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Abstract

This paper is about the recently-developed framework of action se-
mantics. The pragmatic qualities of action semantic descriptions are par-
ticularly good, which encourages their use in industrial-scale applications
where semantic descriptions are needed, e.g., compiler development.

The paper has two main aims: to demonstrate the remarkable extensi-
bility of action semantic descriptions, and to illustrate the action seman-
tics treatment of concurrency. These aims are achieved simultaneously, by
first giving the description of a sequential (ML-like) programming language
fragment, and then extending the described language with some concur-
rency primitives (taken from CML). The action semantic description of the
sequential part of the language does not change at all when the concur-
rency primitives are added, it merely gets augmented by the description of
the new features!
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1 Introduction

Action semantics [Mos92] is a formal framework for semantic description, devel-
oped to provide “tractable” descriptions of real-life languages (for example, see
[Tof93, NT94, HT94]). Action semantic descriptions, like those written in denota-
tional semantics [Mos90, Sch86], are compositional : semantic functions, mapping
abstract syntax to semantic entities, are defined inductively using semantic equa-
tions. However, in action semantics the semantic entities are actions rather than
higher-order functions, and the essence of actions is much more computational
than that of (pure) functions.

A special notation has been developed for use in action semantics. This
notation is called action notation, and it is used in action semantic descriptions
very much in the same way as the λ-notation is used in denotational semantics.
The symbols used in action notation are intentionally verbose, so that English-
like phrases can be used—completely formally—to express most of the concepts
present in programming languages. The operational semantics of the notation is
given in [Mos92].

Action semantic descriptions are inherently modular. They are easily ex-
tended or modified. Reusing parts of specifications is straightforward. In this
paper, we demonstrate these features, by extending the semantic description of
a simple, ML-like, sequential language, adding first-order synchronous communi-
cation constructors taken from CML [Rep91a].

The next section gives a brief account of the action semantics formalism.
Section 3 presents the action semantics of a simple sequential language. Sec-
tion 4 considers processes and synchronous communication. Section 5 extends
the action semantic description of the sequential language to deal with the cho-
sen concurrency primitives.

Both the sequential and the concurrent languages are similar to those pre-
sented in [BMT92]. In that work, various changes to the original description of
the sequential language were needed to introduce the concurrent constructs and
their operational semantics. This is not the case in our description using action
semantics: when the first-class synchronous operations are introduced, only ex-
tensions to the semantic entities of the sequential description are needed, and the
rest of the description remains unchanged. Moreover, the use of action semantics
has the advantage that the problem of giving a fully distributed implementation
of CML’s concurrency primitives becomes quite apparent. This is ensured by the
action semantics treatment of concurrency, which is based on a quite realistic
asynchronous model; a truly operational analysis of synchronization has to be
specified. A description of CML’s concurrency primitives in terms of CCS- or
CSP-like synchronization would not be so revealing. These issues are discussed
further in the concluding section.
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2 Action Semantics

In Action Semantics, the meaning of each phrase of a language is represented
in terms of special entities called actions. Actions can be performed to process
information, with various possible outcomes: normal termination (performance
of the action completes), exceptional termination (it escapes), unsuccessful ter-
mination (it fails) or non-termination (it diverges). Action notation provides
some primitive actions, and various combinators for forming complex actions,
corresponding to the main fundamental concepts of programming languages.

A data notation is used to describe the information processed by actions.
The standard data notation (included in action notation) provides a collection of
algebraically defined abstract data types, including numbers, characters, strings,
sets, tuples, maps, etc.; further data may be specified ad hoc.

There is also a third class of entities in action notation, called yielders. A
yielder represents data whose value depends on the current information available
to the primitive action in which it occurs. Yielders are evaluated to yield data.
An example of a standard yielder is the data bound to I , which depends on the
current bindings that are received by the enclosing primitive action.

Action notation possesses five so-called ‘facets’:

Basic: This facet deals with pure control flow, without reference to information
processing issues.

