symbols. Moreover, usage of

this symbols does not increase the logical complexity of formulae in terms of the hierarchy
SE#

i (remember that SE#
0 consists of all bounded formula either not containing α or not

containing β).

11

We claim that the formula3

D(a,~b) ⇀↽ ∀x ≤ |a|∀~z(2) ≤ ~r(2) . . . Q~z(j) ≤ ~r(j)C(x, (b1)x+1, . . . , (b`)x+1, ~z
(2), . . . , ~z(j))

is equivalent to a formula in SE#
j . This is obvious if j ≥ 2 (in fact, D is even in SU#

j−1).
If j = 1, we can represent C(a,~b) in the equivalent form

C(a,~b) ≡
m∧

i=1

(
C ′

i(a,~b, α) ∨ C ′′
i (a,~b, β)

)
,

and we are left to show that ∀x ≤ |a|
(
C ′

i(a,~b, α) ∨ C ′′
i (a,~b, β)

)
is equivalent to a SE#

1 -
formula. The required formula is simply

∃y′ ≤ 4a∃y′′ ≤ 4a
(
∀x ≤ |a|(C ′

i(x,~b, α) ≡ Bit(x, y′))

∧ ∀x ≤ |a|(C ′′
i (x,~b, β) ≡ Bit(x, y′′)) ∧ ∀x ≤ |a|(Bit(x, y′) = 1 ∨ Bit(x, y′′) = 1)

)
.

Now, when we know that D(a,~b) is provably equivalent to a SE#
j -formula, we can apply

SE#
j − PIND on a to the formula (∃y1 ≤ SqBd(a, s1)) . . . (∃y` ≤ SqBd(a, s`))D(a, ~y) to

see that SIE#
i ` A ≡ (∃y1 ≤ SqBd(t, s1)) . . . (∃y` ≤ SqBd(t, s`))D(t, ~y).

This completes the proof of Claim 4.2.

As we noted above, Theorem 4.1 follows.

Remark 4.3. It is worth noting that the similar question T i
2

?= IE#
i is open.

5. Proof of Theorem 3.3

We start by showing that (SAT ∗, REF (PT)) is representable in T (this part is easier). It
is sufficient to consider the cases (T, PT) = (SIEi, Fi−2), (U1

2 , F) or (V 1
1 , EF) (in fact, for

the second case we will be able to show that (SAT ∗, REF (F)) is representable already in
U1

1). This is actually almost explicitly contained in Propositions 2.4, 2.5 and Lemma 2.6.
Formally, we construct the representation A(a, α0, α), B(a, β0, β), C(a, b, α), D(a, b, β)

of (SAT ∗, REF (PT)) in T as follows:

3to avoid collision with another usage of β, we denote the xth member of a sequence b by (b)x rather
than by β(x, b)

12

• A(a, α0, α) asserts that the string α(0) . . . α(a− 1) encodes a pair of the form 〈φ, 1t〉,
where φ is a CNF such that Tr2(|φ|, α0, φ);

• B(a, β0, β) asserts that the string β(0) . . . β(a− 1) encodes 〈φ, 1t〉, where φ is a CNF
such that RefPT (t, |φ|, β0, φ);

• C(a, b, α) ⇀↽ α(b);

• D(a, b, β) ⇀↽ β(b).

Then condition a) of Definition 3.1 is straightforward. Condition b) is also easy to see:
arguing informally in T , if we have ∀x < a(α(x) ≡ β(x)), where α(0) . . . α(a − 1) encodes
a pair 〈φα, 1tα〉, and β(0) . . . β(a − 1) encodes a pair 〈φβ , 1tβ〉, then |φα| = |φβ| and ∀x <
|φα|(φα(x) ≡ φβ(x)). This, along with Tr2(|φα|, α0, φα), implies by (3) Tr2(|φβ|, α0, φβ),
and now we only have to apply Lemma 2.6, Proposition 2.4 or Proposition 2.5 (depending
on T) with a0 := t, a1 := |φβ|, β1 := φβ .

Now we prove the second part of Theorem 3.3. Namely, assume that (U, V) is repre-
sentable in T , where T is one of the theories in the left column of Table 2. We want to
show that (U, V) is reducible to (SAT ∗, REF (PT)).

For this we need to modify Definition 2.7. Firstly we enlarge our alphabet of proposi-
tional variables. Now it will consist of all variables of the form pA(~a,α),~n, qB(~a,β),~n, all free
variables in A, B ∈ Σ1,b

0 being displayed, and we identify original pn, qn with pα(a),n, qα(a),n.
Note that this time we have two different alphabets corresponding to the languages L1, L2;
it will be always clear from the context which one is used. Also we assume for simplicity
that A and B contain the connectives from {¬, ∧, ∨} only.

We define the modification {A(~a)}~n of 〈A(~a)〉~n by extending item b) in Definition 2.7
to

b)∗ if A(~a, α) [B(~a, β)] contains occurrences of α [β] but does not contain occurrences
of β [α] then {A(~a, α)}~n

⇀↽ pA(~a,α),~n [{B(~a, β)}~n
⇀↽ qB(~a,β),~n, respectively].

In accordance with this, items c)-f) are restricted to the case when the formula on the
left-hand side contains occurrences of both α and β.

