
B
R

IC
S

R
S

-94-11
N

.K
larlund:

A
H

om
om

orphism
C

onceptforω
-R

egularity

BRICS
Basic Research in Computer Science

A Homomorphism Concept for
ω -Regularity

Nils Klarlund

BRICS Report Series RS-94-11

ISSN 0909-0878 May 1994

Copyright c© 1994, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

A HOMOMORPHISM CONCEPT FOR ω-REGULARITY

NILS KLARLUND∗

BRICS †

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

NY MUNKEGADE
DK-8000 AARHUS C, DENMARK.

Abstract. The Myhill-Nerode Theorem (that for any regular language, there is
a canonical recognizing device) is of paramount importance for the computational
handling of many formalisms about finite words.

For infinite words, no prior concept of homomorphism or structural comparison
seems to have generalized the Myhill-Nerode Theorem in the sense that the concept
is both language preserving and representable by automata.

In this paper, we propose such a concept based on Families of Right Congru-
ences [3], which we view as a recognizing structures.

We also establish an exponential lower and upper bound on the change in size
when a representation is reduced to its canonical form.

1. Overview

An important and only partially solved problem in the theory of ω-regular lan-
guages is whether representations can be minimized. For usual regular languages,
deterministic finite-state automata (DFAs) are recognizing structures that can be
minimized easily in polynomial time by virtue of the Myhill-Nerode Theorem. The
lack of similar algorithms in the ω-case is a major impediment to building verification
tools for concurrent programs.

The syntactic congruences of Arnold [2] provide canonical algebraic structures for
ω-regular languages. By themselves, these congruences provide no explicit acceptance
criteria just as in the situation for a regular language: the canonical right congru-
ence, whose classes are automata states, does not define a language—unless certain
states are designated as being final. Similarly, Arnold’s congruences have only the
ability to recognize, which is a property called saturation. Arnold’s congruences can

∗The author was partially supported by a Fellowship from the Danish Research Council.
†Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

be extended so that acceptance becomes explicit and thus a language preserving ho-
momorphism concept arises. But, unlike the Myhill-Nerode Theorem, which is based
on right congruences, canonicity in [2] is obtained for full congruences, which are
usually exponentially bigger than one-sided congruences.

Maler and Staiger [3] focus on the canonical right congruence ≡L on finite words
of a language L of infinite words. This congruence is defined by x ≡L y if and
only if for all infinite α, x · α ∈ L if and only if y · α ∈ L. (We use x, y, u, v, w to
denote finite words and α, β to denote infinite words). The concept of a Family of
Right Congruences (FORC) suggested in [3] is there used to characterize ω-regular
languages that are accepted by their canonical right congruence ≡L extended to a
Muller automaton.

FORCs are also not language recognizing. But they do enjoy canonical properties
with respect to saturation as we prove in this paper. Similarly, the right binoids of
Wilke [4] are algebraic devices that characterize regular sets of finite and infinite words
based on a saturation concept embedded in a notion of recognition by homomorphism.

In this paper. In this paper we regard FORCS as language accepting devices rather
than as the transition structures of underlying Muller automata. Then FORCS may
be viewed as separating the characterization of the topological closure of the language
from that of the dense part .

The closure corresponds to the canonical right congruence. The classes of this
relation for which there is an infinite suffix that makes words in the class belong to
L describe the closure of L: an infinite word is in the closure if and only if all of
its prefixes belong to these classes. The closure is also called a safety property in
the theory of concurrent systems. A FORC represents the closure by what we here
call a safety congruence, which is a refinement of the natural right congruence. (The
results of [3] shows under which conditions this safety congruence may be used with
a Muller condition to accept languages that are not necessarily closed.)

The dense part of L is described by a collection of right congruences, here called
progress congruences, that specify the cyclic behavior that any word eventually ex-
hibits according to Ramsey’s Theorem about finite partitions of the natural numbers.
Thus it is natural to view these congruences as an algebraic formalization of progress
towards the dense part, known as a liveness property in concurrency [1] .

We show that a Myhill-Nerode Theorem exists that declares a unique minimum
representation of an ω-regular language under a structural comparison that is lan-
guage preserving. Also, we clarify the notion of refinement of FORCs presented
in [3].

Our representation is that of a FORC extended by explicit enumeration of accepting
progress states. We call such a device an LFORC, since it is Language accepting.
Under the automata-theoretic view, an LFORC is a Family of DFAs (FDFA).

We introduce a concept of retraction between LFORCs and show that it is language

2

preserving. We also formulate a retraction under the automata-theoretic view as an
FDFA homomorphism . From a given FDFA, the homomorphism involves implicitly
formed product state spaces that may be exponentially larger than the FDFA itself.

