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FULLY DYNAMIC TRANSITIVE CLOSURE IN
PLANE DAGS WITH ONE SOURCE AND ONE SINK

THORE HUSFELDT

BRICS∗

Department of Computer Science, University of Aarhus
Ny Munkegade, DK- Århus C, Denmark

27th September 1994

Abstract. We give an algorithm for the Dynamic Transitive Clo-
sure Problem for planar directed acyclic graphs with one source
and one sink. The graph can be updated in logarithmic time
under arbitrary edge insertions and deletions that preserve the
embedding. Queries of the form ‘is there a directed path from
u to v?’ for arbitrary vertices u and v can be answered in loga-
rithmic time. The size of the data structure and the initialisation
time are linear in the number of edges.

The result enlarges the class of graphs for which a logarithmic
(or even polylogarithmic) time dynamic transitive closure algo-
rithm exists. Previously, the only algorithms within the stated
resource bounds put restrictions on the topology of the graph
or on the delete operation. To obtain our result, we use a new
characterisation of the transitive closure in plane graphs with one
source and one sink and introduce new techniques to exploit this
characterisation.

We also give a lower bound of Ω(logn/ log logn) on the amor-
tised complexity of the problem in the cell probe model with log-
arithmic word size. This is the first dynamic directed graph prob-
lem with almost matching lower and upper bounds.

This work was partially supported by the ESPRIT II Basic Research Actions
Program of the EC under contract no.  (project ALCOM II).
∗Basic Research in Computer Science, Centre of the Danish National Research

Foundation
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1. Introduction

1.1. Dynamic algorithms. Two issues motivate the search for dy-
namic algorithms: From a practical point of view, we want to solve
problems faster by recomputing parts of the solution as the instance is
subject to changes, rather than having to recompute the entire solution
from scratch. From a theoretical point of view, we can hope for more
insight into the nature of the problem and the dynamic realm itself.

Fully dynamic algorithms with logarithmic or polylogarithmic bounds
on the update and query times are interesting from both points of view.
Firstly, we can hope for implementations that are useful in practice,
especially if the data structure is simple. Although impressive other
asymptotically sublinear bounds for a variety of problems have been
found, the applicability of many of these algorithms is dubious in sight
of the complicated data structures involved.

Secondly, the evolving field of dynamic complexity theory identifies
problems with these execution times with the class of ‘efficiently dy-
namisable’ problems, called D for ‘dynamic’ in [11] or, less euphonically,
incrPOLYLOGTIME for ‘incremental polylogarithmic time’ in [10].

Recently, exciting progress has been made in the quest for polyloga-
rithmic update and query times in such different areas as string match-
ing [9], parsing [11] and expression evaluation [2, 3, 11]. The realm of
graph theory is more elusive. Many basic graph problems like Spanning
Trees, Connected Components, Shortest Paths, etc., reduce to Reach-
ability, which seems to be hard in the dynamic case. For undirected
graphs, one can hope for polylog-time solutions as long as the graph is
plane, see [6, 5]. For directed graphs, not even that restriction is enough;
the best algorithm for Dynamic Reachability on planar digraphs is due
to Subramanian [15] and performs in amortised time O(n2/3 logn).

This is interesting to the theoretician because in the parallel realm,
the Reachability Problem is easy: Recall that the problem on the gen-
eral class of directed graphs is complete for NLOGSPACE, which is
safely contained in NC2. Our lack of understanding of the interplay be-
tween parallel and dynamic computations (or, symbolically, D vs. NC)
could be closely connected to the lack of understanding of the dynamic
complexity of the Reachability Problem, see [10].

1.2. Sketch of result. Let us briefly state the result of this paper;
Sections 2.1 and 2.2 contain more precise definitions.
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Figure 1. Two plane graphs with one source and one sink

We give an algorithm for the Transitive Closure Problem1 on directed
acyclic graphs that are drawn in the plane without intersecting edges
and have exactly one source and one sink, see Figure 1. The algorithm
handles queries of the form ‘is there a directed path from vertex u to
vertex v?’ and updates that add or remove arbitrary edges, as long as
the topology and embedding of the graph are not violated. Updates
and queries are processed in time logarithmic in the number of edges of
the graph. The data structure can be initialised in linear time and uses
linear space.

Together with an easily proved lower bound, this characterises the
complexity of the Dynamic Transitive Closure Problem on this class of
graphs within a log logn factor. The algorithm is pleasantly simple and
should be easy to implement efficiently (the most complicated part is the
dynamic tree data structure from [14], which also contains a discussion
of implentation issues). The analysis is less simple and takes up most of
the paper.

1.3. Relation to previous results. Two partial solutions to this prob-
lem are known:

(1) Tamassia and Preparata [17] consider the special case where the
source and the sink are on the same face. They allow the same
update operations as the present algorithm, as long as the source
and the sink remain on the same face.

(2) Tamassia and Tollis [18] give an algorithm that allows the source
and the sink to be on different faces. To this end, they replace
the repertory of update operations to get rid of fundamental
problems with edge deletion of this approach. They show how

1We will use the terms transitive closure and reachability interchangeably when
referring to directed graphs.
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to simulate edge deletion using a linear number of their primitive
operations.