Denote be Defα the following set of propositional sequents, where A, B run over all
Σb(α)-formulae, and t runs over all first-order terms4:

pA(~t(~a)),~n ←→ pA(~a),~t(~n);
p¬A(~a),~n ←→ p̄A(~a),~n;

4we will use the notation Γ ←→ ∆ for denoting the pair of sequents Γ −→ ∆ and ∆ −→ Γ

13

pA(~a)∧B(~a),~n −→ pA(~a),~n;
pA(~a)∧B(~a),~n −→ pB(~a),~n;
pA(~a),~n, pB(~a),~n −→ pA(~a)∧B(~a),~n;
pA(~a)∨B(~a),~n −→ pA(~a),~n, pB(~a),~n;
pA(~a),~n −→ pA(~a)∨B(~a),~n;
pB(~a),~n −→ pA(~a)∨B(~a),~n;
p(∃x≤a)A(x,~b),n,~m −→ pA(a,~b),0, ~m, . . . , pA(a,~b),n,~m; (4)

pA(a,~b),n,~m −→ p(∃x≤a)A(x,~b),n′, ~m (n ≤ n′);

p(∀x≤a)A(x,~b),n′, ~m −→ pA(a,~b),n,~m (n ≤ n′);

pA(a,~b),0, ~m, . . . , pA(a,~b),n,~m −→ p(∀x≤a)A(x,~b),n,~m. (5)

Defβ is defined in the same way.
We also consider the variant Σ′

d, Π
′
d of the hierarchy Σd, Πd of Boolean formulae (see

Section 2.2) by allowing `i1...id in (1), (2) to have the form p ∗ q, where ∗ ∈ {∧, ∨}, and p, q
are propositional variables from the corresponding alphabets. Let F ′

d be the variant of the
proof system Fd in which we allow the formulae from Σ′

d ∪ Π′
d in the proofs.

Lemma 5.1. Let T be one of the theories in the left column of Table 2. Assume that

T ` ∃~x ≤ ~t(~a)(A(~a, ~x, α) ∧ B(~a, ~x, β)),

where A, B ∈ Σ1,b
0 with all free variables displayed, and ~t(~a) are arbitrary terms of the

underlying language. Then there exists a polynomial or quasipolynomial, depending on
the entry in the right column, algorithm which for every tuple of integers ~n written in
unary produces a proof of the empty sequent in the system F ′

i−2, F or EF determined by
the middle column from the set of axioms

Defα, Defβ,
{
−→ p̄A(~a,~b,α),~n,~m, q̄B(~a,~b,β),~n,~m

∣∣∣ ~m ≤ ~t(~n)
}

. (6)

Proof. We start with the case of second-order theories (lines 3-5) as it rather easily
follows from known results. Namely, we can construct in polynomial or quasipolynomial
(depending on the underlying language) time F -proofs

Defα ` 〈A(~a,~b, α)〉~n,~m ≡ pA(~a,~b,α),~n,~m

and
Defβ ` 〈B(~a,~b, β)〉~n,~m ≡ qB(~a,~b,β),~n,~m.

14

Using these, we construct F -proofs of the formulae 〈¬(A(~a,~b, α)∧B(~a,~b, β))〉~n,~m (~m ≤ ~t(~n))
from the axioms (6). Then we construct, using Propositions 2.8, 2.9, an F -proof or EF -
proof, depending on the theory T , of the formula 〈∃~x ≤ ~t(~a)(A(~a, ~x, α)∧B(~a, ~x, β))〉~n, and
apply a sequence of cuts to derive the empty sequent.

Assume now that T is a first-order theory from the first two lines of Table 2. If T comes
from the second line, then we can, using Proposition 2.1 and Theorem 4.1, replace it by
SIE#

i . Now, the theories SIEi and SIE#
i differ only in the underlying language, and the

rest of the proof is absolutely identically for them. So, we consider only the case of SIEi.
Every SEj-formula (j ≥ 1) is equivalent to a formula in the prenex normal form and

it is easily seen to be further equivalent in SIE0 to a formula of the form

∃~x(1) ≤ ~t(1)(~a)∀~x(2) ≤ ~t(2)(~a) . . . Q~x(j)(~a) ≤ ~t(j)(~a)(
C(~a, ~x(1), . . . , ~x(j), α) ∗ D(~a, ~x(1), . . . , ~x(j), β)

)
,

 (7)

where ∗ ∈ {∧, ∨}. Denote by SE′
j the class of formulae having the form (7), and let SU ′

j

be the dual class. For C ∈ SE′
j [C ∈ SU ′

j] we denote by C̄ the dual formula in C ∈ SU ′
j

[C ∈ SE′
j, respectively] logically equivalent to (¬C). Note that for C(~a) ∈ SU ′

i−2 and
every tuple ~n, the propositional formula {C(~a)}~n is in Π′

i−2.
For C(~a) ∈ SE′

i−1\SU ′
i−2; C(~a) = (∃~x ≤ ~t(~a))D(~a, ~x), where D(~a,~b) is in SU ′

i−2, denote
by ΓC(~a),~n the cedent consisting of the formulae

{
D(~a,~b)

}
~n,~m

(~m ≤ ~t(~n)). If C(~a) ∈ SU ′
i−2,

we let ΓC(~a),~n consist of the single formula {C(~a)}~n.
For C(~a) ∈ SU ′

i \ SE′
i−1; C(~a) = (∀~x ≤ ~t(~a))D(~a, ~x), where D(~a,~b) is in SE′

i−1, denote
by GC(~a),~n the collection of sequents

{
−→ ΓD(~a,~b),~n,~m

∣∣∣ ~m ≤ ~t(~n)
}
. In the case C(~a) ∈ SE′

i−1,
we let GC(~a),~n consist of the single sequent −→ ΓC(~a),~n.