Our main result is that among all LFORCs recognizing a language L there is a
canonical or minimum one. Thus all such LFORCs retract to this minimum LFORC.

The canonical LFORC was already defined, as a FORC, in [3]. It was reported
there that with respect to saturation this FORC is canonical for a straightforward
notion of refinement. This result, however, does hold only in certain situations. We
provide a simple counter-example for the general case.

The primary consequence of our generalization of the Myhill-Nerode Theorem is
that minimization of ω-regular representations is reducible to calculations involv-
ing only regularity or usual finite-state automata. We show how any FDFA can
be retracted to the minimum FDFA by structural operations that do not refer to
acceptance of infinite words.

The minimization of FDFAs may yield an exponential blow-up in size. We establish
both the lower and the upper bound. This blow-up can occur only for the progress
congruences, whose number of equivalence classes may grow exponentially. The safety
congruence, however, can only shrink.

We also show that a kind of inverse refinement holds for the progress congruences:
for any FORC, every progress congruence that is minimized with respect to the safety
congruence is refined by the product of the safety congruence and the canonical
progress congruence. Thus during minimization, the progress congruences become
less coarse whereas the safety congruence becomes coarser.

Applications to minimization. From [3], it follows that there are polynomial
translations from FORCs to deterministic Rabin or Streett automata (with a number
of acceptance pairs that is roughly logarithmic in the state space size). This is
unlike the situation for Arnold’s congruence that may be exponentially bigger than
its automaton representation.

But if minimization is involved, there need not be an exponential gain in us-
ing LFORCs instead of Arnold’s syntactic congruences, since during minimization
LFORCs may blow up whereas Arnold’s congruences can only shrink, i.e. become
coarser. It appears though that FORCs grow drastically in size only if the progress
part is more involved than the safety part.

In practice, the liveness part is usually quite simple, so the algebraic framework
we suggest here might, despite the difficult calculations involved, make it possible to
do theorem proving for simple temporal properties by automata-theoretic methods.

2. FORCs and LFORCs

Let Σ be a finite or infinite alphabet . The empty word is denoted ε. The set of finite
words is denoted Σ∗ and the set of infinite words is denoted Σω. A right congruence

3

∼ on Σ∗ is an equivalence relation that satisfies

x ∼ y implies for all a, xa ∼ ya.

Then each u ∈ Σ∗ defines an operation of right concatenation on any equivalence
class s by su = s′, where s′ is defined as [xu] with x any member of s.

A FORC F = (∼, ◦∼) consists of right congruences of finite index on Σ∗. We call
the relation ∼ the safety congruence. An equivalence class s is also called a safety
state. The safety state of u ∈ Σ, i.e. the s such that u ∈ s, is denoted [u]. To each
safety state s is associated the right congruence ◦∼s, called the progress congruence
of s. An equivalence class p of ∼s is called a progress state. The progress state of u
with respect to ◦∼s is denoted [u]s. The following requirement must hold:

x ◦∼s y implies sx = sy.(FORC)

A non-empty word x such that s = s · x is called s-cyclic.
By (FORC), an operation of right-concatenating a progress state p of ∼s to s is

defined by
s · p = s · x,

where x is chosen so that x ∈ p. A progress state p such that s ·p = s is called cyclic.
Thus the progress state according to ◦∼s of an s-cyclic word is cyclic.

An (s, p)-factorization of a word α ∈ Σω, where s is a safety state and p is a progress
state of ◦∼s, is a collection v0, v1, v2, . . . of non-empty factors such that α = v0v1v2 . . .
and for all i > 0, v0 · · · vi ∈ s = svi and vi ∈ p. If in addition, p = pvi (for all i > 0),
then the factorization is said to be progress cyclic.

The following lemma summarizes results in [2] and [3].

Lemma 1. (Factorization) Given a FORC F = (∼, ◦∼s).
(a) Every α ∈ Σω admits a cyclic (s, p)-factorization for some (s, p).
(b) Moreover, if α = xyω, then it admits some (s, p)-factorization v0 = xym and

vi = yn, i > 0 for some m,n > 0. This factorization is also denoted

α = xym︸ ︷︷ ︸
s

(yn)︸ ︷︷ ︸
p

ω

(c) Every α = xyω admitting an (s, p)-factorization has a factorization

α = v0︸︷︷︸
s

v︸︷︷︸
p

ω

(These factorizations may even by assumed progress cyclic.)

