
B
R

IC
S

R
S

-94-31
N

isan
&

Ta-S
hm

a:
S

ym
m

etric
Logspace

is
C

losed
U

nderC
om

plem
ent

BRICS
Basic Research in Computer Science

Symmetric Logspace is
Closed Under Complement

Noam Nisan
Amnon Ta-Shma

BRICS Report Series RS-94-31

ISSN 0909-0878 September 1994

Copyright c© 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

Symmetric Logspace is Closed Under Complement ∗

Noam Nisan
noam@cs.huji.ac.il

Amnon Ta-Shma
am@cs.huji.ac.il

September 28, 1994

Abstract

We present a Logspace, many-one reduction from the undirected st-connectivity prob-
lem to its complement. This shows that SL = co − SL.

1 Introduction

This paper deals with the complexity class symmetric Logspace, SL, defined by Lewis and
Papadimitriou in [LP82]. This class can be defined in several equivalent ways:

1. Languages which can be recognised by symmetric nondeterministic Turing Machines
that run within logarithmic space. See [LP82].

2. Languages that can be accepted by a uniform family of polynomial size contact schemes
(also sometimes called switching networks.) See [Raz91].

3. Languages which can be reduced in Logspace via a many-one reduction to USTCON ,
the undirected st-connectivity problem.

A major reason for the interest in this class is that it captures the complexity of USTCON .
The input to USTCON is an undirected graph G and two vertices in it s, t, and the input
should be accepted if s and t are connected via a path in G. The similar problem, STCON ,
where the graph G is allowed to be directed is complete for NL, non-deterministic Logspace.
Several combinatorial problems are known to be in SL or co − SL, e.g. 2-colourability is
complete in co − SL [Rei82].

The following facts are known regarding SL relative to other complexity classes in “the
vicinity”:

L ⊆ SL ⊆ RL ⊆ NL.

Here, L is the class deterministic Logspace and RL is the class of problems that can be
accepted with one-sided error by a randomized Logspace machine running in polynomial
∗This work was supported by BSF grant 92-00043 and by a Wolfeson award administered by the Israeli

Academy of Sciences. The work was revised while visiting BRICS, Basic Research in Computer Science, Centre
of the Danish National Research Foundation.

1

time. The containment SL ⊆ RL is the only non-trivial one in the line above and follows
directly from the randomized Logspace algorithm for USTCON of [AKL+79]. It is also
known that SL ⊆ SC [Nis92], SL ⊆ ⊕

L [KW93] and SL ⊆ DSPACE(log1.5 n) [NSW92].

After the surprising proofs that NL is closed under complement were found [Imm88,
Sze88], Borodin et al [BCD+89] asked whether the same is true for SL. They could prove
only the weaker statement, namely that SL ⊆ co−RL, and left “SL = co−SL?” as an open
problem. In this paper we solve the problem in the affirmative by exhibiting a Logspace,
many-one reduction from USTCON to its complement. Quite surprisingly the proof of our
theorem does not use inductive counting, as do the proofs of NL = co − NL, and is in fact
even simpler than them, however it uses the [AKS83] sorting networks.

Theorem 1 SL = co − SL.

It should be noted that the monotone analogues (see [GS91]) of SL and co − SL are
known to be different [KW88].

As a direct corollary of our theorem, we get that LSL = SLSL = SL where LSL is the
class of languages accepted by Logspace oracle Turing machines with oracle from SL, and
SLSL is defined similarly, being careful with the way we allow queries (see [RST82]).

Corollary 1.1 LSL = SLSL = SL

This also shows that the “symmetric Logspace hierarchy” defined in [Rei82] collapses to
SL.

2 Proof of Theorem

2.1 Overview of proof.

We show that we can upper and lower bound the number of connected components of a
graph, using connectivity problems. We upper bound this number using a “transitive-closure”
method, which can be easily done since we are allowed to freely use connectivity problems.
However, trying to lower-bound the number of connected components this way requires nega-
tion. The heart of the proof lies in lower-bounding the number of connected components,
and we achieve this in a surprisingly easy way, by computing a spanning forest.

In subsection 2.2 we show how to combine many connectivity problems to one single con-
nectivity problem. In subsection 2.3 we show how to find a spanning forest using connectivity
problems. In subsection 2.4 we show how to use this spanning forest to find the number of
connected components of a graph, and how we solve the st non-connectivity problem with
it.

2.2 Projections to USTCON .

In this paper we will use only the simplest kind of reductions, i.e. LogSpace uniform projec-
tion reductions [SV85]. Moreover, we will be interested only in reductions to USTCON . In
this subsection we define this kind of reduction and we show some of its basic properties.