The following two statements are proven by an easy induction on the logical complexity
of C:

Statement 5.2. For every C(~a,~b) ∈ SU ′
i−2 and terms ~t(~a) there is a polynomial time

algorithm which for any tuple of integers ~n (written in unary) produces an F ′
i−2-proof of{

C(~a,~b)
}

~n,~t(~n)
←→

{
C(~a,~t(~a))

}
~n

from Defα, Defβ.

Statement 5.3. Let C(~a) ∈ SE′
i−1.

a) There exists a polynomial time algorithm which for any 1~n and any formula L ∈
ΓC(~a),~n produces an F ′

i−2-proof

Defα, Defβ , GC̄(~a),~n ` L −→ .

15

b) There exists a polynomial time algorithm which for any 1~n and any sequent (−→ Γ) ∈
GC̄(~a),~n produces an F ′

i−2-proof

Defα, Defβ `−→ ΓC(~a),~n, Γ.

We are going to prove the following generalization of Lemma 5.1:

Statement 5.4. Suppose that

SIEi ` A1(~a), . . . , Ak(~a), B1(~a), . . . , B`(~a)
−→ Ak+1(~a), . . . , Ar(~a), B`+1(~a), . . . , Bs(~a),

 (8)

where A1, . . . , Ak, B`+1, . . . , Bs ∈ SU ′
i ; B1, . . . , B`, Ak+1, . . . , Ar ∈ SE′

i, and all free vari-
ables are explicitly displayed. Then there exists a polynomial time algorithm which for
any tuple of integers ~n written in unary and any cedents Γ1, . . . , Γs, where (−→ Γν) ∈{

GB̄ν(~a),~n if 1 ≤ ν ≤ `
GBν(~a),~n if ` + 1 ≤ ν ≤ s,

produces an F ′
i−2-proof

Defα, Defβ , GA1(~a),~n, . . . , GAk(~a),~n, GĀk+1(~a),~n, . . . , GĀr(~a),~n `−→ Γ1, . . . , Γs. (9)

Proof of Statement 5.4. As we noticed above, every SEi-formula is equivalent in SIE0

to an SE′
i-formula. Thus we can assume that SEi − IND in the proof (8) is applied only

to SE′
i-formulae. By the Cut Elimination Theorem (see e.g. [1, Theorem 4.3]) we can

also assume that all formulae appearing in this proof belong to SE′
i ∪ SU ′

i . Let P be this
reduced proof.

Now we apply induction on the number of inferences in P . As usual, the argument
splits into many cases depending on the final inference (the case when P consists of a
single axiom is completely trivial). Most of these cases are straightforward, so we consider
explicitly only a few of them. We can assume w.l.o.g. that the final sequent of P has the
form A1(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a), where A1, . . . , Ar, B1, . . . , Bs ∈ SU ′

i . Suppose
that we are given integers ~n and (−→ Γν) ∈ GBν(~a),~n (1 ≤ ν ≤ s), and we have to construct
efficiently an F ′

i−2-proof (9).
(∨:left). Assume that the final inference of P has the form

A′(~a), A2(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a) A′′(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a)
A′(~a) ∨ A′′(~a), A2(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a)

.

16

Due to the syntactic structure of SU ′
i-formulae, (A′(~a)∨A′′(~a)) ∈ SU ′

0. Hence, by induction
hypothesis we have F ′

i−2-proofs of the sequent −→ Γ1, . . . , Γs from both

Defα, Defβ , {A′(~a)}~n , G2, . . . , Gr

and
Defα, Defβ , {A′′(~a)}~n , G2, . . . , Gr.

We modify the first proof by adding {A′(~a)}~n to antecedents of all its sequents. This will
result in an F ′

i−2-proof of {A′(~a)}~n −→ Γ1, . . . , Γs from axioms Defα, Defβ, G2, . . . , Gr. A
similar procedure applied to the second proof gives us a proof of {A′′(~a)}~n −→ Γ1, . . . , Γs

from the same axioms. The sequent −→ {A′(~a)}~n , {A′′(~a)}~n, however, has an obvious proof
from Defα, Defβ, {A′(~a) ∨ A′′(~a)}~n. Applying twice the cut rule, we will find the desired
proof Defα, Defβ , {A′(~a) ∨ A′′(~a)}~n , G2, . . . , Gr `−→ Γ1, . . . , Γs. It is easy to see that the
whole construction is polynomial time computable.

(∀ ≤:left). Assume that the final inference of P has the form

A(~a, t(~a)), A2(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a)
t(~a) ≤ s(~a), (∀x ≤ s(~a))A(~a, x), A2(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a)

.

If t(~n) ≤ s(~n) is false, everything is obvious. Otherwise, it is easy to see that every sequent
in GA(~a,b),~n,t(~n) has a short proof from Defα, Defβ, G(∀x≤s(~a))A(~a,x),~n, and, by Statement 5.2, the
same is true for every sequent in GA(~a,t(~a)),~n. Hence we can apply the inductive assumption.