Proof. (a) Using the finiteness assumption, we can find s of ∼ such that infinitely
many prefixes u0 ≺ u1 · · · of α are in s. By Ramsey’s Theorem and the finiteness
assumption, there is a p of ◦∼s and an increasing sequence ki, i > 0 such that for all i
and j (i < j), ukj − uki ∈ p. Define v0 = uk1 and vi = uki+1 − uki. Then vi ∈ s and

4

vi ∈ p. Also, since for i > 0, uki+1 − uki−1 ∈ p, uki − uki−1 ∈ p, uki+1 − uki = vi ∈ p,
and uki+1 − uki−1 = (uki − uki−1) · vi, we see that p = p · vi. Also, s · vi = [uki] · vi =
[uki · vi] = [uki+1] = s.

(b) We can find s such that infinitely many prefixes are in s and of the form xyi.
By (a), we obtain a factorization v0 = xym, v′i = yni. Let n = n1 and vi = yn. Then
α = v0vω with v0 ∈ s = svi and vi ∈ p = pvi.

(c) We can find an (s, p)-factorization such that α = xyny1(y2ymy1)ω = v0vω with
y = y1y2, v0 = xyny1, v = y2ymy1, v0 ∈ s = sv, v ∈ p = pv.

For (s, p) define L(s,p) to be the set of words admitting an (s, p)-factorization. A live
assignment Λ associates to each s a subset Λs of progress states of ◦∼s. A FORC (∼, ◦∼)
together with a live assignment Λ is called an LFORC (for Language recognizing
FORC) and denoted L = (∼, ◦∼,Λ). The language recognized by (∼, ◦∼,Λ) is the
union of L(s,p) for p ∈ Λs and is denoted L(∼, ◦∼,Λ). Thus it consists of the words
that allow some (s, p)-factorization with p ∈ Λs.

2.0.1. Example. An LFORC is perhaps best understood as a family of automata.
The ω-regular language Σ∗(aω ∪ bω), where Σ = {a, b}, can be represented by an
LFORC specified by three automata:

a b

1 2

2

a

b

b

a

a

b

b

ab

12

1

b

a

a

1 2

1

2

a

b

The first automaton defines the safety congruence ∼ as x ∼ y if and only if the last
letter in x and in y are the same. The congruence ◦∼1 is specified by the second
automaton. Each state is marked with the corresponding safety state according to
the requirement (FORC). The states in Λ1 are marked by an inner circle. The other
progress congruence ◦∼2 is shown as the last automaton.

There is another LFORC representation of the same language with a simpler safety
congruence and a more complicated progress congruence:

5

a, b

a

a

a

b

b

a, b

b

�
The size of an LFORC is the maximum index of its congruence relations. Thus the
size of the first LFORC above is three and the size of the second one is four. (One
could also have defined the size as the total number of classes, but this number is at
most quadratically bigger.)

Given L and (∼, ◦∼), define the natural live assignment Λ by letting ΛL
s consist of

the p such that some α ∈ L allows an (s, p)-factorization, i.e. such that L ∩ L(s,p) is
non-empty. Then L ⊆ L(∼, ◦∼,ΛL).

A language L is saturated by (∼, ◦∼) if for all α and β both admitting an (s, p)-
factorization, it holds that α ∈ L if and only if β ∈ L or, in other words, if for
all (s, p), either L(s,p) ⊆ L or L(s,p) ∩ L = ∅. Thus for α ∈ L, we may choose any
factorization to determine whether α ∈ L.

We can express the saturation property of [2] as follows.

Lemma 2. (Saturation)
L is recognized by (∼, ◦∼,ΛL) if and only if L is saturated by (∼, ◦∼).

Proof.

“⇒” Assume L = L(∼, ◦∼,ΛL) and L(s,p)
⋂
L 6= ∅. Then by definition of ΛL

s , p ∈ ΛL
s

and by definition of recognition, L(s,p) ⊆ L.
“⇐” We just need to establish that L(∼, ◦∼,ΛL) ⊆ L. So assume that (∼, ◦∼)

saturates L and that α has an (s, p)-factorization with p ∈ ΛL
s . Now p ∈

ΛL
s only since some other word β in L has an (s, p)-factorization. Thus by

saturation, α ∈ L.

3. Refinements and Retractions

We say that ∼ refines ' if x ∼ y implies x ' y. Then for s an equivalence class of
', |s|∼ is the number of equivalence classes of ∼ contained in s. Moreover, if s is an
equivalence class of ∼, then [s]' is the equivalence class of ' that contains s.

6

In the following, we always assume that Λ is the natural live assignment.

Lemma 3. (Cyclicity) If ∼ refines ' and x ∈ s = s · y, then for some i, j ≤ |s|∼ and
some s ⊆ s, x · yi ∈ s = s · yj.