Functional: This facet deals with transient data, which is given to or by an
action. For example, when the primitive action give the successor of the
given natural is given a natural number n as transient data, it completes,
giving n+ 1 as a transient. The compound action A1 then A2 performs the
action A1 first; all transient data given by A1 is passed on to A2, which is
performed after A1 completes. The primitive action choose D, where D is
a sort of data, makes a non-deterministic choice of an individual of sort D,
giving the chosen datum as a transient.

Declarative: This facet deals with the manipulation of scoped information, rep-
resented by associations of tokens to bindable data. For example, perfor-
mance of the primitive action bind “max-length” to 256 completes, producing
a binding of the token “max-length” to the natural number 256.

Imperative: This facet is concerned with storage handling. A storage in action
notation is simply a mapping from (the currently allocated) cells to storable
data. For example, consider the action allocate a cell then store 26 in the
given cell, which combines features of the functional and imperative facets.

Communicative: This facet provides a system of agents, which can each be
‘contracted’ to perform particular actions. Initially only a special ‘user’
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agent is active. Agents can communicate using asynchronous message pass-
ing: the sending of a message is non-blocking. Each agent has its own com-
munication buffer , in which all the messages sent to the agent are placed.
Communication is reliable, in the sense that no message can be lost during
transmission; however, there is no bound to the amount of time taken for a
message to reach its destination agent. Moreover, each agent is created with
its own storage, which cannot be affected (nor inspected) by other agents.
Arbitrary data can be contained in messages, including the identities of
agents.

Most of the primitive actions have a use in connection with only one facet each,
but the action combinators generally involve a mixture of the basic, functional,
and declarative facets, determining the flow of control, transient data, and bind-
ings between the subactions.

Encapsulation of actions as data is also provided within action notation. This
feature gives a simple way to support the description of procedure and function
abstractions in programming languages. An abstraction is an item of data which
encapsulates an action. Abstractions can be enacted; this operation results in
the performance of the encapsulated action. Both transients and bindings can be
supplied to abstractions before their enaction, for use by the encapsulated action.
Abstractions can be treated just like any other data, i.e., given as transients,
bound to tokens, stored in cells, and sent in messages. They are also used to
determine the ‘contracts’ offered to agents in the communicative facet.

For a more detailed description of action notation, the reader is referred to
[Mos92]; for an introduction, see also [Wat91]. An overview of the operational
semantics of action notation is given in the Appendix below.

3 A Simple Sequential Example

This section describes the (dynamic) action semantics of a simple sequential func-
tional language, derived from Standard ML [MTH90]. It is essentially the same
language as the one described in [BMT92, Sect. 3].

As in denotational semantics, a description in action semantics is divided into
three main parts, specifying the abstract syntax of the language being described,
the semantic functions that map abstract syntactic phrases to their meaning, and
the semantic entities used by the semantic functions.

The modular structure of the specification is itself formally specified, by giving
each module a title, and indicating (by writing needs: or includes:) which other
modules it imports, if any. Modules may be nested: a submodule implicitly
imports all that is specified (or imported) directly by each enclosing module.
The order in which modules are presented is irrelevant, and mutual importation
is allowed [Mos89b].
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Each module is given below as a numbered, titled section. Interspersed with
the formal specification, some informal explanations are given, for the benefit of
those readers who are unfamiliar with action notation.

3.1 Abstract Syntax

grammar:
• Expression = Identifier “()”

[[ “(” Expression “,” Expression “)” ]]
[[ Expression Expression ]]
[[ “fn” Identifier “⇒” Expression ]]
[[ “rec” Identifier “(” Identifier “)” “=” Expression ]] .

• Identifier = [[ letter+ ]] .
• Program = Expression .

The abstract syntax of the language is defined by a grammar using the standard
data notation for trees and strings. The brackets [[. . . ]] indicate node construction
in abstract syntax trees. (In denotational semantics, these brackets are usually
regarded as part of the notation for semantic functions; nevertheless, the left-
hand sides of action semantic equations are quite similar in form to those of
denotational semantic equations.) Strings in the right-hand-sides of the grammar
equations correspond to leaves of the trees.

A program in our simple example language is given by a single expression.
Notice that the “rec” construct is an expression, rather than a declaration. Also,
the sort Identifier encompasses variables, constants, and constructors—we do not
rely on some preceding static analysis to distinguish the classes of the different
occurrences of identifiers, in contrast to [BMT92] (and to [MTH90], where the
dependency between static and dynamic semantics caused some problems).