(∀ ≤:right). Assume that the final inference of P is

b ≤ t(~a), A1(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs−1(~a), B(~a, b)
A1(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs−1(~a), (∀x ≤ t(~a))B(~a, x)

.

If (∀x ≤ t(~a))B(~a, x) ∈ SE′
i−1 then it is actually in SU ′

i−2. By inductive assumption,
we have efficient F ′

i−2-proofs Defα, Defβ, G1, . . . , Gr `−→ Γ1, . . . , Γs−1, {B(~a, b)}~n,m for all
m ≤ t(~n). Applying (5) followed by a sequence of cuts in the case B(~a, b) ∈ SU ′

0, and
(∧:right) otherwise, we find an efficient proof of −→ Γ1, . . . , Γs−1, {(∀x ≤ t(~a))B(~a, x)}~n

from the same axioms.
If (∀x ≤ t(~a))B(~a, x) 6∈ SE′

i−1 then (−→ Γs) ∈ GB(~a,b),~n,m for some m ≤ t(~n), and we
simply use the proof of −→ Γ1, . . . , Γs−1, Γs available by inductive assumption.

(∃ ≤:left). The final inference has the form

b ≤ t(~a), A(~a, b), A2(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a)
(∃x ≤ t(~a))A(~a, x), A2(~a), . . . , Ar(~a) −→ B1(~a), . . . , Bs(~a)

.

17

(∃x ≤ t(~a))A(~a, x) should necessarily belong to SE′
i−1, hence G(∃x≤t(~a))A(~a,x),~n and GA(~a,b),~n,m

consist of single sequents with empty antecedents. Denote by ∆ and ∆m, respectively, their
succedents.

By inductive assumption, for any m ≤ t(~n) we have an F ′
i−2-proof Defα, Defβ, (−→

∆m), G2, . . . , Gr `−→ Γ1, . . . , Γs. These proofs give raise to proofs

Defα, Defβ, L, G2, . . . , Gr ` Γ1, . . . , Γs

for every L ∈ ⋃
m≤t(~n) ∆m. Also, −→ ∆0, ∆1, . . . , ∆t(~n) has an efficient proof from

Defα, Defβ , (−→ ∆). Now we argue as in the case (∨:left).
(SE′

i − IND). The last inference has the form

A1(~a), . . . , Ar(~a), A(~a, b) −→ A(~a, b + 1), B1(~a), . . . , Bs(~a)
A1(~a), . . . , Ar(~a), A(~a, 0) −→ A(~a, t(~a)), B1(~a), . . . , Bs(~a)

,

where A(~a, b) is in SE′
i. Replacing A(~a, b) by Ā(~a, t(~a)−. b) if necessary, we may assume

that A is instead in SU ′
i and, moreover, one of the following is true:

a) A(~a, 0) is on the list A1, . . . , Ak, B`+1, . . . , Bs, and A(~a, t(~a)) is on the list
B1, . . . , B`, Ak+1, . . . , Ar in (8);

b) A(~a, 0), A(~a, t(~a)) are on the same list, and A ∈ SE′
i−1.

Let us first analyze case a).
Denote by Dm the set of sequents GA(~a,b),~n,m. Then we know from the inductive as-

sumption that for every m < t(~n) and every (−→ ∆m+1) ∈ Dm+1, the sequent −→
∆m+1, Γ1, . . . , Γs has an efficient F ′

i−2-proof from the axioms Defα, Defβ, G1, . . . , Gr, Dm.
Appending to the succedents of all sequents in this proof Γ1, . . . , Γs, we will construct
F ′

i−2-proofs

Defα, Defβ, G1, . . . , Gr, {−→ ∆m, Γ1, . . . , Γs | (−→ ∆m) ∈ Dm } `−→ ∆m+1, Γ1, . . . , Γs.

Now we combine these proofs together and get a polynomially time constructible proof

Defα, Defβ, G1, . . . , Gr, {−→ ∆0, Γ1, . . . , Γs | (−→ ∆0) ∈ D0)} `−→ ∆t(~n), Γ1, . . . , Γs

for every (−→ ∆t(~n)) ∈ Dt(~n). This completes the analysis of the induction rule in the
case when A(~a, 0) is on the list A1, . . . , Ak, B`+1, . . . , Bs in (8), and A(~a, t(~a)) is on the list
B1, . . . , B`, Ak+1, . . . , Ar.

18

In the remaining case b), A is in SE′
i−1. This implies that Dm consists of a single

sequent (−→ ∆m), and we have already constructed above a proof

Defα, Defβ , G1, . . . , Gr, (−→ ∆0) `−→ ∆t(~n), Γ1, . . . , Γs. (10)

Let D̄m ⇀↽ GĀ(~a,b),~n,m. Then, depending on which one of the two lists in (8) contains the
formulae A(~a, 0), A(~a, t(~a)), we have to construct efficiently either a proof

Defα, Defβ , G1, . . . , Gr, (−→ ∆0), D̄t(~n) `−→ Γ1, . . . , Γs

or proofs
Defα, Defβ , G1, . . . , Gr `−→ ∆̄0, ∆t(~n), Γ1, . . . , Γs

for all (−→ ∆̄0) ∈ D̄0. These modifications of (10) are easily obtained using Statement
5.3.