Both of these algorithms rely on the following well-known fact: The
transitive closure of a plane st-graph can be expressed as the intersection
of two total orders ≤L and ≤R. Symbolically,

u ≺ v ↔ u ≤L v ∧ u ≤R v,

where we write ≺ for the transitive closure. The first paper shows that
in the restricted case, ≤L and ≤R are easily maintained as the graph
changes. The second paper shows under which updates the orderings
remain maintainable in the general case. Kelly [8] has shown that for
general planar graphs, the number of total orders needed to express the
transitive closure as their intersection is unbounded.

The present algorithm subsumes and extends the results from [17,
18] in that it removes the restrictions of both. To this end, we use a
different characterisation of reachability. Let us contrast it with the
above approach: We maintain two orders (call them ≤S and ≤T for a
moment) with the property that

u ≺ v ↔ ∃w ∈ V : u ≤T w ∧ w ≤S v.

It is by no means clear how to handle the existential quantifier over the
vertices V of the graph in logarithmic time. Indeed, our algorithm will
not be able to identify such a w, but merely determines its existence.

1.4. Roadmap. This report is organised as follows: Below, we give
some preliminary definitions and state the problem precisely. We also
derive a lower bound for the problem, using known techniques. In Sec-
tion 3, we precisely state the above characterisation of the transitive clo-
sure in st-graphs and briefly re-prove the result of [17]. Section 4 gives
an algorithm for the general case that performs well in the amortised
sense. We then remove the amortisation in Section 5 to get worst-case
bounds.

2. Preliminaries

2.1. Graphs. A graph is embeddable on a surface if it can be drawn
on the surface such that the edges do not intersect except at their end-
points. A graph is planar if it is embeddable in the plane. Using the
stereographic projection, it is easily shown that a graph is planar if and
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only if it is embeddable on the sphere. For a more thorough coverage of
planar graphs, see any text on graph algorithms, e.g. [19].

For node v of a digraph we let deg+(v) and deg−(v) denote its out- and
indegree, respectively. A vertex v is a source if deg−(v) = 0, and a sink
if deg+(v) = 0. We are now ready to define the class of graphs studied
in this paper. The terminology is somewhat awkward (but standard).

Definition 2.1. A directed acyclic graph is an st-graph if it has exactly
one source and one sink. A spherical st-graph is a planar st-graph that
is embedded in the plane. If in that embedding the source and the sink
are on the same face, the graph is a plane st-graph.

We require st-graphs to be acyclic, which agrees with the definition
of [18] and disagrees with the one from [16]. Figure 1 shows two spher-
ical st-graphs, the left of which is also a plane st-graph. The following
properties of spherical st-graphs can be shown; the last two items may
excuse ‘spherical’ and ‘plane’ the above definition.

(1) Every vertex is on a simple directed path from s to t, called an
st-path.

(2) In every embedding, the incoming edges to any vertex appear
consecutively around the vertex, and so do the outgoing edges;
this determines the left face left(v) and the right face right(v)
of a vertex, see Figure 2. This implicitly defines an order of the
edges appearing around v, say, from the leftmost outgoing edge
to the leftmost incoming edge in the clockwise direction. We
will sometimes refer to this order as the ordering of the edges
around v.

(3) The boundary of every face consists of two directed paths with
common origin and terminus vertices, see Figure 2.

(4) Every spherical st-graph can be embedded on the sphere such
that all edges are directed upward (i.e., their projection on some
fixed direction in the plane is positive). For example, we could
embed the graph from Figure 1 by placing the curved arc on the
opposite side of the sphere.

(5) Every plane st-graph can be embedded in the plane such that
all edges are directed upward.

In the rest of this paper, G = (V, E) will denote a spherical st-graph
with source s and sink t, vertices V and edges E, unless otherwise stated.
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Figure 2. A vertex and a face in a spherical st-graph

Often, n will denote the size of the problem, i.e. the number of edges in
the graph. For brevity, we will sometimes use the notation u ≺ v if there
is a path from u to v. We will write u ‖ v if neither u ≺ v nor v ≺ u.

2.2. Dynamic Transitive Closure. We consider the Dynamic Tran-
sitive Closure Problem for spherical st-graphs. Namely, we present a data
structure that handles the following operations (for clarity, we have spelt
out the embedding-preserving restrictions on the update operations):

Insert(u, v): Insert an edge from vertex u to vertex v if they are
on the same face and the new edge does not induce a directed
cycle,

Delete(u, v): Delete the edge from u and v provided deg+(u) ≥
2 and deg−(v) ≥ 2,

Query(u, v): ‘Is there is a path from u to v?’
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delete(u,v)
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Figure 3. Updates

Alternatively, we could also allow all possible insertion and deletion
operations and let the data structure decide which updates violate the
restrictions. To this end, we could use the planarity testing data struc-
ture of Tamassia [16] to decide if u and v are on the same face. The
acyclicity condition is of course easily checked using our own data struc-
ture: Edge (u, v) induces a cycle if and only if there is a path from
v to u. The restriction on the deletion operation is easily checked by
maintaining the in- and outdegree with each vertex.
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2.3. Lower bound. Our update operations are sufficiently versatile to
admit a lower bound proof for the problem. The model is the cell probe
model with logarithmic word size [20]. Fredman and Saks give a lower
bound of Ω(logn/ log logn) on the amortised complexity of the Dynamic
Parity Prefix Problem: Given a vector x1, . . . , xn of bits, maintain a
data structure that is able to react to the following operations for all
j = 1, . . . , n:

Flip(j): Negate the value of xj.
Query(j): Return

⊕j
i=1 xi, the parity of the first j elements.

