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Abstract. This paper contributes to the study of the equational theory
of the semantics in van Glabbeek’s linear time - branching time spectrum
over the language BCCSP, a basic process algebra for the description of
finite synchronization trees. It offers an algorithm for producing a com-
plete (respectively, ground-complete) equational axiomatization of a be-
havioral congruence lying between ready simulation equivalence and par-
tial traces equivalence from a complete (respectively, ground-complete)
inequational axiomatization of its underlying precongruence—that is, of
the precongruence whose kernel is the equivalence. The algorithm pre-
serves finiteness of the axiomatization when the set of actions is finite. It
follows that each equivalence in the spectrum whose discriminating power
lies in between that of ready simulation and partial traces equivalence
is finitely axiomatizable over the language BCCSP if so is its defining
preorder.

1 Introduction

The lack of consensus on what constitutes an appropriate notion of observ-
able behaviour for reactive systems has led to a large number of proposals for
behavioural equivalences and preorders for concurrent processes. In his by now
classic paper [12], van Glabbeek presented the linear time - branching time spec-
trum of behavioural preorders and equivalences for finitely branching, concrete,
sequential processes. The semantics in this spectrum are based on simulation
notions and on decorated traces. Figure 1 in Appendix A depicts the linear time
- branching time spectrum.

Van Glabbeek [12] studied the semantics in his spectrum in the setting of
the process algebra BCCSP, which contains only the basic process algebraic
operators from CCS [17] and CSP [16], but is sufficiently powerful to express
all finite synchronization trees. In the aforementioned reference, van Glabbeek
? The first and third author were partly supported by the project “The Equational

Logic of Parallel Processes” (nr. 060013021) of The Icelandic Research Fund.
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gave, amongst a wealth of other results, (in)equational axiomatizations for the
preorders and equivalences in the spectrum, such that two closed BCCSP terms
can be equated by the axioms if, and only if, they are related by the preorder
or equivalence in question. Groote [13] obtained ω-completeness results for most
of the axiomatizations, in case the alphabet of actions is infinite. (An axiomati-
zation E is ω-complete when an equation can be derived from E if, and only if,
all of its closed instantiations can be derived from E.) The series of papers [2, 5,
7–9] offers positive and negative results on the existence of finite (in)equational
axiomatizations for several behavioural equivalences and preorders in the spec-
trum over the language BCCSP, both in the setting of finite and infinite sets of
actions.

The work we present in this paper stems from the observation that all of the
extant axiomatization results presented in the aforementioned studies are based
on separate, and often rather similar, developments for preorders and equiv-
alences. For the semantics in the spectrum lying between 2-nested simulation
semantics and partial traces semantics, the equivalences are the kernels of the
preorders—meaning that two processes are considered equivalent if, and only
if, each is a refinement of the other with respect to the preorder—, which are
therefore more basic than the equivalences. Since the equivalences are defined in
terms of the preorders in a canonical fashion, it would be very satisfying, in order
to achieve a higher degree of generality and to highlight the commonalities in the
technical developments pertaining to axiomatization results for the semantics in
the spectrum, to develop a general strategy for obtaining complete axiomatiza-
tions of the equivalences in the spectrum from complete axiomatizations of the
preorders. This is the aim of this paper.

Our contribution We offer an algorithm for producing an ω-complete (respec-
tively, ground-complete) equational axiomatization of a behavioral congruence
lying between ready simulation equivalence and partial traces equivalence from
an ω-complete (respectively, ground-complete) inequational axiomatization of
its underlying precongruence—that is, of the precongruence whose kernel is the
equivalence. The algorithm we give in this paper preserves finiteness of the ax-
iomatization when the set of actions is finite. It follows that each equivalence
in the spectrum whose discriminating power lies in between that of ready simu-
lation and partial traces equivalence is finitely axiomatizable over the language
BCCSP if so is its defining preorder.