This completes the proof of Statement 5.4.

In order to get Lemma 5.1 for the remaining case T = ISEi, we only have to apply
Statement 5.4 with k := r := 1, s := 0, A1(~a) ⇀↽ ∀~x ≤ ~t(~a)(A(~a, ~x, α) ∨ B(~a, ~x, β)) (for
i > 2 notice that axioms (6) imply {A1(~a)}~n via one application of (∧:right)). Thus, the
proof of Lemma 5.1 is also completed.

Now we are ready to finish the proof of Theorem 3.3. Recall that we have an NP-pair
(U, V) representable in T , and let A(a, α), B(a, β), C(a, b, α), D(a, b, β) be the correspond-
ing formulae from Definition 3.1. Then

T ` ∃x ≤ a + 1∃y ≤ 1
(
(x < a ∧ y = 0 ∧ C(a, x, α) ∧ ¬D(a, x, β))

∨ (x < a ∧ y = 1 ∧ ¬C(a, x, α) ∧ D(a, x, β))

∨ (x = a ∧ ¬A(a, α)) ∨ (x = a + 1 ∧ ¬B(a, β))
)
.

We apply to this proof Lemma 5.1 and find, within (quasi)polynomial in N time a propo-
sitional proof PN

Defα, Defβ , pA(a),N , qB(a),N, (−→ p̄C(a,b),N,i, qD(a,b),N,i) (i < N),
(−→ pC(a,b),N,i, q̄D(a,b),N,i) (i < N) `−→

in the corresponding system F ′
i−2, F or EF . Let t(N) be the size of PN , and let Def ′

α,N be
the CNF which is obtained by taking sequents in Defα actually used as axioms in PN , and
moving their antecedents to the right-hand side with the (¬:right) rule.

19

Now we are ready to describe the reduction from (U, V) to (SAT ∗, REF (PT)). Namely,
this reduction takes a binary string w = (w0w1 . . . wN−1) of length N to 〈φ(w), 1t(N)〉, where
φ(w) is the CNF obtained from Def ′

α,N by applying to it the restriction ρw assigning pA(a),N

to 1 and assigning all pC(a,b),N,i to wi (i < N).
Assume that w ∈ U . Then, by Definition 3.1 a), there exists α ⊆ N such that

N |= A(N,α) and for every i < N , N |= C(N, i,α) ≡ wi = 1. The total assignment of
ps which sends every pE(~a,α),~n to 1 if N |= E(~n,α) and to 0 otherwise, satisfies Def ′α,N and
extends ρw. Thus, φ(w) ∈ SAT .

Assume that w ∈ V , and take β ⊆ N so that N |= B(N,β) and for every i < N ,
N |= D(N, i,β) ≡ wi = 1. Hit the proof PN with the restriction which extends ρw by
additionally sending every qE(~a,β),~n to 1 if N |= E(~n,β) and to 0 otherwise. This restriction
assigns the same values to pC(a,b),N,i and qC(a,b),N,i, hence it forces to 1 all axioms of P except
for, possibly, those in Def ′

α,N . Thus we get a proof of the empty sequent from the clauses
of φ(w), and its size is at most t(N). For the first-order case we additionally note that
every F ′

i−2-proof becomes an Fi−2-proof if we assign truth values to all q-variables. Hence
〈φ(w), 1t(N)〉 ∈ REF (PT).

This completes the proof of Theorem 3.3.

6. Application to independence results

The purpose of this section is to recast one approach to proving independence results in
Bounded Arithmetic in purely complexity terms.

Let us fix an integer-valued superpolynomially-growing function t(n) computable in
time 2O(n). Denote by SIMPLEt the language consisting of truth-tables of those Boolean
functions fn which have circuit size at most t(n), where n is the number of variables of
fn. Obviously, SIMPLEt ∈ NP. It turns out that the computational hardness of this
language to a certain extent captures the hardness of proving lower bounds on the circuit
size of explicit functions.

For example, in [12] Razborov and Rudich introduced the notion of a natural proof
justified by a careful analysis of existing proofs for restricted models. This notion can
be reformulated in terms of purely structural properties of SIMPLEt: a natural proof
(against the class P/poly) consists of a set L ∈ P such that L ∩ SIMPLEt = ∅ for some
superpolynomial function t(n), and L is “dense” in the sense that P[fn ∈ L] ≥ 2−O(n),
where fn is the random function in n variables. The main result from [12] says that if
there exists a pseudo-random number generator with hardness 2nΩ(1) then there exists no L
with these properties even in P/poly (and it was observed in [11] that this further extends

20

to sets L computable by quasipolynomial size circuits).
Let s = {sn | n ∈ ω } be any sequence of Boolean functions from the class E (=

DTIME(2O(n))). We define SIMPLE⊕s
t as the language

{fn ⊕ sn | n ∈ ω, fn ∈ SIMPLEt } .

Note that SIMPLE⊕s
t is in NP.