2

Notation 2.1 Given f : {0, 1}∗ 7→ {0, 1}∗ denote by fn : {0, 1}n 7→ {0, 1}∗ the restriction
of f to inputs of length n. Denote by fn,k the k’th bit function of fn, i.e. if fn : {0, 1}n 7→
{0, 1}k(n) then fn = (fn,1, . . . , fn,k(n)).

Notation 2.2 We represent an n–node undirected graph G using
(n

2
)
variables ~x = {xi,j}1≤i<j≤n

s.t. xi,j is 1 iff (i, j) ∈ E(G). If f(~x) operates on graphs , we will write f(G) meaning that
the input to f is a binary vector of length

(n
2
)

representing G.

Definition 2.1 We say that f : {0, 1}∗ 7→ {0, 1}∗ reduces to USTCON (m) , m = m(n), if
there is a uniform family of Space(log(n)) functions {σn,k} s.t. for all n and k:

• σn,k is a projection, i.e.: σn,k is a mapping from {i, j}1≤i<j≤m to {0, 1, xi, ¬xi}1≤i≤n

• Given ~x define G~x to be the graph G~x = ({1, . . . , m}, E) where
E = {(i, j) | σn,k(i, j) = 1 or σn,k(i, j) = xi and xi = 1 or σn,k(i, j) = ¬xi and xi = 0}.
It should hold that fn,k(~x) = 1 ⇐⇒ there is a path from 1 to m in G~x.

If σ is restricted to the set {0, 1, xi}1≤i≤n we say that f monotonically reduces to USTCON (m).

Lemma 2.1 If f has uniform monotone formulae of size s(n) then f is monotonically re-
ducible to USTCON (O(s(n))).

Proof: Given a formula φ recursively build (G, s, t) as follows:

• If φ = xi then build a graph with two vertices s and t, and one edge between them
labelled with xi.

• If φ = φ1 ∧ φ2, and (Gi, si, ti) the graphs for φi, i = 1, 2, then identify s2 with t1 and
define s = s1, t = t2.

• If φ = φ1 ∨ φ2, and (Gi, si, ti) the graphs for φi, i = 1, 2, then identify s1 with t1 and
s2 with t2 and define s = s1 = t1 and t = s2 = t2.

Using the AKS sorting networks [AKS83], which belong to NC1 , we get:

Corollary 2.2 Sort : {0, 1}∗ 7→ {0, 1}∗ (which given a binary vector sorts it) is monotoni-
cally reducible to USTCON (poly).

Lemma 2.3 If f monotonically reduces to USTCON (m1) and g reduces to USTCON (m2)
then f ◦ g reduces to USTCON (m2

1 · m2) , where ◦ is the standard function composition
operator.

Proof: f monotonically reduces to a graph with m1 vertices, where each edge is labelled
with one of {0, 1, xi}. In the composition function f ◦ g each xi is replaced by xi = gi(~y)
which can be reduced to a connectivity problem of size m2. Replace each edge labelled xi

with its corresponding connectivity problem.

3

2.3 Finding a spanning forest.

In this section we show how to build a spanning forest using USTCON . This construction
was also noticed by Reif and independently by Cook [Rei82].

Given a graph G index the edges from 1 to m. We can view the indices as weights to the
edges, and as no two edges have the same weight, we know that there is a unique minimal
spanning forest F . In our case, where the edges are indexed, this minimal forest is the
lexicographically first spanning forest.

It is well known that the greedy algorithm finds a minimal spanning forest. Let us recall
how the greedy algorithm works in our case. The algorithm builds a spanning forest F which
is at the beginning empty F = ∨. Then the algorithm checks the edges one by one according
to their order, for each edge e if e does not close a cycle in F then e is added to the forest,
i.e. F = F ∪ {e}.

At first glance the algorithm looks sequential, however, claim 2.3 shows that the greedy
algorithm is actually highly parallel. Moreover, all we need to check that an edge does not
participate in the forest, is one st connectivity problem over a simple to get graph.

Definition 2.2 For an undirected graph G denote by LFF (G) the lexicographically first span-
ning forest of G. Let

SF (G) 7→ {0, 1}(n2) be:

SFi,j(G) =

{
0 (i, j) ∈ LFF (G)
1 otherwise

Lemma 2.4 SF reduces to USTCON (poly)

Proof: Let F be the lexicographically first spanning forest of G. For e ∈ E define Ge to
be the subgraph of G containing only the edges {e′ ∈ E | index(e′) < index(e)}.