Our algorithm may be seen as isolating and axiomatizing the ingredients
that all of the extant proofs of completeness results for the class of behavioural
equivalences we study have in common. It also eliminates the need to reprove,
essentially from scratch, completeness results for a large fragment of behavioural
equivalences in the spectrum once a completeness result has been obtained for
their underlying preorders. The axiomatizations that are automatically gener-
ated by our algorithm are very similar, when not identical, to those presented
in the literature. (See, for instance, the three specific examples of applications
of our algorithm that are provided in Section 6.)
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Our algorithm takes as input a sound and ω-complete (respectively, ground-
complete) inequational axiomatization E for BCCSP modulo a preorder in the
linear time - branching time spectrum that includes the ready simulation pre-
order. Without loss of generality, we assume that the four classic equations
from [15] that completely axiomatize bisimulation equivalence [17] are contained
in E, and that so do the defining inequational axioms for ready simulation for
each action a:

ax 4 ax + ay .

The axiomatization A(E) generated by our algorithm from E contains the ax-
ioms for bisimulation equivalence together with the following equations, for each
inequational axiom t 4 u in E:

– t + u ≈ u; and
– b(t + x) + b(u + x) ≈ b(u + x) (for each action b, and some variable x that

does not occur in t + u).

The main technical result in the paper is a theorem to the effect that the axiom-
atization A(E) is ω-complete (respectively, ground-complete) for the equivalence
if E is ω-complete (respectively, ground-complete) for the preorder (Theorem 1).
The proof of this statement is non-trivial, and relies on a careful analysis of the
so-called cover equations [9] for the semantics in the linear time - branching time
spectrum we consider in this study. Cover equations give us an explicit descrip-
tion of the equational theory for a particular semantics in terms of equations
having a rather simple, and canonical, form.

Roadmap of the paper The paper is organized as follows. Section 2 reviews
the syntax and the operational semantics for the language BCCSP, introduces
the linear time time - branching time spectrum, and discusses the very basic
notions of (in)equational logic used in this study. (The full details of the def-
initions of the semantics in the spectrum may be found in Appendix A.) We
present our algorithm in Section 3, where we also state the main theorem in the
paper (Theorem 1) to the effect that the algorithm is guaranteed to produce
an ω-complete (respectively, ground-complete) equational axiomatization of a
behavioral congruence lying between ready simulation equivalence and partial
traces equivalence from an ω-complete (respectively, ground-complete) inequa-
tional axiomatization of its underlying precongruence. The bulk of the rest of the
paper (Sections 4–5 and Appendix B) is devoted to a proof of our main result.
Section 6 presents applications of our algorithm in the setting of simulation,
failures and partial traces semantics. We end the paper with some concluding
remarks, and a detailed comparison with related work (Section 7).

2 Preliminaries

Syntax of BCCSP BCCSP(A) is a basic process algebra for expressing finite
process behaviour. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
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and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions (with typical elements a, b, c, d). (We write |A| for the cardinality of the set
A.) Open terms p, q, r, s, t, u can moreover contain occurrences of variables from
a countably infinite set V (with typical elements w, x, y, z).

A (closed) substitution maps variables in V to (closed) terms. For every term
t and (closed) substitution σ, the (closed) term σ(t) is obtained by replacing
every occurrence of a variable x in t by σ(x). We often write tσ in lieu of σ(t).

A context C[] is a BCCSP(A) term with exactly one occurrence of a hole []
in it. For every context C[] and term p, we write C[p] for the term that results
by placing p in the hole in C[].

Transition rules Intuitively, closed BCCSP(A) terms represent finite process
behaviours, where 0 does not exhibit any behaviour, p+q is the nondeterministic
choice between the behaviours of p and q, and ap executes action a to transform
into p. This intuition is captured, in the style of Plotkin, by the transition rules
below, which give rise to A-labelled transitions between closed terms.

ax
a→ x

x
a→ x′

x + y
a→ x′

y
a→ y′

x + y
a→ y′

The operational semantics is extended to open terms by assuming that variables
do not exhibit any behaviour. A sequence of actions a1 · · · an, with n ≥ 0, is a
trace of a term t0 if there is a sequence of transitions t0

a1→ t1
a2→ · · · tn−1

an→ tn.
The depth of a term t, denoted by depth(t), is the length of a longest trace of t.