3.2 Semantic Functions

needs: Abstract Syntax, Semantic Entities.

The action semantics of a programming language is given by means of semantic
functions. These functions map abstract syntactic phrases of the language to
actions. Each semantic function is introduced at the beginning of the module
that defines it, inductively, by semantic equations.
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3.2.1 Evaluating Expressions

introduces: evaluate .
• evaluate :: Expression → action .

The sort action includes all actions. We could be more specific here, using an
algebraic notation for subsorts of actions to indicate that evaluate E is always an
action which, whenever it completes, gives a value.

(1) evaluate I :Identifier = give the value bound to I .

When not in the scope of any binding for I , the yielder the value bound to I
evaluates to the special entity nothing, whereupon the give action above fails.
Note that I may be a constructor, a constant, or a variable, but the distinction
is irrelevant for the dynamic semantics.

(2) evaluate “()” = give the unit-value .

The constant unit-value is specified in Sect. 3.3.

(3) evaluate [[ “(” E1:Expression “,” E2:Expression “)” ]] =
( evaluate E1 and then evaluate E2 )
then give the pair of the given (value, value) .

The action combination A1 and then A2 specifies sequential (left-to-right) per-
formance of its subactions, as does A1 then A2. The difference is that with the
former combination, any transient data given by A1, A2 are concatenated and
given by the whole action, whereas with the latter combination, the transient
data given by A1 are given only to A2. There is also a combination A1 and A2,
used later, that specifies implementation-dependent order of performance, but
which is otherwise like A1 and then A2.

The operation pair of is specified in Sect. 3.3, it serves merely to form a single
value from two values. By the way, the articles ‘the’, ‘a’, and ‘an’ are generally
insignificant in action notation (formally, they denote the identity function).

(4) evaluate [[ E1:Expression E2:Expression ]] =
evaluate E1 and then evaluate E2

then
give construction of (the given constructor#1, the given value#2) or
enact application of body of the given function#1

to the given value#2 .

The combination A1 or A2 generally provides a nondeterministic choice between
the alternative actions A1, A2. However, if the chosen action fails, the other one
is performed instead, so the choice may turn out to be deterministic—as above,
where A1 fails unless the first (#1) value is of sort constructor, and A2 fails unless
it is of sort function.
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The yielder application of Y1 to Y2 evaluates Y2 and supplies it as a transient to
the abstraction yielded by Y1. So when the action encapsulated in the abstraction
representing the body of a function is performed (via enact above), it is given
just a single value, representing the argument of the function.

Note that vertical bars are used to enforce the intended grouping of actions,
as an alternative to parentheses.

(5) evaluate [[ “fn” I :Identifier “⇒” E :Expression ]] =
give function of closure of abstraction of

furthermore bind I to the given value
hence evaluate E .

The use of closure with abstraction of A ensures that the action A receives the
static bindings whenever the abstraction gets enacted. The operation function of
(specified in Sect. 3.3) merely tags the abstraction so that it can be distinguished
from abstractions used for other purposes.

The combination A1 hence A2 is similar to A1 then A2, but here it is bindings
rather than transients that get passed from A1 to A2. The use of furthermore at
the start of A1 specifies that the bindings received by the whole action should be
received also by A2, except for those that get hidden by bindings produced by
A1.

(6) evaluate [[ “rec” I1:Identifier “(” I2:Identifier “)” “=” E :Expression ]] =
recursively bind I1 to function of closure of abstraction of

furthermore bind I2 to the given value
hence evaluate E

hence give the function bound to I1 .

The action recursively bind I to Y allows the closure yielded by Y to refer to itself.
(The operational semantics of this action involves so-called indirect bindings,
whereby circular bindings can be formed.)

• Identifier ≤ token .

Note that ≤ indicates sort inclusion.

3.2.2 Running Programs

needs: Evaluating Expressions.
introduces: run .
• run :: Program → action .

(1) run E :Expression = initialize-bindings hence evaluate E .

The initialize-bindings action is defined in Sect. 3.3.
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3.3 Semantic Entities

includes: [Mos92]/Action Notation.