We reduce this problem to the Dynamic Transitive Closure Problem
introduced above; similar reductions have recently also been used by
Miltersen et al. [10] and Rauch [13] for other graph problems. We give
the full proof to gain more familiarity with the topology and the update
operations. Note that there is no obvious way to transform the proof to
the case of plane st-graphs or to the update repertory of [18].

Theorem 2.1. The Dynamic Transitive Closure Problem on spherical
st-graphs requires amortised time Ω(logn/ log logn) in the cell probe
model with logarithmic word size.

Proof. Let x1, . . . , xn be an instance of the Dynamic Parity Prefix Prob-
lem. Construct the planar st-graph G = (V, E) as follows: The vertex
set V contains source s and sink t as well as 2n+ 2 vertices v1, . . . , vn+1
and v′1, . . . , v

′
n+1. Intuitively, vi and v′i correspond to variable xi. The

edge set E is constructed from the values of the variables: If xi is
false then E includes the edges (vi, vi+1) and (v′i, v

′
i+1), else it con-

tains (vi, v′i+1) and (v′i, vi+1). The figure below gives an example for
(x1, . . . , x4) = (1, 0, 0, 1).

r r
r
r
r
r
r
r
r
r
r r��

@R�
��@
@R -

-

-

-

�
��@
@R��
@Rs t

v1

v′1

v2

v′2

v3

v′3

v4

v′4

v5

v′5

We embed the crossing edges of G by mapping one of them to the
opposite side of the sphere. It is not hard to see that we can simulate
every update operation to the vector x1, . . . , xn using a constant number
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of insert and delete operations on G without violating its topology. For
the query operation, observe that

j⊕
i=1

xi = 1 ↔ v1 ≺ v′j+1, j = 1, . . . , n.

Thus a lower bound on the Prefix Problem implies a lower bound on the
Transitive Closure Problem.

2.4. Related work. Italiano et al. [7] present a dynamic reachability
algorithm for series parallel digraphs; apart from these and the class
studied in the present paper, no other class of digraphs is known to the
author that allows fully dynamic reachability algorithms within poly-
logarithmic time bounds. The only other nontrivial upper bound is the
already cited O(n2/3 logn) for plane graphs from [15]. It is easy to see
that the Ω(logn/ log logn) lower bound from this paper applies to that
problem; no better lower bound is known.

Other dynamic problems on planar st-graphs are studied in [1] and
[16]. Reference [17] contains pointers to a vast number of applications
of these graphs within visibility representations, graph drawing and em-
bedding, motion planning, computational geometry, lattice theory, and
VLSI design.

3. Properties of Spherical st-Graphs

3.1. Two trees. We employ an idea used in many polylog-time dy-
namic graph algorithms: Decompose the graph into a number of trees
such that all the necessary information can also be derived from the
trees.

Definition 3.1. The tree SG is the subgraph of G constructed by re-
moving all edges that are not the leftmost incoming edge of any vertex.
Similarly, the tree TG is constructed by removing all edges that are not
the leftmost outgoing edge to any vertex. When the graph is fixed, we
will drop the subscripts on S and T .

See Figure 4, which shows S and T for the graph from Figure 1.
Observe the following facts:

(1) S and T are indeed trees,
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Figure 4. A graph G with corresponding trees SG and TG.

(2) S is divergent and rooted at s, while T is convergent and rooted
at t (hence the names),

(3) no subpath of T can ever leave another path to the right, and
no subpath of S can ever enter another path from the right.

Let us emphasise the last innocent-looking and obvious item, since we
will use it quite often:

Fact 3.1. If a subpath of T crosses a subpath of S, it does so from right
to left.

We need some notation. For vertex v ∈ V we let Sv denote the unique
path from s to v in S and let Tv denote the unique path from v to t in
T . For u, v ∈ V we let s′ denote the last vertex that is on both Sv
and Su. Let t′ denote the first vertex that is on both Tv and Tu. The
path pu is the subpath of the concatenation of Su and Tu from s′ to
t′. Symmetrically, pv is the sub-path of the concatenation of Sv and Tv
from s′ to t′. The figure below depicts this construction.
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Whenever it seems convenient, we will also refer to the two paths as
pl and pr, such that pl is the path leaving s′ to the left and pr is the
other path.