If SIMPLEt ∩ SIMPLE⊕s
t = ∅ then, in particular, sn 6∈ SIMPLEt for all n. On the

other hand, if SIMPLEt ∩ SIMPLE⊕s
t 6= ∅, and fn belongs to the intersection, then we

can combine the two size-t(n) circuits for fn and fn ⊕sn with a single PARITY gate at the
top to get a size-O(t(n)) circuit for sn. This means that, roughly speaking, the function s
is hard if and only if SIMPLEt ∩ SIMPLE⊕s

t = ∅.
Let now T be one of the theories of Bounded Arithmetic considered in this paper.

We additionally assume that the function t] given by t](N) ⇀↽ t(|N |) and the predicate
S](N, a) ⇀↽ s|N |(a) = 1 can be defined by bounded formulae of the underlying language.
Let LBt,s(N, γ) be a Σ1,b

0 -formula asserting that γ does not encode a circuit of size t(|N |) =
t](N) computing s|N | (our LBt,s(N, γ) corresponds to LB(t], s], γ) in the notation of [11]).
Thus, ∀φLBt,s(2n−. 1, φ) exactly expresses the fact sn 6∈ SIMPLEt. Let SLBt,s(N, α, β)
assert that α and β do not encode circuits of size t(|N |) each such that the PARITY of their
outputs is s|N |. Thus, ∀φ∀ψSLBt,s(2n−. 1, φ, ψ) means that SIMPLEt ∩SIMPLE⊕s

t = ∅.
Since the argument from the above paragraph is easy to formalize, we can study the
provability of SLBt,s(N, α, β) instead of LBt,s(N, γ) (and the split versions were designed
in [11] exactly for this purpose). Given Theorem 3.3, we can now reduce the question
about provability of SLBt,s(N, α, β) in T to the purely complexity question

(SIMPLEt, SIMPLE⊕s
t)

?
≤m (SAT ∗, REF (PT)), (11)

where ≤m is the appropriate reducibility.
The following easy result (implicit in [11, Proof of Theorem 6.1]) shows that this com-

plexity question is at least not meaningless:

Proposition 6.1. If there exists a pseudo-random number generator with hardness 2nΩ(1)

then for any t, s with the above properties the pair (SIMPLEt, SIMPLE⊕s
t) can not be

separated by quasipolynomial size circuits.

Proof. Assume that E =
{
En ⊆ {0, 1}(2n) | n ∈ ω

}
is such a separator: SIMPLEt ⊆ E,

E ∩ SIMPLE⊕s
t = ∅. Then for any n either |En| ≥ 1

2 · 22n or |En| ≤ 1
2 · 22n. In the

21

first case we let Ln ⇀↽ (En ⊕ sn), and in the second case we let Ln ⇀↽ {0, 1}(2n) \ En.
Then L ⇀↽

⋃
n∈ω Ln is computable by quasipolynomial size circuits since one extra bit of

information telling us which of the two cases takes place can be hardwared into the circuit.
Also, L ∩ SIMPLEt = ∅ and P[fn ∈ L] ≥ 1/2. As we noticed above, this contradicts the
main result from [12].

For completeness we also include an unconditional form of this proposition based upon
[12, Theorem 4.4]. Recall [12] that a non-decreasing integer-valued function t(n) is half-
exponential if

t−1(nC) ≤ o(log t(n))

for every C > 0, where
t−1(n) ⇀↽ max {x | t(x) ≤ n} .

It is easy to see that any half-exponential function has superpolynomial rate of growth.
Let us call t(n) strongly half-exponential if it satisfies

t−1(nC) ≤ (log t(n))o(1)

for every C > 0.

Theorem 6.2. Let t(n) be any half-exponential function, and s = {sn | n ∈ ω} be such
that for some sequence of primes {pn | n ∈ ω} and some primitive roots gn mod pn, sn is
poly-time nonuniformly Turing reducible to computing discrete logarithm mod pn base gn.
Then there is no E ∈ P such that SIMPLEt ⊆ E and SIMPLE⊕s

t ∩ E = ∅. Moreover,
if t(n) is strongly half-exponential, then no such E exists even in QP.

Proof. Assuming the contrary, we, like in the previous proof, would have a natural proof
L ∈ P/poly with the additional property sn ∈ L for all n ∈ ω. It can not exist (without any
unproven assumptions!) by [12, Theorem 4.4]. It is also easy to see that if t(n) is strongly
half-exponential then [12, Theorem 4.4] extends to L computable by quasipolynomial size
circuits.

Proposition 6.1 and Theorem 6.2 show that in order to prove the independence of
SLBt,s(N, α, β) from a theory T , it is sufficient to separate the pair (SAT ∗, REF (PT)) by
a (quasi)polynomial time computable set. We conclude this section by showing another
proof of the main result from [11] which goes exactly along these lines.

Lemma 6.3. If a pair (U, V) of disjoint NP-sets is representable in SIE1 [SS2
2] then there

exists a constant w > 0 such that (U, V) ≤p
m (SAT ∗, REF (Rw))

[(U, V) ≤qp
m (SAT ∗, REF (Rw)), respectively].