In particular, when
α = u︸︷︷︸

s

vω︸︷︷︸
p

is a factorization in (', ◦'), then there is a factorization

α = uvi︸︷︷︸
s

·(vj︸︷︷︸
p

)ω

in (∼, ◦∼) with s ∈ s and i, j ≤ |s|∼. We say that the former factorization induces
the latter.

Proof. Note that the ∼-states of x, x · y, x · y2, . . . are all among the |s|∼ different
∼-states contained in s.

LFORC L = (∼, ◦∼,Λ) retracts to LFORC L = (', ◦',Λ) if
(R-S) x ∼ y implies x ' y

(R-P) for all s of ',
if for all s of ∼ contained in s,

x ◦∼sy
and

for all v and all i ≤ | s |∼,
s(xv)i = s implies (xv)i ◦∼s (yv)i,

then x ◦'s y.
(R-Λ) for all s of ', all x such that s = sx,

all s of ∼ contained in s, and all i ≤| s |∼,
if s = sxi, then [xi]s ∈ Λs iff [x]s ∈ Λs.

The condition (R-S) expresses that L safety-refines L, i.e. that the safety congruence
of L refines the safety congruence of L.

Unfortunately, it is not sufficient to formulate a similarly simple requirement for
the progress congruences. In fact, Example 2.0.1 shows that the minimum progress
congruence may become more complicated as the safety congruence is refined! (There-
fore, Theorem 2 of the technical report [3] is not correct.)

Instead, condition (R-P) expresses that the product of all ◦∼s, where s is contained
in s, augmented with a condition about finite iterations, refines ∼s. The intuition
is that when ∼ is collapsed to ', an s-cyclic word x in ' may induce an s-cycle in
∼ only when repeated a number of times that is at most |s|∼. Requirement (R-P)
stipulates that if x and y are equivalent with respect of all such repetitions for s a
subset of s, then x and y are equivalent with respect to progress for s.

7

Finally, condition (R-Λ) expresses that acceptance in L is matched by acceptance
in L in the following sense. Let x be an s-cyclic word such that xi is s-cyclic, where
s is contained in s. Then xi is in a state of Λs if and only if x is in a state of Λs.

Note that in the case that ∼ = ', then (R-P) simply states that x ◦∼sy implies
x ◦∼sy and (R-Λ) states that [xi]s ∈ Λs if and only if [x]s ∈ Λs. Thus if ◦∼s and ◦'s are
regarded as usual DFAs with final states Λs and Λs, then (R-P) and (R-Λ) expresses
that a usual automaton homomorphism exists from the former automaton to the
latter.

Saturation by finite FORCs characterizes ω-regularity [3]. Similarly, we have

Lemma 4. The class of languages recognized by finite LFORCS is the class of ω-
regular languages.

Proof. The acceptance criterion of an LFORC can easily be encoded by a nondeter-
ministic Büchi automaton that guesses the the factorization.

Vice versa, it can be seen that any deterministic automaton with the Streett accep-
tance condition gives rise to an LFORC. Recall that a Streett acceptance condition
consists of a list of pairs of subsets of states, called “red” and “green” states. A run is
accepted if it holds for each pair that if green states of the pair occurs infinitely often,
then red states of the pair occurs infinitely often. The progress information along
a cycle in the automaton consists of recording which “red” and “green lights” have
been seen since the beginning of the cycle. The acceptance condition for the progress
automaton is that for each pair for which a green state has been encountered, also a
red state has been encountered.

Given a language L, Maler and Staiger define a canonical FORC (∼L, ◦∼Ls) and
show that it saturates L. The corresponding canonical LFORC LL = (∼L, ◦∼Ls ,ΛL)
of any ω-regular language L is then defined as follows:

• x ∼L y if for all α, xα ∈ L iff yα ∈ L, and
• ◦∼Ls is the right congruence ◦∼s defined as x ◦∼sy iff
(◦∼s1) sx = sy, and
(◦∼s2) for all v, if u ∈ s = sxv = syv then u(xv)ω ∈ L iff u(yv)ω ∈ L
• ΛL is the natural live assignment.

Lemma 5. LL recognizes L.

Proof. Since L(LL) is ω-regular it suffices to verify that each word of the form uvω is
accepted if and only if it is in L.

So assume xyω is in L. By Lemma 1(b), xyω can be factorized as

xym︸ ︷︷ ︸
s

(yn)︸ ︷︷ ︸
p

ω.

The progress state p is then in Λs by definition of the natural live assignment. It
follows that xyω ∈ L(LL).

8

Vice versa, if xyω is in L(LL), then it admits a factorization of the above form with
p is in Λs. Thus there is some word uvω in L that also has a (s, p) factorization. By
Lemma 1(c), uvω has a factorization

u′︸︷︷︸
s

v′︸︷︷︸
p

ω.