We will boldly confuse the edges of G with their embedding to alle-
viate notation. Namely, we introduce the curve γ which is the concate-
nation of (the embeddings of) pl and pr. The orientation of γ will be
such that it agrees with the direction of pl and the reversed direction of
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pr. Recall that a curve is closed if its endpoints coincide, it is simple if
it does not intersect itself except at its endpoints. Note that γ is closed
and not necessarily simple.

3.2. Reachability in Spherical st-graphs. The next lemma is the
crux of our algorithm. It captures the following fact about reachability
in spherical st-graphs: To get from vertex u to vertex v one can always
choose a path whose first half stays in T and whose last half stays in S.

Lemma 3.1. Let ≤S and ≤T denote the predecessor relation in S and
T , respectively. Then

u ≺ v ↔ ∃w ∈ V : u ≤T w ∧ w ≤S v.

Proof. Assume for contradiction that there is a path p from u to v even
though Sv and Tu are vertex-disjoint.
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v

Note that Su crosses neither Sv (else S would not be a tree) nor Tu
(else G would have a cycle). Similarly, Tv crosses neither Tu nor Sv nor
Su (the latter would form a cycle with p). So we have the situation
depicted to the left in the above figure modulo the symmetrical case
where u appears to the right of v.

Without loss of generality, we can split p into three parts pu, p′ and
pv, such that pu is a (possibly empty) sub-path of Tu, pv is a (possibly
empty) sub-path of Sv and p′ (which contains at least one vertex) has
no vertices in common with either Tu or Sv.

Note that p′ leaves Tu before t′ (else there would be a cycle in G)
and does so to the right by Fact 3.1. Similarly, p′ enters Sv after s′

and does so from the right. The right part of the figure above conveys
the absurdity of this: Part of p′ is in the interior of γ, while another
part is in the exterior. Hence p′ must cross γ somewhere, but cannot by
construction.
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3.3. The plane case. To see some of the present machinery in motion
and to get our hand dirty before we study the full problem, let us derive
an algorithm for the case of plane st-graph.

We must handle the existential quantifier of the last lemma without
searching all of V . We will show that the existence of w ‘between u and
v’ can be read off the edges around s′ and t′.

Lemma 3.2. In a plane st-graph, the reachability information between
u and v is uniquely determined by the appearance of pu and pv around
s′ and t′.

Proof. The proof is a case analysis on the behaviour of pu and pv between
s′ and t′. We shall see that there are only four cases, depicted below.

r
r r
r
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v u r
rr
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�

s′
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u v r
rr
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�

s′

t′

u

v

w rr
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r r
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�

s′

t′

u

v

w

First note that if s′ = u then there is a path from u to v and we are
done. Similarly, the cases s′ = v, t′ = u, and t′ = v are trivial.

Assume first that pu leaves s′ to the right of pv. There are two cases:
Either pu stays to the right of pv (until the two paths finally meet at t′)
or it does not. In the former case (the leftmost example in the figure),
there cannot be a path from v to u by Lemma 3.1.

In the latter case, pu must cross pv at some point to get to the other
side. It cannot enter it anywhere except between s′ and t′, by acyclicity
of G and construction of t′, hence it enters at some vertex w 6= t′. Since
w is on both pu and pv, one of the following must hold: (i) u ≺ w and
v ≺ w, (ii) u ≺ w and w ≺ v, (iii) w ≺ u and v ≺ w, or (iv) w ≺ u
and w ≺ v. The reader should check that all possibilities but the second
contradict Fact 3.1 or induce an undirected cycle in S or T . Hence, by
transitivity of ≺, we have u ≺ v. Similar arguments show that once pu
has reached the left side of p, it cannot come back; hence it enters t′ left
of pv. This is the third example in the figure above.

We can repeat the analysis for the case where pu leaves s′ left of pv
(depicted by the second and fourth examples), to complete Table 1.
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Put succinctly, u and v are connected if and only if pu and pv ‘switch
sides.’

pu leaves s′ right of pv y y n n
pu enters t′ right of pv y n y n

Reachability u ‖ v u ≺ v v ≺ u u ‖ v

Table 1. Reachability in the plane case

3.3.1. Data Structures. We maintain the following information:

(1) With every vertex v: Two sequences of the incoming and out-
going edges of v, respectively, ordered according to the cyclic
ordering around v (see the remarks after Definition 2.1). We
can used balanced search trees for this.

(2) The trees S and T using the dynamic tree data structure of
Sleator and Tarjan [14].

3.3.2. Updates. After each insertion or deletion we must reorganise our
data structures. An edge can be inserted into or deleted from the edge
list around a vertex in time O(logn); maintaining the two dynamic trees
is a standard technique.

3.3.3. Queries. Evert u and v in S to find their nearest common ancestor
s′, see [14]. Evert u and v in T to find their nearest common ancestor t′.
From the edge lists around s′ and t′ we see which of pu and pv appears
rightmost. By Table 1, this yields the reachability information.

In summary, we have re-proved the following theorem due to Tamassia
and Preparata [17], using a different characterisation.

