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Bootstrapping the Primitive Recursive
Functions by 47 Colours

Søren Riis ∗

BRICS†

June 1994

Abstract

I construct a concrete colouring of the 3 element subsets of N.
It has the property that each homogeneous set {s0, s1, s2.., sr}, r ≥
s0 − 1 has its elements spread so much apart that Fω(si) < si+1 for
i = 1, 2, ...., r− 1. It uses only 47 colours. This is more economical
than the approximately 160000 colours used in [1].

1 Introduction and preliminaries

In the famous paper [2] L.Harrington and J.Paris showed that a certain
finitary version PH of Ramseys Theorem is true, but unprovable in the
celebrated system of Peanos Arithmetic. This is an example of Gödels in-
completeness theorem. However, unlike Gödels consistency statement PH
has generally been accepted to be a natural statement from Arithmetic. In

∗This work was initiated at Oxford University England
†Basic Research in Computer Science, Centre of the Danish National Research

Foundation.
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[1] Ketonen and Solovay gave a careful analysis of the underlying growth-rate
of PH. As a first step in this analysis it was shown that for each increasing
primitive recursive function f there exists n and a colouring of the 3 element
subsets of {n, n+ 1, n+ 2, ...., f(n)} such that there are no homogeneous sets
{s0, s1, s2, ..., sr} with r ≥ s0−1. The real point is that the number of colours
can always be chosen to be less than a number fixed in advance. Ketonen
and Solovay defined various algebras and took a series of products, in order
to obtain the required colouring. An examination of their proof shows that
they used approximately 160000 colours. However they clearly did not try
to be economical. Actually in the work of Ketonen and Solovay the impor-
tant point is that the number is finite. In this paper I construct a concrete
colouring which uses only 47 colours.

Recall that the first functions in the Wainer hierarchy [3] are defined by
F0(n) := n + 1, F 1

k (n) := Fk(n), Fm+1
k (x) := Fm

k (Fk(n)), Fk+1(n) :=
F n
k (n), Fω(n) := Fn(n). The function Fω is the first function in this hi-

erarchy which growth faster than each primitive recursive function.
Let S[k] denote the collection of k element subsets of S. We use the

convention that the elements in displayed in sets S = {s0, s1, ..., sr} ⊆ N are
listed after size (i.e. s0 < s1 < ....sr). Let g : N[k] → C. We say that S ⊆ N
is homogeneous (for g) if u ≥ k+ 1 and g takes a constant value on S[k]. The
elements in C are called colours. If g1 : N[k] → C1, g2 : N[k] → C2, ..., gu :
N[k] → Cu we define the product colouring g := g1×g2× ...×gr as the product
map g : N[k] → C1×C2× ...×Cu. Notice that S is homogeneous for g if and
only if S is homogeneous for all the maps g1, ..., gu.

2 Definition of the colouring

Let j(x, y) be the smallest j such that y ≤ Fj(x). Consider the following 7
open propositions:
ψ1({x0, x1}) := x1 ≤ Fω(x0)

2



ψ2({x0, x1}) := j(x0, x1) > x0

ψ3({x0, x1}) := j(x0, x1) ≥ bx0
2 c

ψ4({x0, x1, x2}) := j(x0, x1) 6= j(x0, x2)
ψ5({x0, x1}) := x1 < F x0−1

j−1 (x0) where j := j(x0, x1).
ψ6({x0, x1, x2}) := j(x0, x1) > j(x1, x2)
ψ7({x0, x1}) := j(x0, x1) ≥ 2.

Now we define 7 auxiliary colourings h1, h2, ..., h7 as follows. The colouring
hi : N[2] → {0, 1}; i = 1, 2, 3, 5, 7 takes the value 1 exactly when ψi holds.
The colouring hj : N[3] → {0, 1}; j = 4, 6 takes the value 1 exactly when ψj

holds.
Lemma: Suppose that S = {s0, s1, ..., sr} ⊆ N contains at least s0 elements,
s0 ≥ 5 and S is homogeneous for the colourings h1, h2, ..., h7. Then Fω(si) <
si+1 for i = 1, 2, ..., r− 1.

Proof:
(1) If h1 ≡ 0 on S[2] then Fω(si) < si+1 for i = 0, 1, 2, ...., r − 1. This is
what we want to show.
(2) So assume that h1 ≡ 1 on S[2]. According to the definition Fω(x) :=
Fx(x). So si+1 ≤ Fω(si) = Fsi(si), i = 0, 1, 2, ..., r− 1.
(3) For i = 0 this gives s1 ≤ Fs0(s0).
(4) According to the definition j(s0, s1) ≤ s0.
(5) This shows that h2 ≡ 0 on S[2].
In particular j(s0, s1), j(s0, s2), ..., j(s0, sr) ≤ s0.