By definition of (∼L, ◦∼Ls), it follows that xyω ∈ L if and only if u′v′ω ∈ L. Thus
xyω ∈ L.

The canonicity of LL is explained by the following result.

Theorem 1. (Canonicity) Any L recognizing L retracts to LL.

Proof. In this proof, states of LL are denoted by underlined letters.
First, we prove (R-S) (along the lines of [2] and [3]). Assume x ∼ y. Since L is

ω-regular, we just need to show that for all uvω, α = xuvω ∈ L iff β = yuvω ∈ L. By
saturation of (∼, ◦∼) it suffices to show that α and β admit a common factorization.
But α has an (s, p)-factorization

α = xuvm︸ ︷︷ ︸
s

(vn︸︷︷︸
p

)ω

according to (∼, ◦∼s) and since ∼ is a right congruence and x ∼ y, we infer
xuvm ∼ yuvm ∈ s. Thus,

β = yuvm︸ ︷︷ ︸
s

(vn︸︷︷︸
p

)ω

is an (s, p)-factorization according to (∼, ◦∼).
Second, to show that (R-P) holds, pick s of ∼L and assume

∀s ⊆ s : x ◦∼sy ∧ (∀v, ∀i ≤| s |∼, s(xv)i = s⇒ (xv)i ◦∼s(yv)i)(1)

We must prove

sx = sy(2)

and

∀u, v : u ∈ s = sxv = syv⇒ (u(xv)ω ∈ L⇔ u(yv)ω ∈ L)(3)

To show (2), pick some s ⊆ s. Then by (1), x ◦∼sy and thus by (FORC), sx = sy.
Now since ∼ refines ∼L, sx = [sx]∼L = [sy]∼L = sy.

To show (3), pick some u and v such that u ∈ s = sxv. We wish to show that
u · (xv)ω and u · (yv)ω have a common factorization in L. Now, u · (xv)ω has an LL

factorization
u︸︷︷︸
s

(xv︸︷︷︸
p

)ω

9

for some p of ∼Ls . Thus by Lemma (Cyclicity) for some s in s and some i, j ≤ |s|∼
u · (xv)i︸ ︷︷ ︸

s

((xv)j)ω︸ ︷︷ ︸
p

is a factorization in F for some p of ◦∼s. But we infer from (1) that

(xv)j ◦∼s(yv)j

Thus
u · (yv)i︸ ︷︷ ︸

s

(
(yv)j

)ω
︸ ︷︷ ︸

p

is an (s, p)-factorization. Thus by saturation of L, u · (xv)ω ∈ L iff u · (yv)ω ∈ L.
Third, to show (R-L), we fix s of ∼L, s ⊆ s, i ≤| s |∼, and x such that sx = s and

s = sxi. Let u be such that [u]∼ = s. Then [u]∼L = s and

[xi]s ∈ Λs iff
{

by saturation of F and
assumption s = sxi

u(xi)ω ∈ L iff

uxω ∈ L iff
{

by definition of ΛL and
since [u]∼L = s = sx

[x]s ∈ ΛL
s

Theorem 2. (Language Preservation) If L recognizes L and L retracts to L, then L

recognizes L.

Proof. Let

α = u︸︷︷︸
s

vω︸︷︷︸
p

be a word admitting an (s, p)–factorization in L. Then this factorization retracts to
an (s, p)–factorization

α = uvi︸︷︷︸
s

(vj︸︷︷︸
p

)ω

in L, where s ⊆ s, j ≤| s |∼, and svj = s. Thus by (R-L), p ∈ Λs iff p ∈ Λp. Thus
α ∈ L(L) iff α ∈ L(L).

F = (∼, ◦∼) is ∼-canonical for L if (∼, ◦∼) saturates L and any other FORC with
safety congruence ∼ and saturating L retracts to F.

Proposition 1. (∼-Canonicity) If ∼ refines ∼L, then a ∼-canonical F exists.

10

Proof. Define ◦∼s by

x ◦∼sy if sx ∼ sy and(4)
for all v, s = sxv implies u(xv)ω ∈ L iff u(yv)ω ∈ L, where u ∈ s.

Since ∼ refines ∼L, the choice of u in (4) is immaterial and it can be seen that
F saturates L. Also, it is not difficult to see that any other FORC with ∼ as safety
congruence retracts to F.

We noted before that the progress and live state conditions for a retraction involving
LFORCs with the same safety congruence essentially express DFA homomorphisms.
Thus for a fixed safety congruence ∼, DFA minimization that respects requirement
(FORC) can be applied to obtain the ∼-canonical LFORC.

We shall next show that when the safety congruence becomes simpler, the progress
congruences get more complicated but they still essentially contain the simpler progress
congruences if these are minimum with respect to their safety congruence.