Theorem 3.1. The Dynamic Transitive Closure Problem for plane st-
graphs can be solved in time O(logn), where n denotes the number of
edges. The data structure uses linear space and can be initialised in
linear time.
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µ

Figure 5. The sphere: problems (left) and remedy (right).

3.4. Additional concepts for spherical graphs. Let us reiterate the
gist of the last section:

(1) If u and v are connected, then pu and pv intersect,
(2) If pu and pv intersect, then they ‘switch sides,’ i.e., they appear

around s′ in another order than they do around t′.

The first item still holds in the spherical case. The second does not.
The first two figures above show why the sphere is much more difficult
than the plane: Paths can wrap around; the reader can easily check that
both examples contradict Table 1. The remedy is to keep track of the
globe-trotting of γ by maintaining a chain of faces between the poles, as
indicated in the third figure; it is helpful to view this chain of faces as a
path µ in the dual of the graph. The chain is called the meridian and
formally introduced in Section 4. First, we introduce some additional
concepts to be able to formalise what we just sketched.

Definition 3.2. A region is a maximal topologically connected subset
in the complement of γ. A curve is proper if it intersects γ only at points
where γ does not intersect itself. We define the function Ind that maps
points to integers as follows: For x in a region the index Ind(x) is the
minimum number of intersections between γ and µ over all proper curves
µ from s to x. Note that Ind is constant on every region, vanishes on
the region of s, and in the plane case, also on the region of t.

For Ind(t) > 0, we define the orientation of t as follows: Let x be a
point in a region incident to the region of t such that Ind(x) = Ind(t)−1.
Let µ be a proper curve from x to t that crosses γ only once. Then the
orientation of t is positive if µ crosses γ from left to right, and negative
otherwise.

Perhaps more intuitively, the orientation of t is the direction of the
closed curve that separates the region of t from its neighbouring region
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pr right of pl at t′ y n n y y n n n y y n n
pu right of pv at s′ – – y n y n y n y n y n
Index of t 0 1 0 1+ 1+ 2+ 1+ 0 1+ 1+ 2+ 1+
Orientation of t – � – � 	 � 	 – � 	 � 	

Reachability u ‖ v u ≺ v v ≺ u

Table 2. Reachability in the spherical case.

with lower index. If this curve is oriented clockwise, the orientation of
t is positive. The figure below shows some examples where Ind(t) = 2
and the orientation of t is positive.
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The next lemma, which is the spherical analogue to Lemma 3.2, states
that the concepts we introduced suffice to characterise the reachability
information.

Lemma 3.3. The reachability information between u and v is uniquely
determined by (i) the index of t, (ii) the orientation of t, and (iii) the
appearance of pu and pv around s′ and t′.

As Table 1 did in the plane case, Table 2 shows the precise connec-
tion (dashes denote arbitrary or undefined entries). Note that indeed
the reachability information is uniquely determined by the information
above the rule. As one would expect, the case analysis is considerably
more complicated than for the plane case. Figure 6 shows the possible
behaviour of pu and pv and can be used as a graphical proof of the lemma.
The reader should check that all cases are consistent with Table 2.

Obviously, the sceptical reader should have no reason to believe that
the examples in Figure 6 exhaust all possible cases. Unfortunately, the
formal proof is somewhat tedious and unintuitive. We confine it to the
next section. At first reading the reader may simply choose to accept
the result and continue to Section 4.
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(i)
Ind(t) = 0
u ‖ v (ii)

Ind(t) = 0
u on pr: u ≺ v
v on pr: v ≺ u

(iii)

Ind(t) = 1
�
u ‖ v (iv)

Ind(t) = 1+
	

u on pr: u ≺ v
v on pr: v ≺ u

(v)

Ind(t) = 1+
	

u on pr: u ≺ v
v on pr: v ≺ u (vi)

Ind(t) = 1+
�

u on pr: v ≺ u
v on pr: u ≺ v

(vii)

Ind(t) = 2+
�

u on pr: v ≺ u
v on pr: u ≺ v

Figure 6. Canonical examples of the behaviour of pu
and pr on the sphere. The two topmost cases appear
also in the plane, while the five other cases exploit the
possibility to travel around the sphere. In all cases we
give the index of t, and, if the latter is nonzero, the
orientation of the region of t. In these cases, the ori-
entation of γ is depicted by arrows. Fat dots indicate
the possible positions of u and v. Examples (iii) to (vii)
each represent an infinite number of cases in which the
paths cross any number of times; in all those cases, the
orientation and the reachability information is the same.
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3.5. Towards a proof of Lemma 3.3. We have chosen to split the
proof into a series of (easy) lemmas. We begin with some concepts
that give a more fine-grained view of γ. Assume that pr enters pl at
vertices w1, . . . , wk, with wk = t′, and leaves it at vertices w′1, . . . , w′k,
with w′1 = s′ (the ordering agrees with the topological ordering of the
vertices). Then for i = 1, . . . , k, the curve γi consists of the subpath of
pl from w′i to wi and the (reversed) subpath of pr from wi to w′i.

r
rr
r
�
�

�
�

6 6

6 6

6�
�

�
�

w′1 = s′

w2 = t′

w1

w′2

pl

q
qq
q
�
�

�
�

6 ?