The above reference to the official definition of action notation provides all the
action primitives and combinators that are needed here; see the Appendix below
for a list of the relevant symbols. It remains only to specify what data are to be
processed by actions.

3.3.1 Data

needs: Values.
• datum = value .
• bindable = value .
• token = string of letter+ .

The sorts datum, bindable, and token are left open by action and data notation,
as they depend on the semantics of the language being described.

3.3.2 Values

needs: Pairs, Constructions, Functions.
introduces: value , unit-value .
• value = unit-value pair construction function (disjoint) .
• unit-value : value .

The sort value is independent of action notation, and introduced here only for
convenience. In practice, it is generally used to correspond to the notion of
‘R-values’ in denotational semantics.

3.3.3 Pairs

needs: Values.
introduces: pair , pair of .
• pair of :: value2 → pair (total , injective) .
• pair = pair of value2 .

Note that the notation value2 is another way of writing the tuple sort (value,
value).
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3.3.4 Constructions

needs: Values.
introduces: constructor , construction , construction of .
• constructor = token .
• construction of :: (constructor, value) → construction (total , injective) .
• construction = constructor construction of (constructor, value) .

The semantics of a constructor identifier is the identifier token itself. In this
example language, constructors are untyped, so they can be applied to arbitrary
values.

3.3.5 Functions

introduces: function , function of , body .
• function of :: abstraction → function (total) .

(1) function of a:abstraction = f :function ⇒ body f = a .

3.3.6 Initializations

needs: Functions.
introduces: initialize-bindings .
• initialize-bindings = bind “true” to “true” and bind “false” to “false” and

bind “not” to function of abstraction of
give ( when there is given “true” then “false”

when there is given “false” then “true” ) .

The initial bindings here provide only the standard constructors for the Booleans,
and the negation function. Other constructors and constants could be defined
without additional complications.

4 First-Class Synchronous Operations

Reppy [Rep91a] presents CML, a concurrent extension of the Standard ML lan-
guage. CML has a fork-style primitive for spawning new processes. CML pro-
cesses communicate values synchronously over typed channels.

In [Rep91b], the operational semantics of the new primitives is given. In
[BMT92], a subset of Reppy’s primitives is chosen, a new operational semantics
is given for the reduced set and several useful properties are proved. Figure 1 is
taken from [BMT92]; it shows the signature of the chosen subset of CML oper-
ations. These first-class synchronous operations allow not only for sending and
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signature Concurrency = sig
type ’a channel
val channel: unit -> ’_a channel
type ’a com
val send: ’a channel * ’a -> ’a com
val receive: ’a channel -> ’a com
val choose: ’a com * ’a com -> ’a com
val wrap: ’a com * (’a -> ’b) -> ’b com
val noevent: ’a com
val fork: (unit -> ’a) -> unit
val sync: ’a com -> ’a end

Figure 1: The signature of the concurrency primitives.

receiving values through channels: nondeterministic choice between communi-
cations (choose) and post-processing of the result of communications (wrap) is
possible as well.

A value of type ’a com is called a ‘suspended’ communication. As it is a
first-class value, it can be used as an argument of a function or constructor, just
like any other value. The communication can only completed when the sync
function is applied to it, and then only when a matching communication is given
as an argument of sync by another process. Communication is synchronous:
when a process calls sync, it is blocked until it becomes possible to complete the
requested communication.

5 Extension to a Simple Concurrent Example

In this section we add processes and synchronous communication primitives to our
simple sequential language. These primitives are the same as given in [BMT92],
and a subset of those present in the CML language [Rep91a]. We do not fore-
see any problems in adding the rest of the CML synchronous operations to our
definition.

Both the abstract syntax and semantic functions parts of the sequential lan-
guage specification are reused without any modification!
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5.1 Abstract Syntax

This module remains unchanged. The concurrency primitives are added as con-
stants and constructors, i.e., identifiers, for which abstract syntax has already
been specified.

5.2 Semantic Functions

This module also remains unchanged! This is because of the ‘orthogonality’ of
the facets of action notation: the presence or absence of actions involving the
communicative facet in no way affects the usage of the primitive actions and
combinators involving the other facets. For example, in the action combination
A1 then A2, the passing of transient data from A1 to A2 is completely independent
of whether the subactions send any messages or offer contracts to other agents.