Assume F retracts to F. Then F progress-refines F if for s ∈ s,
x ◦'sy and sx ∼ sy implies x ◦∼sy

Thus the product of ◦' and ∼ refines ◦∼.

Theorem 3. (Progress Refinement) If F is ∼-canonical and F retracts to F, then
F progress-refines F.

Proof. Assume x ◦'sy and sx ∼ sy. To prove that x ◦∼sy, it suffices to prove that
α = u(xv)ω ∈ L iff β = u(yv)ω ∈ L whenever u ∈ s = sxv. Now since xv 's yv and
u ∈ s = sxv, both α and β admit a (s, p)-factorization in F, where p = [xv]s = [yv]s.
Since F retracts to F and F saturates L, also F saturates L. Thus α ∈ L iff β ∈ L.

4. Collapsed LFORCS

Let L = (∼, ◦∼,Λ) be an LFORC and ' be a refinement of L. Define the collapsed
LFORC L = (', ◦',Λ) by

x ◦'sy iff for all s ⊆ s, x ◦∼sy and
for all v and i ≤ |s|∼,
sxv = s implies (xv)i ◦∼s(yv)i

(5)

p ∈ Λs iff [xi]s ∈ Λs, where x ∈ p,
sx = s, sxi = s, and s ⊆ s

(6)

It can be seen that (5) always defines a right congruence. The definition (6) may
not always make sense. The Consistency Requirement is that for all s the membership
of a progress state p in Λs is determined unambiguously by (6) for any choice of x, i,
and s.

11

Lemma 6. The collapsed LFORC L recognizes L(L) if the Consistency Requirement
holds. If the Consistency Requirement does not hold, then ' does not refine ∼L.

Proof. If the Consistency Requirement holds then L is a refinement of L.
If the Consistency Requirement does not hold, then there are s, p of ◦∼s, s, s′ of

∼ contained in s, x ◦∼sy, where x, y ∈ p, and i, j ≤ |s|∼ with sx = s = sy, sxi = s,
s′ = s′yj. such that [xi]s ∈ Λs and [yj]s′ 6∈ Λs′. Thus if u ∈ s and v ∈ s′, then
uxω ∈ L and vyω 6∈ L. By (5) and since x ◦∼sy, xi ∼s yi. Thus uyω ∈ L. But then u
and v are not equivalent with respect to ∼L.

5. Lower Bound

We establish an exponential lower bound for minimization, that is, there is an
infinite family Ln of languages that can be represented by LFORCs of size O(n) but
whose canonical LFORCs contain a progress automaton with nn states.

We let Σn consist of n proper letters a1, . . . , an and of the 2n bit vectors in IBn. A
word α is in Ln if from some point on there is a proper letter ai such that ai occurs
infinitely often and no other proper letter occurs; also, the number of 1s in track i
between two consecutive letters ai must be exactly n. There is certainly only one
safety class in this language since a word is recognized by properties of its tail. Define
a linearly big LFORC recognizing Ln by using the safety congruence represented by
the automaton Sn, which is depicted for n = 3 as

a2

a1,
x
x
x

a3

a1a1

a3,
x
x
x

a2

a3

a2,
x
x
x

1

2 3

Thus each state si is a sink for the letter ai, and a bit vector does not change the
state. Continuing our example for n = 3, we can represent the progress congruence
for safety state 1 by the automaton

12

a2

3

a3

2

a2

3

a3

2

a2

3

a3

2

a2

3

a3

2

a3,
x
x
x

1

1

a2,
x
x
x

0
x
x

1

10 131211

1 10

0
x
x

0
x
x

0
x
x

a1,
x
x
x1

x
x

1
x
x

1
x
x

1
x
x

a1 a1 a1

a1

1

a1

a1

a3a2

3
a3

a2
2

This congruence respects the safety congruence and any factorization of α according
to s, and a progress state of this automaton yields the right answer as to whether α
is in Ln.

Thus it can be seen that for any n, the progress automaton has 2n+ 1 states. We
conclude that Ln can be represented by an LFORC of size O(n).

For the lower bound, assume that the progress congruence of F
Ln has less that

(n + 1)n states. If we say that the #-signature of a word over IBn is determined by
the number of 1s in each component, then there are (n + 1)n signatures, where all
components have at most n 1s. Thus there are two words x and y over IBn with
different such signatures that lead to the same progress state. For some component
i, x and y contains a different number of 1s and it is then possible to find a word
u ∈ IBk · ai such that (xu)ω ∈ Ln and (xy)ω /∈ Ln. This contradicts that F

Ln accepts
Ln. Thus F

Ln has more than (n+ 1)n states.