Linear time - branching time spectrum Van Glabbeek [12] presented the linear
time - branching time spectrum of behavioural preorders and equivalences. The
semantics in this spectrum are based on simulation notions and on decorated
traces. The definitions of the equivalences and preorders in the spectrum are
collected in Appendix A. In what follows, we use - to denote a preorder in this
spectrum, and ' to denote the corresponding equivalence (i.e., - ∩ -−1). The
equivalence induced by a preorder is also known as its kernel. When we want
to refer to a specific preorder in the spectrum, we shall subscribe the symbol
- with the initials of the intended semantics. For instance, we shall use -RS to
denote the ready simulation preorder, -S for the simulation preorder, -F for
the failures preorder, -CT for the completed traces preorder, and -PT for the
partial traces preorder. A similar notational convention applies to the kernels of
the preorders.

Each preorder in the linear time - branching time spectrum is a precongruence
over the algebra of closed BCCSP(A) terms. That is, p1 - q1 and p2 - q2 imply
ap1 - aq1, for each a ∈ A, and p1 + p2 - q1 + q2. Likewise, the equivalences in
the spectrum constitute a congruence over closed BCCSP(A) terms.

Given a preorder - over closed terms, for open terms t and u, we define t - u
if ρ(t) - ρ(u) for each closed substitution ρ; the corresponding equivalence ' is
lifted to open terms likewise.
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Equations and inequations An (in)equational axiomatization (often abbreviated
to axiomatization) E is a collection of either inequations t 4 u or equations t ≈ u,
where t and u are BCCSP(A) terms. We write E ` t 4 u or E ` t ≈ u if this
(in)equation can be derived from the (in)equations in E using the standard rules
of (in)equational logic, where the rule for symmetry can be applied for equational
derivations but not for inequational ones. An axiomatization E is sound modulo
- (or ') if, for all open terms t, u, from E ` t 4 u (or E ` t ≈ u) it follows that
t - u (or t ' u). An axiomatization E is ground-complete modulo - (or ') if
p - q (or p ' q) implies E ` p 4 q (or E ` p ≈ q), for all closed terms p and q.
We say that E is ω-complete if for all open terms t, u with E ` ρ(t) 4 ρ(u) (or
E ` ρ(t) ≈ ρ(u)) for all closed substitutions ρ, we have E ` t 4 u (or E ` t ≈ u).

The core axioms A1–4 for BCCSP(A) given below are ω-complete [18], and
sound and ground-complete [15, 17] modulo bisimulation equivalence, which is
the finest semantics in the linear time - branching time spectrum. (See Defini-
tion 1 in Appendix A for the definition of bisimulation equivalence.)

A1 x + y ≈ y + x
A2 (x + y) + z ≈ x + (y + z)
A3 x + x ≈ x
A4 x + 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1–4. A
term x or at is a summand of each term x + u or at + u, respectively. We use
summation

∑n
i=1 ti (with n ≥ 0) to denote t1 + · · ·+ tn, where the empty sum

denotes 0. As binding convention, alternative composition and summation bind
weaker than prefixing. Modulo the equations A1–4 each BCCSP(A) term t can
be written in the form

∑n
i=1 ti, where each ti is either a variable or is of the

form at′ for some action a and term t′.
In his paper [12], van Glabbeek offered, amongst a host of other results,

(in)equational axiomatizations for the preorders and equivalences in the spec-
trum. The proofs of the completeness results in that reference mostly employ the
method of graph transformations. Groote [13] obtained ω-completeness results
for most of the axiomatizations, in case the alphabet of actions is infinite.

In the remainder of this paper, in case of an infinite alphabet, occurrences of
action names in axioms should be interpreted as action variables.

3 Producing an Axiomatization

Consider a preorder - in the linear time - branching time spectrum that includes
the ready simulation preorder. Let E be a sound and ground-complete inequa-
tional axiomatization for BCCSP(A) modulo -. We give an algorithm to produce
an axiomatizationA(E) that is sound and ground-complete for BCCSP(A) mod-
ulo ', namely the kernel of the preorder -. Moreover, if E is ω-complete, then
so is A(E).

Without loss of generality, we assume that the axioms A1–4 are present in E,
together with the defining inequational axioms for ready simulation equivalence
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for each a ∈ A:
ax 4 ax + ay .

The axiomatization A(E) is constructed as follows. The axioms A1–4 are by
default included in A(E). Furthermore, for each inequational axiom t 4 u in E,
we add to A(E):

A. t + u ≈ u; and
B. b(t + x) + b(u + x) ≈ b(u + x) (for all b ∈ A, and some x that does not occur

in t + u).