(6) Now whether h3 ≡ 0 or h3 ≡ 1 on S[2] by (5) we know that
j(s0, s1), j(s0, s2), ..., j(s0, sr) takes at most bs02 c+ 1 different values.
(7) Now h4 ≡ 0 on S[3], because otherwise j(s0, s1), j(s0, s2), ...., j(s0, sr)
would all take different values. This is impossible because r ≥ s0−1 > bs02 c+1
and s0 ≥ 5.
(8) But if h4 ≡ 0 on S[3], then j(s0, s1) = j(s0, s2) = .... = j(s0, sr). Let j0
denote this value.
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(9) The value j0 cannot be 0, because then according to the definition of
j(s0, sr) we would have s0 + 4 ≤ sr ≤ F0(s0) = s0 + 1.
(10) According to (9) j0 > 0. By the definition of j0 we have Fj0−1(s0) <
si ≤ Fj0(s0) when i = 0, 1, .., r.
(11) Now h6 cannot take the value 1 on S[3]. To see this suppose that
h6 ≡ 1 on S[3]. Then s0 ≥ j(s0, s1) > j(s1, s2) > .... > j(sr−1, sr) and
especially j(s0, s1) > 2. Then by the definition of h7 this would have
the consequence that j(sr−1, sr) > 2. But this is a contradiction because:
j(s0, s1) ≥ j(sr−1, sr) + r − 1, so j(s0, s1) ≥ r + 1 > s0 ≥ j(s0, s1).
(12) So h6 ≡ 0 on S[3]. In particular j0 = j(s0, s1) ≤ j(s1, s2) ≤ ... ≤
j(sr−1, sr).
(13) According to (12) Fj0−1(si) ≤ Fj(si,si+1)(si). The definition of the
function j shows that Fj(si,si+1)−1(si) < si+1.

Combining this shows that Fj0−1(si) < si+1.

(14) According to (13) sr > Fj0−1(sr−1) > Fj0−1(Fj0−1(sr−2)) > ... >

F
(r)
j0−1(s0).

(15) Now r ≥ s0 − 1 so by (14) sr > F (s0−1)
j0−1 (s0) so h5({s0, sr}) = 0.

(16) So h5 ≡ 0 on S[2], and then si+1 > F (si−1)
j(si,si+1)(si), i = 0, 1, 2, ..., r − 1.

(17) Now si−1 ≥ s0 + 1 so according to (12) j(si, si+1) ≥ j0, and thus
F

(si−1)
j(si,si+1)−1(si) ≥ F

(s0−1)
j0−1 (si).

(18) This shows that sr > F s0−1
j0−1 (sr−1) > ... > F (r·(s0−1))

j0−1 (s0).
(19) Now r · (s0 − 1) > s0 + 1 (s0 ≥ 5) so sr > F (s0+1)

j0−1 (s0) = Fj0(s0). This
shows that j(s0, sr) > j0 which violates (8) j(s0, sr) = j0.
(20) The contradiction in (19) shows that the assumption in (2) is impos-
sible. Thus h1 ≡ 0 and we are back to (1). 2

Lemma: There is a colouring U : N[3] → {1, 2, ..., 44} using 44 different
colours such that if S is homogeneous for h then S is simultaneously homo-
geneous for the maps h1, h2, ..., h7

Proof: Now 1 + 5 · 2 = 11 so by [1] there exists a colouring U1 : N[3] →
{1, 2, ..., 11} such that if S is homogeneous for U1 then S is simultaneously
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homogeneous for h1, h2, h3, h5 and h7. Now let U : N[3] → {1, 2, ..., 11} ×
{0, 1} × {0, 1} be the product of U1, h4 and h6. It uses 44 colours. 2

Theorem: There is a colouring W : N[3] → {1, 2, ..., 47} such that if S :=
{s0, ..., su} is homogeneous for W then Fω(si) < si+1.

Proof: Define W as U except that W ({s0, s1, s2}) gets colour 45 if s0 < 5
and s1 ≥ 5 or s0, s1, s2 < 5 and s2 = 4, and colour 46 if s0, s1 < 5 and s2 ≥ 5,
and colour 47 if s0, s1, s2 < 5 and s2 6= 4. It is straightforward to show that
any set S := {s0, s1, s2, s3} which is homogeneous for W must have s0 ≥ 5.

3 Final remarks and open questions

There is no reason to believe that 47 is a natural constant. Actually by a
slight change in the problem I can show that 12 colours suffice. This suggests
that the following question might be critical:

Problem 1: Is it possible to use only 12 colours?

One can also ask for the asymptotic answer. Here I think the critical
question could be whether:

Problem 2: Is it possible to use only 3 colours?

To my knowledge the 47 colours used in this paper provides the best
known lower bound to both of these questions.
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