22

Proof. By modifying the proof of Lemma 5.1 for the case SIE2. Namely, we replace the
axioms (4),(5) by

p(∃x≤a)A(x,~b),0, ~m −→ pA(a,~b),0, ~m

p(∃x≤a)A(x,~b),n+1, ~m −→ p(∃x≤a)A(x,~b),n,~m, pA(a,~b),n+1, ~m

pA(a,~b),0, ~m −→ p(∀x≤a)A(x,~b),0, ~m

p(∀x≤a)A(x,~b),n,~m, pA(a,~b),n+1, ~m −→ p(∀x≤a)A(x,~b),n+1, ~m

so that all sequents in Defα, Defβ have bounded length. The important point is that if we
can deduce (n + 1) sequents Γ −→ pA(a,~b),0, ~m, ∆; . . . ; Γ −→ pA(a,~b),n,~m, ∆ in Rw then we can
deduce Γ −→ p(∀x≤a)A(x,~b),n,~m, ∆ in Rw′ for some w′ depending only on w, and similarly for
Γ, p(∃x≤a)A(x,~b),n,~m −→ ∆. For C(~a) ∈ SE′

0, the cedent ΓC(~a),~n in our case always consists
of the single formula {C(~a)}~n.

With these observations in mind, it is easy to see that the procedure described in the
proof of Statement 5.4 for i = 2, actually gives in the case i = 1 a resolution proof in which
the length of all clauses is bounded by some absolute constant (depending on the original
proof P in SIE1). The only additional remark which should be made is that the “bad”
rules (∃ ≤:left), (∃ ≤:right) now simply do not occur in the proof.

Lemma 6.4. For every fixed constant w > 0, SAT ∗ and REF (Rw) can be separated by a
poly-time computable set.

Proof. The separator is{
〈φ, 1t〉 | there is no derivation of the empty sequent from φ in the system Rw

}
.

It is poly-time computable simply by producing the list of all sequents of length at most
w which can be derived from φ.

Theorem 6.5. A disjoint NP-pair is representable in SIE1 [S2
2] if and only if it can be

separated by a polynomial [quasipolynomial, respectively] time computable set.

Proof. Immediate from Theorem 3.2, Lemma 6.3 and Lemma 6.4.

The first part of the following theorem is exactly [11, Theorem 6.4]:

23

Theorem 6.6. If there exists a pseudo-random number generator with hardness 2nΩ(1) ,
then for any t, s with the properties stated at the beginning of this section,

SS2
2 6` SLBt,s(N, α, β).

If, in addition, t is half-exponential [strongly half-exponential], and s is reduced to the
discrete logarithm problem as described in the statement of Theorem 6.2, then SIE1 6`
SLBt,s(N, α, β) [SS2

2 6` SLBt,s(N, α, β), respectively] without any unproven assumptions.

Proof. Immediate from Theorem 6.5, Proposition 6.1 and Theorem 6.2.

7. Discussion

This paper brings to attention the question for which propositional proof systems P the
pair (SAT ∗, REF (P)) can be separated by a (quasi)polynomial time computable set. In
this section we try to locate this question with respect to more familiar hypothesis.

Let us first point out that the affirmative answer implies the following alternative:

Theorem 7.1. Assume that for some proof system P , SAT ∗ and REF (P) can be sepa-
rated by a poly-time computable set. Then one of the following is true:

a) P = NP,

b) the proof system P is not optimal in the sense that the function

sP (n) ⇀↽ max {sP (φ) | φ is an unsatisfiable CNF of length ≤ n}

is not bounded by any polynomial.

Proof. Let SAT ∗ ⊆ L; L ∩ REF (P) = ∅; L ∈ P, and assume that b) does not take
place. Then sP (n) ≤ p(n) for some polynomial p, and φ ∈ SAT ≡ 〈φ, 1p(|φ|)〉 ∈ L. Thus,
SAT ∈ P.

This theorem might be taken as an evidence that any attempts to prove the existence
of the separator by known methods are doomed to fail. We should be, however, somewhat
careful with this conclusion. For example, the proof of Lemma 6.4, whatever simple, still
does not tell us which of the two alternatives a) and b) is true for the system Rw. Of
course, we know that b) is true, and, moreover, Rw is not even complete – but this has

24

to be proved separately. Thus, simply knowing that either a) or b) is true might be
surprising approximately to the same extent as knowing that one of the two alternatives
LOGSPACE 6= P or P 6= PSPACE is true.

But, of course, we can not hope to show by the existing methods that (SAT ∗, REF (P))
(as well as any other disjoint NP-pair) is not separable. So, if we are interested in evidence
toward the negative solution, the best we can hope for is to reduce to (SAT ∗, REF (P))
another pair which is believed to be hard.

I do not know of any example of a reduction from a presumably hard NP-pair to
(SAT ∗, REF (EF)), which is the same, due to our main result, as an example of such pair
representable in V 1

1 .
There is, however, a number of “plain” reductions from (U, V) to (SAT ∗, REF (EF)),

where (U, V) is separable but this fact is highly non-trivial. The best example of this
kind (in the sense that it is applicable to the weakest system P) is provided by [11, Ex-
ample 1]. Namely, let CHR ⇀↽ {< G, s > | G is an s − colourable graph}, and CL2 ⇀↽
{< G, s > | G contains a clique of size s2 }. Then (CHR, CL2) is representable in ST 3

2
and, thus, (CHR, CL2) ≤qp

m (SAT ∗, REF (F1)). On the other hand, the known poly-
time computable separator for (CHR, CL2) is based upon very deep combinatorial ideas
[16].

I do not know of any evidence of this sort that (SAT ∗, REF (R)) is hard. This could
be the next accessible question.