Proposition 2. There is an infinite family of LFORCS Ln of size O(n) whose cor-
responding canonical LFORCS have size at least nn.

6. The Automata-theoretic View and Upper Bound

As indicated in Example 2.0.1, an LFORC L can be represented by a family of
automata. The safety relation ∼ is represented by a safety automaton S = (S, s0, δ)
with state space S, initial state s0, and deterministic transition function δ : Σ →
S → S such that

x ∼ y iff S(x) = S(y),
where S(x) denotes the state of S upon reading x. Thus we may continue to identify
each safety class s with a state s ∈ S. For each such s, we represent ◦∼s and Λs as

13

an automaton Ps = (Ps, p0
s, δs, P

F
s), where PF

s is a set of final states. Here each p
represents a progress state such that x ◦∼s y if only if Ps(x) = Ps(y) and [x]s ∈ Λs

if and only if Ps(x) ∈ PF
s . The family of automata or FDFA so defined is denoted

(S,P).
To formulate a retraction as a homomorphism, we need an operation IC that

transforms Ps into an automaton ICj(Ps) that represents the iterative condition of
(R-P) as follows:

IC(Ps)(x) = IC(Ps)(y)(7)

iff
x ◦∼s y and for all v and i ≤ |f−1(s)|, s(xv)i = s⇒ (xv)i ◦∼s (yv)i

Lemma 7. For s and j, an automaton IC(Ps) exists such that (7) holds. The
automaton is at most exponential in size of Ps.

Proof. The proof consists of defining an automaton A that is able to distinguish words
according to or even more strictly than the criterion (7). The automaton IC(Ps) is
then a coarsest refinement of A.

Note that a transition relation δ : Σ→ P → P can be extended to a function, also
denoted δ, of type Σ∗ → P → P by defining δ(a0 · · · an) = δ(an) ◦ · · · ◦ δ(a0). By the
standard technique for obtaining syntactic monoids, let A constructed from Ps be
an automaton whose state space consists of the functions δs(x) such that q = A(x)
is the function δs(x). This automaton is exponential in size of Ps.

Each q determines a function q : P → P , where q(p) is the only p′ such that the
entry (p, p′) is 1.

Since each q also determines the state p = q(p0) reached from the initial state p0,
we may define an operation q · v, which denotes a state in P , namely, q · v = δs(v)p.
Thus if A(x) = q, then q · v is simply δs(xv). Moreover, we may even define an
operation (q · v)i so that if A(x) = q, then (q · v)i is δs((xv)i). This is done by letting
(q · v)i be δs(v)◦ q ◦ · · · ◦ δs(v)◦ q ◦ δs(v)(q(p0)), where δs(v)◦ q is repeated i−1 times.

A does not quite calculate what is needed in (7), but satisfied the weaker require-
ment:

A(x) = A(y)(8)

implies
x ◦∼s y and for all v and i ≤ |s|, s(xv)i = s⇒ (xv)i ◦∼s (yv)i

To see this, assume A(x) = A(y). Then Ps(x) = Ps(y) = q(p0), whence x ◦∼sy.
Moreover, δs((xv)i) = (q · v)i = δs((yv)i). Thus in particular, it holds that if i ≤
|f−1(s)|, then s(xv)i = s⇒ (xv)i ◦∼s (yv)i.

Note that by (FORC), there is a subset P s
s of progress states such that s = sx if

and only if Ps(x) ∈ P s
s .

14

To make the other direction of (7) hold, we will shrink A according to the following
characterization of states:

χ(q) = (q(p0), {(p, i, L) | i ≤ |f−1(s)| and L = {v | (q · v)i = p ∈ P s
s })

The Ls are all regular languages and so χ can be computed by operations on usual
finite-state automata. The function χ induces a partition of A. Let IC(Ps) be the
automaton corresponding to the coarsest partition of A that refines the one induced
by χ. We also use qs to denote the states of this automaton. If q = IC(Ps)(x), then
χ(q) = (Ps(x), {(p, i, L) | i ≤ j and L = {v | (x · v)i = p ∈ P s

s }).
Thus (7) is satisfied.

An FDFA homomorphism h : (S,P)→ (S,P) consists of
• a transition system homomorphism (i.e. a mapping respecting right concate-

nation) f : S→ S; and
• for each s ∈ S, a transition system homomorphism

g :
⊗

s∈s:f(s)=s

IC(Ps)→ P
s
,

where ⊗ denotes the transition system cross product, such that for all s ∈ S
with f(s) = s and all i ≤ |f−1(s)|,

i

√
L(Ps) ∩ L = L(Ps) ∩ L, where

L = Ls(S) ∩ i

√
Ls(S)

and Ls(S) = {x | δ(x)(s) = s, i.e. sx = s} and i
√
L denotes the language

{x | xi ∈ L}.