? 6

6?�
�

�
�
γ

q
qq
q
�
�

�
�

6

6

�
�

�
�
γ1

γ2

The figure above gives an example. Note that all γi are subcurves of
γ. On the other hand, not all of γ is necessarily part of some γi. The
following lemma follows easily from the construction.

Lemma 3.4. Let γ1, . . . , γk be a collection of curves as above. Then

(1) every γi is a simple closed curve,
(2) for i 6= j, the curves γi and γj are disjoint except for the case

j = i+ 1, where they may intersect at wi = w′i+1.

Proof. Clearly, every γi is closed. Moreover, it consists of a part from pr
that cannot intersect itself (else there would be a cycle in G) and does
not intersect pl before wi by construction; likewise, pl does not intersect
itself, so γi is simple. The same argument shows that two curves cannot
intersect except as stated.

Let us introduce a shorthand notation that captures the way pl and pr
cross. The entrance sequence E of pr and pl is a string of k letters from
{R,L} defined according to how the two paths cross. There is a letter
in the sequence for every wi, and that letter is an R if pr enters pl from
the right at wi, and an L if it enters from the left . Note that pr enters
pl at least once, namely at t′, so the entrance sequence is nonempty.
The entrance sequence for the example above is RL. Let us show that
all letters but possibly the last are the same.
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Lemma 3.5. E ∈ R+ ∪ L+R ∪ R+L ∪ L+.

Proof. Assume without loss of generality that u is on pl. Assume first
that LR is a substring but not a suffix of the sequence, so pr crosses pl
first from left to right (say, at vertex wi) and then from right to left (at
vertex wi+1). From Fact 3.1 we learn that u ≺ wi and wi+1 ≺ u which
contradicts the ordering of the wi. The case RL is analogous.

The next lemma is obvious, now that we have split γ into simple
curves. We leave the proof to the reader.

Lemma 3.6. Let E denote an entrance sequence of length k. Then the
k curves γ1, . . . , γk satisfy:

(1) γ1 separates s from t iff E begins with an L,
(2) γi separates s from t for i = 2, . . . , k − 1,
(3) γk separates s from t iff LL or RR is a suffix of E or E = L.

Moreover, γi is oriented clockwise iff Ei = L.

Lemma 3.7. There is only one curve if and only if u ‖ v. Otherwise,
u ≺ v if and only if E1 = R and pu = pr or E1 = L and pv = pr.

Proof. If u and v are connected then γ is non-simple from Lemma 3.1, so
the first part of the statement holds. Assume E1 = R and pu = pr, so pu
crosses pv from right to left. From Fact 3.1 we see that u ≺ w1 and w1 ≺
v and are done by transitivity. The other cases are symmetrical.

Proof of Lemma 3.3. The proof is an easy but slightly tedious case anal-
ysis on the four different types of entrance sequences. The last two lem-
mas yield the number of cycles that separate s from t, their orientation
and the reachability information. By inspection, all cases are seen to be
consistent with Table 2.

4. Algorithm for Sequences of Updates

4.1. The Meridian. We use the results of the last section to construct
an algorithm that performs well in the amortised sense, i.e., a sequence
of m updates and queries takes time O(m logn).

As mentioned in the last section, one of the main ideas behind our
algorithm is to maintain a chain of faces between the poles, which we
will now define.
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Definition 4.1. A meridian (F 0, E0) consists of a sequence of meridian
faces F 0 = 〈f1, . . . , fm〉 and meridian edges E0 = 〈e1, . . . , em−1〉 such
that

(1) for i = 1, . . . , m− 1, edge ei is on the boundaries of fi and fi+1,
(2) fi 6= fj for i 6= j (this implies ei 6= ej).

Moreover, f1 = left(s) and fm = left(t).

It is easy to see that the meridian corresponds to a proper curve µ in
the sense of Definition 3.2 by viewing the meridian as a path in the dual
G∗ of G and overlaying the embeddings of G∗ and G in a straightforward
way. We only have to observe that a path inG∗ can never contain a point
that embeds a vertex from G. Recall the right half of Figure 5 on page 13
for an example.

4.2. How to count wrap-arounds. For curves α and β we let φr(α, β)
denote the number of times α crosses β from right to left. Symmetrically,
φl(α, β) denotes the number of times α crosses β from left to right.

Note that φl and φr have the nice property that if we decompose α
into proper curves α1, . . . , αk then we have, e.g.,

φl(α, β) =
k∑
i=1

φl(αi, β).(4.1)

If α is a closed curve and β is a proper curve (with respect to α) whose
endpoints are on the same region (with respect to α), then β must leave
the region bounded by α as often as it enters it, so

φl(α, β)− φr(α, β) = φl(β, α)− φr(β, α) = 0.

These properties are exploited in the proof of the following lemma.