Note that A(E) is finite whenever A and E are finite. Moreover, using an action
variable in step B in lieu of a concrete action b ∈ A, the axiomatization A(E)
contains only finitely many axiom schemas when E does, even in the presence
of an infinite collection of actions.

Remark 1. Since ax 4 ax + ay is assumed to be present in E for each a ∈ A,
by step B of the algorithm, the defining axioms for ready simulation from [5],
namely

b(ax + z) + b(ax + ay + z) ≈ b(ax + ay + z) ,

are present in A(E), for all a, b ∈ A.

We are now ready to present the main result of the paper to the effect that the
algorithm defined above delivers axiomatizations for the kernels of the preorders
that are sound, and ground- or ω-complete.

Theorem 1. Let - be a preorder in the linear time - branching time spectrum
with -RS⊆-. Let E be a sound and ground-complete inequational axiomati-
zation for BCCSP(A) modulo -. Then the equational axiomatization A(E) is
sound and ground-complete for BCCSP(A) modulo '. Moreover, if E is ω-
complete, then so is A(E).

Since the algorithm presented above preserves finiteness of the axiomatization
when the set of actions A is finite, it follows that each equivalence in the spectrum
whose discriminating power lies in between that of ready simulation and partial
traces equivalence is finitely axiomatizable over the language BCCSP(A) if so is
its defining preorder.

The remainder of the paper will be essentially devoted to a proof of the
above theorem. Our proof of Theorem 1 relies on the isolation of a collection of
equations, the so-called cover equations, that have a simple form and completely
characterize the equational theory of BCCSP(A) modulo any of the behavioural
equivalences whose discriminating power lies in between that of ready simulation
and partial traces equivalence. Restricting ourselves to cover equations will help
us overcome the technical complications in the proof-theoretic argument we shall
use in Section 5 to complete the proof of Theorem 1.

In light of the key role cover equations play in the proof of Theorem 1, we
now proceed to introduce them and to analyze the properties that make them a
crucial ingredient in our proof of that result.
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4 Cover Equations

For bisimulation semantics, and thus for all process semantics in the linear time
- branching time spectrum, axiom A3 is sound. So if an equation t ≈ u is sound,
then u + t ≈ t and t + u ≈ u are sound too; and from the last two equations
one can derive t ≈ u. Furthermore, for all process semantics in the linear time -
branching time spectrum, if t1+t2+u ≈ u is sound, then t1+u ≈ u and t2+u ≈ u
are sound; and from the last two equations one can derive t1 + t2 +u ≈ u. Hence,
from the point of view of provability, it suffices only to consider sound equations
of the form at + u ≈ u and x + u ≈ u. We call these the cover equations. We
present three lemmas that limit the form that cover equations can have for the
semantics in the spectrum we study in this paper. (In the statements of the
lemmas below, t and u range over the collection of open BCCSP(A) terms.)

Lemma 1. If t + x - u, and either -⊆-CT, or -⊆-PT and |A| > 1, then x
is a summand of u.

Proof. We distinguish the two cases.
Case 1: -⊆-CT.

Let σ(x) = adepth(u)+10 for some a ∈ A, and σ(y) = 0 for y 6= x. Then
adepth(u)+1 is a completed trace of (t + x)σ , so it must be a completed trace of
uσ. This implies that x is a summand of u.
Case 2: -⊆-PT and |A| > 1.

Let σ(x) = adepth(u)b0 for some distinct a, b ∈ A, and σ(y) = 0 for y 6= x.
Then adepth(u)b is a partial trace of (t + x)σ , so it must be a partial trace of uσ.
This implies that x is a summand of u. 2

Remark 2. If |A| = 1, then the partial traces preorder and the simulation pre-
order coincide—see, e.g., [3]. For this special case, Lemma 1 fails. Namely, let
A = {a}. Then x - ax is sound for the partial traces (and simulation) preorder.

Lemma 2. Let ' be an equivalence in the linear time - branching time spectrum.
If at + u + bv ' u + bv with a 6= b, then at + u ' u.