Lemma 8. Let (S,P) be the automata representation of L and let (S,P) be the
automata representation of L. Then L retracts to L if and only if there is an FDFA
homomorphism from (S,P) to (S,P).

Proof. Requirement (R-S) and (R-P) correspond to the existence of f and g. Require-
ment (R-Λ) is then encoded correctly as shown above since L = Ls(S) ∩ i

√
Ls(S)

defines the x such that s = sx and s = sxi.

Let (SL,PL) be the FDFA representation of LL. We can now restate Theorem 1
and Theorem 2 as theorems about FDFAs and their homomorphisms.

Theorem 1′. (Canonicity) Any FDFA recognizing L allows a homomorphism to
(SL,PL).

Theorem 2′. (Language Preservation) If (S,P) recognizes L and there is a homo-
morphism from (S,P) to (S,P), then (S,P) recognizes L.

15

Proposition 3. (Upper Bound) If L has size n and retracts to LL, then the size of
LL is at most nn2 .

Proof. Clearly the safety congruence can only shrink. For the progress part, use the
FDFA representation (S,P) of L and assume that the canonical safety state s is
refined by the s of S such that f(s) = s. Observe that

⊗
s∈S:f(s)=s IC(Ps) refines the

canonical progress automaton or congruence for s. Thus the canonical congruence is
of size at most (nn)n, which is nn2.

Acknowledgements. Thanks to Dexter Kozen, Ludwig Staiger, and Thomas Wilke
for discussions about ω-regular representations.

References

1. B. Alpern and F.B. Schneider. Defining liveness. Information Processing Letters, 21:181–185,
Oct. 1985.

2. A. Arnold. A syntactic congruence for rational ω-languages. Theoretical Computer Science,
39:333–335, 1985.

3. O. Maler and L. Staiger. On syntactic congruences for ω-languages. Technical Report 93-13, Aach-
ener Informatik–Berichte, 1993. A preliminary version appeared in: Proc. STACS 93, LNCS 665,
Springer–Verlag, Berlin 1993, pp. 586–594.).

4. T. Wilke. An Eilenberg theorem for ∞-languages. In Proc. 18th Inter. Coll. on Automata, Lan-
guages, and Programming, LNCS 510, pages 588–599. Springer Verlag, 1991.

16

Recent Publications in the BRICS Report Series

RS-94-1 Glynn Winskel.Semantics, Algorithmics and Logic: Basic
Research in Computer Science. BRICS Inaugural Talk.
February 1994, 8 pp.

RS-94-2 Alexander E. Andreev. Complexity of Nondeterministic
Functions. February 1994, 47 pp.

RS-94-3 Uffe H. Engberg and Glynn Winskel. Linear Logic on
Petri Nets. February 1994, 54 pp. Appear in:Proceedings
of REX '93 (eds. J. W. de Bakker et al.), LNCS 803, 1994.

RS-94-4 Nils Klarlund and Michael I. Schwartzbach. Graphs
and Decidable Transductions based on Edge Constraints.
February 1994, 19 pp. Appears in:Trees in Algebra and
Programming CAAP '94(ed. S. Tison), LNCS 787, 1994.

RS-94-5 Peter D. Mosses.Unified Algebras and Abstract Syntax.
March 1994, 21 pp. To appear in:Recent Trends in Data
Type Specification(ed. F. Orejas), LNCS 785, 1994.

RS-94-6 Mogens Nielsen and Christian Clausen.Bisimulations,
Games and Logic. April 1994, 37 pp. Full version of
paper appearing in: New Results and Trends in Computer
Science, pages 289–305, LNCS 812, 1994.

RS-94-7 Andŕe Joyal, Mogens Nielsen, and Glynn Winskel.
Bisimulation from Open Maps. May 1994, 42 pp. Jour-
nal version of LICS '93 paper.

RS-94-8 Javier Esparza and Mogens Nielsen.Decidability Issues
for Petri Nets. May 1994, 23 pp. Appears in EATCS
Bulletin 52, pages 245–262, 1994.

RS-94-9 Gordon Plotkin and Glynn Winskel. Bistructures, Bido-
mains and Linear Logic. May 1994, 16 pp. To appear in
the proceedings of ICALP '94, LNCS, 1994.

RS-94-10 Jakob Jensen, Michael Jørgensen, and Nils Klarlund.
Monadic Second-order Logic for Parameterized Verifica-
tion. May 1994, 14 pp.

RS-94-11 Nils Klarlund. A Homomorphism Concept forω-Regu-
larity. May 1994, 16 pp.