Actually, there is one small part of action notation that is sensitive to the
presence or absence of the various facets of actions: the algebraic notation for
subsorts of actions, which is used just for specifying facets! Had the target sort of
evaluate been specified not merely as action but more precisely, as action [giving
a value diverging redirecting], the outcome possibility communicating would now
have to be added. But this is a trifling matter, and does not weaken the claim of
extensibility of action semantic descriptions.

It should be stressed that this remarkable extensibility is not a peculiarity
of the simple examples considered in this paper, it seems to be inherent in the
use of action notation. It would be interesting to see whether one could achieve
comparable extensibility for this example when using monads in denotational
semantics [CM93].

5.3 Semantic Entities

includes: [Mos92]/Action Notation.

5.3.1 Data

needs: Values, Requests.
• datum = value .
• bindable = value .
• sendable = request response .
• storable = nothing .

The identities of storage cells are used below to distinguish channels, but nothing
is ever stored in the cells, hence the above specification of storable.
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5.3.2 Values

needs: Pairs, Constructions, Functions, Channels, Requests.
introduces: value , unit-value .
• value = unit-value pair construction function

channel request (disjoint) .
• unit-value : value .

The only change above is the addition of two new subsorts of value.
The modules Pairs, Constructions, and Functions are omitted here, as

they are identical to those given in Sect. 3.3.

5.3.3 Initializations

needs: Functions, Forks, Requests.
introduces: initialize-bindings .
(1) initialize-bindings =

bind “true” to “true” and
bind “false” to “false” and
bind “not” to function of abstraction of

give ( when there is given “true” then “false”
when there is given “false” then “true” )

and
bind “send” to “send” and
bind “receive” to “receive” and
bind “choose” to “choose” and
bind “wrap” to “wrap” and
bind “noevent” to “noevent” and
bind “channel” to function of abstraction of channel-action and
bind “fork” to function of abstraction of fork-action and
bind “sync” to function of abstraction of sync-action and
initialize-synchronization .

The treatment of “send”, “receive”, “choose”, and “wrap” as constructors implies
that their real semantics lies in the way that the corresponding constructions
influence communication, as specified below in channel-action, fork-action, and
sync-action.

5.3.4 Channels

needs: Values.
introduces: channel , channel-action .
• channel ≤ cell .
• channel-action = allocate a channel .
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Each invocation of the channel() function of CML reserves a fresh, new com-
munication channel for use within a program. In our description, channels are
represented as storage cells. The primitive action allocate reserves a previously
unused cell, which is the desired semantics of the channel() function.

Note that in the action semantics of other concurrent languages, a channel can
often be represented by an agent that (busily) inspects its buffer until it receives
a matching pair of requests for reading and writing on the channel. But in CML,
a single suspended communication might involve several channels at once, with
mutual exclusion between them, and it seems that it would be very complicated
to let channels be separate agents in this case.

5.3.5 Forks

needs: Values.
introduces: fork-action .
(1) fork-action =

offer a contract [to some agent] [containing the abstraction yielded by
the application of the body of the given function to the unit-value]

and give the unit-value .

Recall that the fork-action represents the body of the CML fork function, which
gets applied to an expression to be evaluated by the new process—but the evalu-
ation of the expression has to be delayed, so it is made the body of a function of
the unit value (). This is reflected by the explicit application that occurs in the
contents of the contract above.

The primitive action offer Y evaluates Y to a sort of contract, where the
action to be performed has been determined as the contents of the contracts
included in the sort (as usual, the action has to be encapsulated in an abstraction).
It is also possible to determine a subsort of the agents to which the contract
may be offered, but the use of [to some agent] above leaves the sort of agent
completely open. As soon as the ‘offer’ has been made, the performing agent can
proceed, without waiting for an agent to accept the contract and start performing
the specified action. (One can easily express such waiting: let the specified
action start by sending a signal back to the contracting agent, which should then
patiently inspect its buffer until the signal arrives.)