Lemma 4.1. The index and the orientation of t are given by the abso-
lute value and the sign of

φr(µ, pl) + φl(µ, pr) − φl(µ, pl)− φr(µ, pr),

respectively.
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Proof. Observe that the meridian connects a point in the region of s,
namely left(s), to a point in the region of t, namely left(t). Let γ1, . . . , γk,
with k = Ind(t), denote the simple closed subcurves of γ that separate s
from t. It is an easy corollary to lemmas 3.5 and 3.6 that the curves have
the same orientation. Note that the meridian must cross all k curves at
least once, but may take a detour: It can go back across a previously
crossed curve and return later. Thus the index of t is given by

Ind(t) =
∣∣∣ k∑
i=1

φr(µ, γi)− φl(µ, γi)
∣∣∣.

We can split each γi into appropriately indexed subpaths pil and pir of pl
and pr (and remember to reverse the direction of the latter) to derive

Ind(t) =
∣∣∣ k∑
i=1

φr(µ, pil) + φl(µ, pir)− φl(µ, pil)− φr(µ, pir)
∣∣∣.

All other subpaths of pl and pr form a number of closed curves that do
not influence φ(µ, ·), so we can extend the above sum to include all of pl
and pr without changing the result. This proves the first statement.

For the second statement, observe that the orientation of t is positive
if and only if all γi are oriented clockwise. In that case, the value of

k∑
i=1

φr(µ, γi) − φl(µ, γi)

is negative, else it is positive. Indeed, the expression evaluates to either
Ind(t) or − Ind(t), depending on the orientation of t.

4.3. Data Structure. We extend the data structure of Section 3.3.1,
keeping the sequences of outgoing and incoming edges around every ver-
tex and the dynamic trees for S and T . The extensions are:

(1) We maintain the sequences of meridian faces F 0 and edges E0

under insertion and deletion of subsequences, e.g., using bal-
anced trees.

(2) With every edge e that is in either S or T , we store

φr(µ, e) =

{
1, if e = ei for some ei ∈ E0 and right(e) = fi,
0, otherwise,
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which tells us if e is crossed by the meridian from right to left.
Symmetrically, we store φl(µ, e), which can be derived analo-
gously. Using (4.1) above, we can now in time O(log |E|) calcu-
late the value of φr(µ, p) and φl(µ, p) for every dynamic path p
of S or T ; see [14] for the details and terminology.

(3) With every face, we keep a topologically ordered sequence of the
edges on the two paths that bound the face.

4.3.1. Queries. For the query operation, we again evert u and v in S
and T to find their order around s′ and t′. Using Lemma 4.1 and the
data structure above, we find the index and orientation of t. Finally, we
refer to Table 2 for the answer.

4.3.2. Insertions. Consider the case where a new edge e is inserted into
face f , splitting it into f ′ and f ′′. The edge lists around f ′ and f ′′ are
easily derived from the edge lists around f . The meridian is unaffected
if f /∈ F 0. Otherwise, one or both of f ′ and f ′′ may become part of
the updated meridian, depending on where the meridian edges appear
around f (we use the edge list around f to decide which case we are in).
For example, if there is a meridian edge on both f ′ and f ′′, they both
become part of the meridian and e becomes a new meridian edge. In
any case, there are only a constant number of updates to the meridian
lists.

A straightforward analysis shows that all operations can be performed
in logarithmic time, including the updates to the values of φl and φr
stored in S and T .

4.3.3. Deletions. Consider the case where deletion of the edge e between
faces f ′ and f ′′ creates a new face f . Creating the edge list around f is
handled as above.

In contrast, the meridian may change drastically. The change occurs
when both f ′ and f ′′ are meridian faces: We cannot just merge them
into one, as that would violate the second condition of Definition 4.1 —
put more graphically, the meridian curve µ would no longer be simple.

To remedy this, we must remove everything between f ′ and f ′′ from
the meridian, as shown in Figure 7. Even though the data structure for
the meridian face and edge lists can be updated in logarithmic time, the
values φl(µ, e) and φr(µ, e) at every removed meridian edge e also have
to be changed, which takes time O(n logn) in the worst case. However,
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Figure 7. Deletion of an edge that separates two
meridian faces

an easy amortisation argument (store a credit with each meridian edge)
shows that a sequence of m updates and queries can be executed in time
O(m logn).

In summary, we have the following theorem:

Theorem 4.1. The Dynamic Transitive Closure Problem on spherical
st-graphs can be solved in amortised time O(logn), where n denotes the
number of edges. The data structure uses linear space and can be ini-
tialised in linear time.

5. Worst case time bounds

5.1. Sketch of technique. We will now remove the amortisation, a
task that involves some rather tedious arguments. We start with a rough
sketch: Obviously, the major problem is that we do not have time to
remove the meridian cycles arising from a delete operation. However,
it is not very hard to believe that such meridian cycles can be shown
not to influence the proof of Lemma 4.1: In a nutshell, whenever a path
crosses a such a merdian cycle, it most re-cross the same cycle later in
the other direction (meridian cycles cannot seperate s from t). Hence
we choose to let sleeping dogs lie. We do not remove the meridian cycles
but instead just make sure that they stay cycles as the graph undergoes
further changes.