Claim: e = (i, j) ∈ F ⇐⇒ e ∈ E ∧ i is not connected to j in Ge.

Proof: Let e = (i, j) ∈ E. Denote by Fe the forest which the greedy algorithm built at the
time it was checking e. So e ∈ F ⇐⇒ e does not close a cycle in Fe.

(=⇒) e ∈ F and therefore e does not close a cycle in Fe, but then e does not close a cycle
in the transitive closure of Fe, and in particular e does not close a cycle in Ge.

(⇐=) e does not close a cycle in Ge therefore e does not close a cycle in Fe and e ∈ F .

Therefore SFi,j(G) = ¬xi,j ∨ i is connected to j in G(i,j).

Since ¬xi,j can be viewed as the connectivity problem over the graph with two vertices
and one edge labelled ¬xi,j it follows from lemmas 2.1, 2.3 that SF reduces to USTCON .
Notice, however, that the reduction is not monotone.

4

2.4 Putting it together.

First, we want to build a function that takes one representative from each connected com-
ponent. We define LIi(G) to be 0 iff the vertex i has the largest index in its connected
component.

Definition 2.3 LI(G) 7→ {0, 1}n

LIi(G) =

{
0 i has the largest index in its connected component
1 otherwise

Lemma 2.5 LI reduces to USTCON (poly)

Proof:

LIi(G) =
∨n

j=i+1 (i is connected to j in G).

So LI is a simple monotone formula over connectivity problems, and by lemmas 2.1, 2.3
LI reduces to USTCON . This is, actually, a monotone reduction.

Using the spanning forest and the LI function we can exactly compute the number of
connected components of G, i.e.: given G we can compute a function NCCi which is 1 iff
there are exactly i connected components in G.

Definition 2.4 NCC(G) 7→ {0, 1}n

NCCi(G) =

{
1 there are exactly i connected components in G
0 otherwise

Lemma 2.6 NCC reduces to USTCON (poly)

Proof:

Let F be a spanning forest of G. It is easy to see that if G has k connected components
then |F | = n − k.

Define:
f(G) = Sort ◦ LI(G)
g(G) = Sort ◦ SF (G).

Then:

fi(G) = 1 =⇒ k < i
gi(G) = 1 =⇒ n − k < i =⇒ k > n − i.

and thus: NCCi(G) = fi+1(G) ∧ gn−i+1(G)

Therefore applying lemmas 2.1, 2.2, 2.3, 2.4, 2.5 proves the lemma.

Finally we can reduce the non-connectivity problem to the connectivity problem, thus
proving that SL = co − SL.

5

Lemma 2.7 USTCON reduces to USTCON (poly)

Proof:

Given (G, s, t) define G+ to be the graph G ∪ {(s, t)}.

Denote by #CC(H) the number of connected components in the undirected graph H .

s is not connected to t in G ⇐⇒

CC(G+) = # CC(G) − 1 ⇐⇒
∨

i=2,...,n NCCi(G) ∧ NCCi−1(G+).

Therefore applying lemmas 2.1, 2.3, 2.6 proves the lemma.

3 Extensions

Denote by LSL the class of languages accepted by Logspace oracle Turing machines with
oracle from SL. An oracle Turing machine has a work tape and a write-only query tape
(with unlimited length) which is initialised after every query. We get:

Corollary 3.1 LSL = SL.

Proof:

Let Lang be a language in LSL solved by an oracle Turing machine M running in LSL,
and fix an input ~x to M .

Look at the configuration graph of M . In this graph we have query vertices with outgoing
edges labelled “connected” and “not connected”. We would like to replace the edges labelled
“connected” with their corresponding connectivity problems, and the edges labelled “not
connected” with the connectivity problems obtained using our theorem that SL = co − SL.

However, there is a technical problem here, as the queries are determined by the edges
and not by the query vertices. We can fix this difficulty by splitting each query vertex to its
“yes” and “no” answers, and splitting each edge entering a query vertex to “connected” and
“not connected” edges. Now we can easily replace each edge with a connectivity problem,
obtaining an undirected graph which is st connected iff ~x ∈ Lang, and therefore Lang ∈ SL.

As can easily be seen the above argument applies to any undirected graph with USTCON
query vertices, thus, if we carefully define SLSL (see [RST82]) we get that:

Corollary 3.2 SLSL = SL.

In particular, the “symmetric Logspace hierarchy” defined in [Rei82] collapses to SL.