5.3.6 Requests

needs: Values, Pairs, Constructions, Functions, Channels.
introduces: request , response , synchronizing-agent ,

initialize-synchronization , sync-action .

13



• request = construction of (“send”, pair of (channel, value))
construction of (“receive”, channel)
construction of (“choose”, request2)
construction of (“wrap”, pair of (request, function))
“noevent” .

The request sort corresponds to the ’a com types in Fig. 1. The polymorphic type
information is disregarded here, as it is not relevant for the dynamic semantics
of the language.

• response = value abstraction .

The response sort is specified to be the union of the value and abstraction sorts.
When no wrap operation is involved in the synchronization of two matching
requests, the result of such a synchronization will be a value. The need for
abstractions arises when a post-synchronization operation is to be performed, as
explained below.

• synchronizing-agent : agent [not in set of user-agent] .

In the absence of any assumptions about relative processing speed or message
transmission time, it appears to be difficult to distribute the decisions about syn-
chronization between the various processes. The problem arises with symmetrical
situations involving mutually-exclusive choices between three or more processes:
a tentative choice proposed by one process may be outdated by the time the other
processes get to know about it!

As the semantics of the language has to cope with all possible programs, it
seems that we are forced to introduce a centralistic arbiter agent to represent the
locus of synchronization decisions. Note, however, that the appearance of this
artefact in the semantics does not rule out the possibility of a clever implementa-
tion of truly distributed synchronization, conforming to the specified semantics
(from the point of view of the user-agent).

(1) initialize-synchronization =
offer a contract [to the synchronizing-agent] [containing abstraction of

unfolding
patiently

choose a synchronized pairing of the items of the current buffer
then

send a message [to the sender of the given message#1]
[containing the given response#3] and

send a message [to the sender of the given message#2]
[containing the given response#4] and

remove the given message#1 and remove the given message#2
then unfold ] .

14



The action performed by the synchronizing-agent (given in the contract sort spec-
ified above) involves several standard action primitives and combinators that have
not yet been explained. The unfolding . . .unfold. . . construct may be regarded as
an iteration here, although it is more general. If preferred, it may also be regarded
as an abbreviation for the infinite action obtained by actually doing the unfolding
syntactically. The action patiently A keeps on performing A while it fails. The
primitive action choose Y fails whenever Y evaluates to nothing, otherwise it
gives an individual chosen arbitrarily from the sort to which Y evaluates. The
primitive action send Y initiates the transmission of the message specified by the
sort yielded by Y , where the agent to receive the message is already determined.
Finally, remove Y disposes of the message yielded by Y , so that it is no longer
in the buffer.

Thus the effect specified above is that of busy-waiting until one or more match-
ing pairs of requests have arrived in the local buffer. The synchronized pairing
then yields a sort including not only the matching pairs of request messages,
but together with each pair their chosen responses. Having chosen one of these
quadruples, it is a straightforward matter to complete the synchronization of the
requests by sending back the responses to the agents that made the requests, and
removing the chosen messages from the buffer.

(2) sync-action =
send a message [to the synchronizing-agent]

[containing the given request] then
receive a message [from the synchronizing-agent]

[containing a response] then
give the value yielded by the contents of the given message or
enact the abstraction yielded by the contents of the given message .

The action receive Y is actually a standard abbreviation for a compound action
that waits busily until a message of the sort specified by Y arrives in the local
buffer, then removes it from the buffer and gives it as a transient.

privately introduces: synchronized , synchronized-responses ,
first-response-application to , pairing .

The privately introduces: directive has the effect of restricting the use of the
listed symbols to the current submodule.

• synchronized :: message2 → (message2, response2) (linear , strict) .

The synchronized operation takes a pair of messages containing requests, and
forms a sort of quadruples. The two first components of each quadruple are the
original messages, while the third and fourth components are the responses to the
requests. These responses are obtained by selecting each possible combination
of matching requests, as specified by the synchronized-responses operation. The
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linear attribute specifies that the operation distributes over sort union, while
strict indicates that the operation maps nothing to nothing. Note that operations
specified as total and partial are also linear and strict .