This lemma is trivial to check for each of the equivalences in the linear time
- branching time spectrum. The key idea is that since a 6= b, the non-empty
(decorated) traces of at and bu are disjoint, and bu cannot (ready/completed)
simulate at.

The following lemma states a kind of cancellation result for the preorders in
the spectrum.

Lemma 3. Let - be a preorder in the linear time - branching time spectrum. If
t + x - u + x, and x is not a summand of t + u, then t - u.

Lemma 3 needs to be proved separately for each preorder in the linear time -
branching time spectrum. Despite the naturalness of its statement, which ap-
pears obvious, these proofs are not trivial, and quite technical. Fokkink and
Nain [9] proved such a lemma for failures semantics, with the aim to obtain an
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ω-completeness result for this semantics, and their proof is rather delicate. Since
the details of the proof of Lemma 3 are not necessary to understand the main
result of the paper, we have collected the proof of that lemma in Appendix B.

Remark 3. The condition in Lemma 3 that x is not a summand of t + u is
essential. For instance, x + x -PT 0 + x, but x 6-PT 0. And 0 + x -CT x + x,
but 0 6-CT x.

From the three lemmas above, one can conclude that in order to prove ω-
completeness (or ground-completeness) of an equational axiomatization, it suf-
fices to derive all sound equations (or all sound closed equations) of the form

at +
n∑

i=1

aui ≈
n∑

i=1

aui (n ≥ 1)

and, only for the case of partial traces semantics with |A| = 1, all sound equations
of the form

x + u ≈ u .

In our proof of Theorem 1, we shall therefore focus on showing that the equa-
tional axiomatization A(E) generated by our algorithm is powerful enough to
prove all of the sound equations of the above two forms.

5 Proof of Theorem 1

Proof. Let - be a preorder in the linear time - branching time spectrum, with
-RS⊆-. Let E be a sound and ground-complete inequational axiomatization for
BCCSP(A) modulo -.

It is not hard, albeit tedious, to see that the equational axiomatization A(E)
is sound for BCCSP(A) modulo '. We prove that ω-completeness of E implies
ω-completeness of A(E). The proof that A(E) is ground-complete is identical,
but assumes that all terms that occur in the proof below are closed. (It is well
known that if an axiomatization proves a closed (in)equation, then there is a
closed proof for that (in)equation.)

We note that, for each of the preorders in the linear time - branching time
spectrum, ar + as + t - u if, and only if, both ar + t - u and as + t - u.
This, together with the presence of the axiom A3, implies that the inequational
axiomatization E that we start with can be pre-processed so that there are no
multiple a-summands on the left-hand sides of the inequational axioms in E.

Moreover, in view of Lemmas 1 and 3, if -⊆-CT or |A| > 1, then variable
summands on the left-hand sides of inequational axioms can be omitted. Con-
cluding, in this case we can assume that the inequational axiomatization E that
we start with only contains inequational axioms of the form ap 4

∑n
i=1 aqi (with

n ≥ 1) or 0 4 q.
For the case of partial traces semantics with |A| = 1, Lemma 1 does not apply.

Note, however, that r + s -PT u if, and only if, both r -PT u and s -PT u.
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Hence, for this special case it suffices to allow also for inequational axioms of the
form x 4 q.

We start with showing that all cover equations of the form at+u ≈ u can be
derived from A(E). (Cover equations of the form x + u ≈ u will be considered
later.) In view of Lemmas 2 and 3, it suffices to only consider those equations
where u is of the form

∑n
i=1 aui with n ≥ 1. Let

at +
n∑

i=1

aui '
n∑

i=1

aui .

We show that the corresponding cover equation can be derived from A(E). It
is not hard to see that, for the semantics in the linear time - branching time
spectrum, the above equivalence implies

at -
n∑

i=1

aui .

So by ω-completeness of E,

E ` at 4
n∑

i=1

aui .

We prove, using induction on the length of such a derivation, not counting ap-
plications of axioms A1–4, that

A(E) ` at +
n∑

i=1

aui ≈
n∑

i=1

aui .

Base case: t = ui for some i. Trivial using A1–3.

Inductive case: We distinguish two cases, which deal with instantiations of in-
equational axioms in context.

Case 1: The first step of the derivation is

E ` aC[pσ] 4 aC[qσ] .