6

4 Acknowledgements

We would like to thank Amos Beimel, Allan Borodin, Robert Szelepcsényi, Assaf Schuster
and Avi Wigderson for helpful discussions.

References

[AKL+79] R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, and C. Rackoff. Random walks,
universal sequences and the complexity of maze problems. In Proceedings of the
20th Annual IEEE Symposium on the Foundations of Computer Science, 1979.

[AKS83] M. Ajtai, J. Komlos, and E. Szemeredi. An O(n logn) sorting network. In Proc.
15th ACM Symposium on Theory of Computing (STOC), pages 1–9, 1983.

[BCD+89] A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, and M. Tompa. Two appli-
cations of inductive counting for complementation problems. SIAM Journal on
Computing, 18(3):559–578, 1989.

[GS91] Grigni and Sipser. Monotone separation of logspace from nc1. In Annual Confer-
ence on Structure in Complexity Theory, 1991.

[Imm88] Immerman. Nondeterministic space is closed under complementation. SIAM Jour-
nal on Computing, 17, 1988.

[KW88] M. Karchmer and A. Wigderson. Monotone circuits for connectivity require super-
logarithmic depth. In Proc. 20th ACM Symposium on Theory of Computing
(STOC), pages 539–550, 1988.

[KW93] Karchmer and Wigderson. On span programs. In Annual Conference on Structure
in Complexity Theory, 1993.

[LP82] Lewis and Papadimitriou. Symmetric space-bounded computation. Theoretical
Computer Science, 19, 1982.

[Nis92] N. Nisan. RL ⊆ SC. In Proc. 24th ACM Symposium on Theory of Computing
(STOC), pages 619–623, 1992.

[NSW92] N. Nisan, E. Szemeredi, and A. Wigderson. Undirected connectivity in O(log1.5n)
space. In Proc. 33th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 24–29, 1992.

[Raz91] A. Razborov. Lower bounds for deterministic and nondeterministic branching
programs. In Proceedings of the 8th FCT, Lecture Notes in Computer Science,
529, pages 47–60, New York/Berlin, 1991. Springer-Verlag.

[Rei82] J. H. Reif. Symmetric complementation. In Proc. 14th ACM Symposium on
Theory of Computing (STOC), pages 201–214, 1982.

7

[RST82] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies and proba-
bilistic computations. In Proc. 14th ACM Symposium on Theory of Computing
(STOC), pages 215–223, 1982.

[SV85] Skyum and Valiant. A complexity theory based on boolean algebra. Journal of
the ACM, 1985.

[Sze88] Szelepcsenyi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26, 1988.

8

Recent Publications in the BRICS Report Series

RS-94-31 Noam Nisan and Amnon Ta-Shma.Symmetric Logspace
is Closed Under Complement. September 1994. 8 pp.

RS-94-30 Thore Husfeldt. Fully Dynamic Transitive Closure in
Plane Dags with one Source and one Sink. September
1994. 26 pp.

RS-94-29 Ronald Cramer and Ivan Damg̊ard. Secure Signature
Schemes Based on Interactive Protocols. September 1994.
24 pp.

RS-94-28 Oded Goldreich.Probabilistic Proof Systems. September
1994. 19 pp.

RS-94-27 Torben Bräuner. A Model of Intuitionistic Affine Logic
from Stable Domain Theory (Revised and Expanded Ver-
sion). September 1994. 19 pp. Full version of paper
appearing in: ICALP '94, LNCS 820, 1994.

RS-94-26 Søren Riis.Count(q) versus the Pigeon-Hole Principle.
August 1994. 3 pp.

RS-94-25 Søren Riis.Bootstrapping the Primitive Recursive Func-
tions by 47 Colors. August 1994. 5 pp.

RS-94-24 Søren Riis.A Fractal which violates the Axiom of Deter-
minacy. August 1994. 3 pp.

RS-94-23 Søren Riis.Finitisation in Bounded Arithmetic. August
1994. 31 pp.

RS-94-22 Torben Bräuner. A General Adequacy Result for a Linear
Functional Language. August 1994. 39 pp. Presented at
MFPS '94.

RS-94-21 Søren Riis.Count(q) does not imply Count(p). July 1994.
55 pp.

RS-94-20 Peter D. Mosses and Mart´n Musicante. An Action Se-
mantics for ML Concurrency Primitives. July 1994. 21 pp.
To appear in Proc. FME '94 (Formal Methods Europe,
Symposium on Industrial Benefit of Formal Methods),
LNCS, 1994.