(Readers who are not used to applying operations to sorts as well as to indi-
vidual values, as in the definitions below, may find it helpful to regard individuals
as singleton sets, and the operation as set union. The constant nothing may be
regarded as the empty set. All the operations can then be considered as defined
element-wise on sets. See [Mos89a] for the foundations of applying operations to
sorts.)

(3) synchronized (m1:message, m2:message) =
(m1, m2, synchronized-responses of (contents of m1, contents of m2)) .

• synchronized-responses :: request2 → response2 (linear , strict) .

The synchronized-responses operation takes a pair of requests for synchroniza-
tion and gives the sort of all possible responses from the given requests. If no
synchronization is possible, the result of this operation is nothing. The definition
below corresponds closely to [BMT92, Figure 5].

(4) synchronized-responses (r1:request, r2:request) =
reverse synchronized-responses (r2, r1) .

(5) synchronized-responses
(construction of (“send”, pair of (k1:channel, v :value)),
construction of (“receive”, k2:channel)) =

when k1 is k2 then (v , v) .
(6) synchronized-responses

(construction of (“choose”, pair of (r1:request, r2:request)), r3:request) =
synchronized-responses (r1, r3) synchronized-responses (r2, r3) .

(7) synchronized-responses
(construction of (“wrap”, pair of (r1:request, f :function)), r2:request) =

first-response-application of f to synchronized-responses (r1, r2) .
(8) synchronized-responses (“noevent”, r :request) = nothing .

• first-response-application to :: function, response2 → response2 (total) .

When a response to a synchronization is to be post-processed (due to the existence
of a wrap operation), an abstraction is constructed. This abstraction will be
enacted as a result of the performance of the sync-action, as explained before.

(9) first-response-application f :function to (v :value, r :response) =
(application of the body of f to v , r) .

(10) first-response-application f :function to (a:abstraction, r :response) =
(a then the body of f , r) .
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• pairing :: message* → message2 (linear , strict) .

The pairing operation simply forms all possible pairs of elements from a tuple
of messages.

(11) pairing ( ) = nothing .
(12) pairing m:message = nothing .
(13) pairing (m1:message, m2:message, m:message*) =

(m1, m2) pairing (m1, m) pairing (m2, m) .

6 Discussion

Q : Why are the action semantic descriptions (a.s.d’s) so long?
A: Well, if one removes all the tutorial comments, the a.s.d. of the sequential
language fills about three pages. A transitional semantics for the same language
might fill about one page. Some of the extra length of the a.s.d. is, of course,
due to the use of verbose, multi-character symbols and the attempt at ‘natural’
language. The module titles and imports also take up some lines. But try reading
through the description—at least that doesn’t take much longer than it would
with a transitional semantics, it seems. In any case, the size of the extension
to the concurrent language is hardly excessive, considering the nature of the
constructs being described.
Q : Isn’t action notation just another programming language, and an a.s.d. a com-
piler into it?
A: Many formal notations, including the λ-notation and action notation, can cer-
tainly be implemented and used for programming. The crucial feature that distin-
guishes them from ordinary programming languages is that they have tractable,
well-understood semantics themselves. Action notation has been fine-tuned for
use in a.s.d’s, and would probably rather tedious to use for programming.

Concerning the second part of the question: an a.s.d. can indeed be re-
garded as ‘compiling’ or reducing the described programming language to action
notation—just as a denotational semantics reduces it to the λ-notation. It is
clearly beneficial to explicate a range of complex phenomena in terms of a fixed
set of relatively simple constructs.
Q : Aren’t there really too many primitives in action notation?
A: No! To get an overview of those we have used, see the Appendix. These ac-
count for at least 50% of the full action notation. To eliminate some of the action
primitives and combinators would undermine the extensibility of a.s.d’s. For in-
stance, to avoid the declarative facet would require passing bindings as transient
data, which seems artificial, and which would also be notationally undesirable.
Q : Why is the communicative facet of action notation based on asynchronous
primitives, rather than on the better-studied synchronous ones?
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A: Action notation is intended for use in describing high-level programming lan-
guages, where it is often not possible to ignore the time it takes to synchronize
distributed processes. The lack of synchrony in action notation also allows a näıve
operational semantics that reflects true concurrency. In any case, it is consider-
ably more illuminating to explicate languages like CML in terms of asynchronous
message passing, than in terms of (e.g.) CCS. See [Agh86] for further arguments
in favour of asynchronous primitives.
Q : What are the main advantages of action semantics over the popular transi-
tional style of semantics advocated by Plotkin, Milner, et. al.?
A: In fact action semantics can be regarded as a particular discipline for writing
transitional semantics: the semantic equations, together with the operational se-
mantics of action notation (which is defined in the transitional style!) induce a
transitional semantics for the described language—although it isn’t ‘structural’,
at least not in the usual sense. Thus instead of, say, left-to-right evaluation
being implicit in the transition rules for various constructs of the described pro-
gramming language, the concept is named by a combinator, which is used where
appropriate, and the rules for this combinator are given once and for all.