The minor problem left is that this results in more and more merid-
ian cycles as we go, so we use ‘global rebuilding’ [12] to construct an
unpolluted data structure in the background.

Now for the details.
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5.2. False meridians. We introduce some more meridians (Ek, F k) for
r > 0. To distinguish them from the meridian (E0, F 0) of Definition 4.1,
we from now on refer to the latter as the prime meridian.

Definition 5.1. A false meridian (F k, Ek) for r > 0 of size l consists of
a sequence of faces F k = 〈fk1 , . . . , fkl 〉 and Ekm = 〈ek1 , . . . , ekl 〉 such that

(1) for i = 1, . . . , l− 1, edge eki is on the boundaries of fki and fki+1,
(2) edge el is on the boundaries of fkl and fk1 ,
(3) fki 6= fkj for i 6= j (this implies eki 6= ekj ).

Thus the difference between a false meridian and the prime meridian
is that the former is cyclic in the sense that the last face is incident to
the first. Also, a false meridian need not contain left(s) nor left(t). The
embedding of a false meridian is a closed proper curve.

Our algorithm will not be able to distinguish false meridians from the
prime one. More precisely, when γ crosses a meridian at some point,
the algorithm cannot locally deduce whether this meridian is the prime
meridian or some other. Let us argue that this does not matter.

Denote by µk the curves that correspond to false meridians. Since
these curves are closed we can use the discussion from Section 4.2 to
derive

φr(µk, γ)− φl(µk, γ) = 0,

for all µk. Hence we can add the vanishing term∑
k>0

φ(µk, pl) + φl(µk, pr)− φl(µk, pp) − φr(µk, pr),

where the sum is over all false meridians, to expression (4.2) without
changing the result.

5.3. Data structure. Now that we have seen that the false meridians
do not mess up our analysis, let us see that they even make life simpler.

We modify the data structure from the amortised case as follows:
(1) With every edge we store the value∑

k≥0

φr(µk, e),(5.1)

where the sum is over all meridians including the prime. Like-
wise, we store

∑
φl(µk, e).
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(2) The two balanced trees for each face that maintain the two se-
quences of edges around the face are modified so that each inter-
nal node computes the sum of the values stored at its children.
This allows us to calculate the value∑

i

∑
k

φr(µk, ei)

for each sequence of faces 〈ei〉 that appear consecutively around
the face in time logarithmic in the length of the sequence. Like-
wise for φl.

Note that we do not maintain sequences of false meridians (but still
maintain the prime meridian). The false meridians appear in the data
structure only implicitly in the value from (5.1) stored at each edge. Let
us very briefly sketch how to handle the updates.

5.3.1. Insertions. Whenever a new edge is inserted into a face that ap-
pears on some (possibly false) meridian, we have to update the value
from (5.1). The modified balanced search trees with each face allows us
to compute the number of meridians that enter and leave the two new
faces. From these values, we can derive the value stored with the new
edge consistently with some legal rearrangement of the false meridians.

5.3.2. Deletions. Whenever an edge deletion induces a cycle in the prime
meridian, we remove that cycle from the corresponding list in the data
structure as before and make the removed cycle a new false meridian.
Figure 8 gives an example.
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Figure 8. Edge deletion, worst case
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5.4. Global rebuilding. We are almost finished. The only problem is
that the number of false meridians is unbounded and hence the values
stored with each edge may at some point become exponential.

To avoid this, we use the standard trick of global rebuilding (see Chap-
ter 5 of [12]): Construct a new data structure in the background, based
on only the prime meridian. After a linear number of operations, the
construction has finished and we switch to this new structure (which
may already have some false meridians but nevertheless cannot be too
large). Now all calculation takes place using the new data structure and
we refresh the old data structure in the background. This process of
switching data structures is repeated ad infinitum. We leave the details
with the reader.

Theorem 5.1. The Dynamic Transitive Closure Problem on spherical
st-graphs can be solved in time O(logn). The data structure uses linear
space and can be initialised in linear time.

6. Conclusion

We have characterised the complexity of the dynamic transitive clo-
sure problem on planar embedded graphs with one source and one sink
within a factor log logn.

Note that it is easy to extend the data structure to cope with a report
operation that outputs a path from u to v if it exists in time O(logn)+r,
where r denotes the length of the path. We leave the detail to the reader.

6.1. Open questions. It would be aesthetically pleasing to close the
gap between the upper and the lower bound. Dietz [4] has removed the
log logn factor in other dynamic problems, maybe similar techniques
apply. However, the necessary overhead supposedly dwarfs the asymp-
totic improvement for all realistic input sizes and the result would be of
theoretical interest only.

Upper bounds on the Dynamic Transitive Closure Problem in the gen-
eral case are still weak. Maybe slight extensions of the class of spherical
st-graphs can be handled by techniques similar to this papers’. For ex-
ample, the class of graphs that admit an upward planar drawing could
be the next target. Along another path, one could try to remove the
acyclicity condition. More ambitiously, we could look for improved lower
bounds for the general problem.
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