8. Acknowledgement

I am indebted to Jan Kraj́ic̆ek for his initial suggestion to look for a propositional counter-
part of the machinery from [11]. My thanks are also due to Søren Riis and Alan Selman
for several useful remarks.

References

[1] S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.

[2] S. R. Buss. Axiomatizations and conservations results for fragments of Bounded
Arithmetic. In Logic and Computation, Contemporary Mathematics 106, pages 57–84.
American Math. Society, 1990.

25

[3] S. A. Cook. Feasibly constructive proofs and the propositional calculus. In Proceedings
of the 7th Annual ACM Symposium on the Theory of Computing, pages 83–97, 1975.

[4] S. A. Cook and A. R. Reckhow. The relative efficiency of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, 1979.

[5] J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems.
SIAM Journal on Computing, 17(2):309–335, April 1988.

[6] S. Homer and A. L. Selman. Oracles for structural properties: The isomorphism
problem and public-key cryptography. Journal on Computer and System Sciences,
44(2):287–301, April 1992.

[7] J. Kraj́ic̆ek. On Frege and extended Frege proof systems. Manuscript, 1993.

[8] J. Paris and A. Wilkie. Counting problems in bounded arithmetic. In Methods in
Mathematical Logic, Lecture Notes in Mathematics 1130, pages 317–340. Springer-
Verlag, 1985.

[9] A. Razborov. An equivalence between second order bounded domain bounded arith-
metic and first order bounded arithmetic. In P. Clote and J. Kraj́ic̆ek, editors, Arith-
metic, Proof Theory and Computational Complexity, pages 247–277. Oxford University
Press, 1992.

[10] A. Razborov. Bounded Arithmetic and lower bounds in Boolean complexity. To
appear in the volume Feasible Mathematics II, 1993.

[11] A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of
Bounded Arithmetic. To appear in Izvestiya of the RAN, 1994.

[12] A. Razborov and S. Rudich. Natural proofs. Preliminary version appeared in Pro-
ceedings of the 26th ACM Symposium on Theory of Computing, pp. 204-213, 1994.

[13] A. L. Selman. Complexity issues in cryptography. Proceedings of Symposia in Applied
Mathematics, 38:92–107, 1989.

[14] G. Takeuti. Si
3 and

◦
V i

2(BD). Archive for Math. Logic, 29:149–169, 1990.

[15] G. Takeuti. RSUV isomorphisms. In P. Clote and J. Kraj́ic̆ek, editors, Arithmetic,
Proof Theory and Computational Complexity, pages 364–386. Oxford University Press,
1992.

26

[16] É. Tardos. The gap between monotone and nonmonotone circuit complexity is expo-
nential. Combinatorica, 8:141–142, 1988.

[17] G. Wilmers. Bounded existential induction. The Journal of Symbolic Logic, 50(1):72–
90, March 1985.

[18] G. S. Ce$itin. O slo�nosti vyvoda v isqislenii vyskazyvani$i. In A. O.
Slisenko, editor, Issledovani� po konstruktivno$i matematike i matema-
tiqesko$i logike, II; Zapiski nauqnyh seminarov LOMI, t. 8, pages 234–259.
Nauka, Leningrad, 1968. Engl. translation: G. C. Tseitin, On the complexity of
derivations in propositional calculus, in: Studies in mathematics and mathematical
logic, Part II, ed. A. O. Slissenko, pp. 115-125.

27

Recent Publications in the BRICS Report Series

RS-94-36 Alexander A. Razborov.On provably disjointNP-pairs.
November 1994. 27 pp.

RS-94-35 Gerth Stølting Brodal.Partially Persistent Data Structures
of Bounded Degree with Constant Update Time. November
1994. 24 pp.

RS-94-34 Henrik Reif Andersen, Colin Stirling, and Glynn
Winskel. A Compositional Proof System for the Modal
µ-Calculus. October 1994. 18 pp. Appears in: Proceed-
ings of LICS '94, IEEE Computer Society Press.

RS-94-33 Vladimiro Sassone.Strong Concatenable Processes: An
Approach to the Category of Petri Net Computations. Oc-
tober 1994. 40 pp.

RS-94-32 Alexander Aiken, Dexter Kozen, and Ed Wimmers.De-
cidability of Systems of Set Constraints with Negative Con-
straints. October 1994. 33 pp.

RS-94-31 Noam Nisan and Amnon Ta-Shma.Symmetric Logspace
is Closed Under Complement. September 1994. 8 pp.

RS-94-30 Thore Husfeldt. Fully Dynamic Transitive Closure in
Plane Dags with one Source and one Sink. September
1994. 26 pp.

RS-94-29 Ronald Cramer and Ivan Damg̊ard. Secure Signature
Schemes Based on Interactive Protocols. September 1994.
24 pp.

RS-94-28 Oded Goldreich.Probabilistic Proof Systems. September
1994. 19 pp.

RS-94-27 Torben Bräuner. A Model of Intuitionistic Affine Logic
from Stable Domain Theory (Revised and Expanded Ver-
sion). September 1994. 19 pp. Full version of paper
appearing in: ICALP '94, LNCS 820, 1994.

RS-94-26 Søren Riis.Count(q) versus the Pigeon-Hole Principle.
August 1994. 3 pp.