Another aspect of this discipline is that action notation does not allow the in-
stantaneous inspection of the ‘current state’ of a distributed system of agents; one
is forced to analyse synchronization in terms of asynchronous message-passing.
When using transitional semantics directly may lead to nondeterministic choices
that cannot (easily) be made on the basis of locally-available information.

Finally, there is the extensibility of a.s.d’s. This makes it (almost) trivial
that the extension of an a.s.d. to describe concurrent constructs indeed preserves
the semantics of sequential programs. Such results are not so immediate with
transitional semantics, see [BMT92].

Appendix

Action Performance

A formal presentation of the operational semantics of action notation [Mos92]
is out of the scope of this paper. The following informal comments indicate its
main features, and may be helpful to some readers.

The operational semantics defines what transitions between configurations
are possible. Let us first consider the local transitions. Each agent has a local
configuration consisting of: the (remaining) action to be performed; the current
data and bindings; the current storage, determining which cells are reserved and
their contents; and the current buffer of messages. When a primitive action is to
be performed, any yielder arguments are evaluated with respect to the current
(local) information, whereafter a transition to a new configuration is possible.
The transitions for compound actions are determined by those of their subac-
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tions, as usual in structural operational semantics. Each combinator determines
the flow of control (sequential, interleaving, or nondeterministic choice) and how
the transient data and bindings for the combined action depend on those for its
subactions. Transitions may affect the storage, and remove messages from the
buffer. Finally, a local transition may have communicative effects: sending mes-
sages to other agents, and offering contracts containing actions to be performed
by other agents.

Now for global transitions. Initially, only one (user-) agent is active; other
agents become active when they accept contracts. A global configuration con-
sists of a local configuration for each active agent, together with all the messages
that are being transmitted between agents (and any contracts that are still on
offer). The lack of any assumptions about the processing speed of agents, or
the transmission speed of messages, is modelled by attaching arbitrary but finite
positive delays to local transitions and message transmissions. Each global tran-
sition counts down all the delays. When a local transition has no more delay, a
new transition for the agent is chosen; when a message has no more delay, it is
inserted in the buffer of the target agent (assuming that it is already active).

Action equivalence is defined as a testing equivalence, based on the operational
semantics. In practice, algebraic laws about action equivalence are verified using
a weak bisimulation defined in terms of local transitions. The theory of action
notation is still being developed; currently, reasoning about multi-agent action
performances has to be based directly on the global transitions.

Action Notation used in Sect. 3

action yielder data
A1 or A2 the D yielded by Y (D1, D2)
A1 and A2 the Y D2

A1 and then A2 of Y a D , the D
give Y the given D datum
A1 then A2 the given D#n natural
bind D to Y the D bound to Y bindable
recursively bind D to Y token
furthermore A
A1 hence A2

enact Y closure Y abstraction of A
application Y1 to Y2 abstraction

A, A1, A2: action Y , Y1, Y2: yielder D , D1, D2 ≤ data
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Action and Message-Sort Notation used in Sect. 5

action yielder data
unfolding A
unfold
choose Y
send Y current buffer message
remove Y agent
receive Y user-agent
offer Y contract
patiently A sendable
allocate D cell , storable
A: action Y : yielder D ≤ data

message agent sendable contract
m [from a] sender m
m [to a] c [to a]
m [containing s] contents m c [containing abs]
m ≤ message a ≤ agent s ≤ sendable c ≤ contract
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