That is, t = C[pσ] for some context C[], substitution σ, and inequational axiom
p 4 q. Then clearly aC[pσ] is of the form D[b(pσ + r)] and aC[qσ] is of the form
D[b(qσ + r)] for some context D[], action b, and term r.

Since E ` aC[qσ] 4
∑n

i=1 aui by a shorter derivation, by induction,

A(E) ` aC[qσ] +
n∑

i=1

aui ≈
n∑

i=1

aui .

Furthermore,
A(E) ` aC[pσ] + aC[qσ] ≈ aC[qσ] .
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This equation can indeed be derived from the axiom b(p+x)+b(q+x) ≈ b(q+x),
which is present in A(E) for each b ∈ A according to step B in the algorithm,
together with the defining axiom for ready simulation, b(cx+z)+b(cx+cy+z) ≈
b(cx + cy + z), which by assumption is present in A(E) for all b, c ∈ A (see
Remark 1). The derivation of the above equation is by induction on the depth
of the occurrence of the context symbol [] within C[].

– Let [] occur at depth zero in C[], i.e., C[] = [] + r for some term r. Let the
substitution ρ coincide with σ on variables in p and q, and let ρ(x) = r.
(Recall that an assumption in step B of the algorithm was that x does not
occur in p + q.) The derivation simply consists of applying the substitution
ρ to the axiom a(p + x) + a(q + x) ≈ a(q + x).

– Let C[] = dC ′[] + s. By induction on the depth of the occurrence of [],
A(E) ` dC ′[pσ] + dC′[qσ] ≈ dC′[qσ]. So

A(E) ` aC[pσ] + aC[qσ] = a(dC′[pσ] + s) + a(dC′[qσ] + s)
≈ a(dC ′[pσ] + s) + a(dC′[pσ] + dC′[qσ] + s)
≈ a(dC ′[pσ] + dC′[qσ] + s)
≈ a(dC′[qσ] + s) = aC[qσ] .

Hence,

A(E) ` aC[pσ] +
n∑

i=1

aui ≈ aC[pσ] + aC[qσ] +
n∑

i=1

aui

≈ aC[qσ] +
n∑

i=1

aui ≈
n∑

i=1

aui ,

which was to be shown.
Case 2: The first step of the derivation is

E ` apσ 4
m∑

j=1

aqσ
j (m ≥ 1) .

That is, t = pσ for some substitution σ and inequational axiom ap 4
∑m

j=1 aqj .
By the soundness of E, clearly aqσ

j -
∑n

i=1 aui for j = 1, . . . , m. So by ω-
completeness, E ` aqσ

j 4
∑n

i=1 aui for j = 1, . . . , m. By one of our assumptions,
the inequational axioms in E do not contain multiple occurrences of a-summands
on their left-hand sides. This implies that each of these derivations is not longer
than the derivation of E ` ∑m

j=1 aqσ
j 4

∑n
i=1 aui. So by induction,

A(E) ` aqσ
j +

n∑

i=1

aui ≈
n∑

i=1

aui
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for j = 1, . . . , m. Furthermore, according to step A of the algorithm, the axiom
p +

∑m
j=1 aqj ≈

∑m
j=1 aqj is present in A(E). Hence,

A(E) ` apσ +
n∑

i=1

aui ≈ apσ +
m∑

j=1

aqσ
j +

n∑

i=1

aui

≈
m∑

j=1

aqσ
j +

n∑

i=1

aui ≈
n∑

i=1

aui .

This completes the proof for the case of cover equations of the form at +∑n
i=1 aui '

∑n
i=1 aui.

It remains to prove that cover equations of the form x+u ≈ u can be derived
fromA(E). If -⊆-CT or |A| > 1, then in view of Lemma 1, such cover equations
can be derived using A3. So we are left to consider the special case that -=-PT

and |A| = 1. Let
x + u 'PT u .

Clearly, this implies
x -PT u .

So, by ω-completeness of E,
E ` x 4 u .

We prove, using induction on the length of such a derivation, not counting ap-
plications of A1–4, that

A(E) ` x + u ≈ u .

Base case: x is a summand of u. Trivial.

Inductive case: The first step of the derivation is

E ` yσ 4 qσ .

That is, σ(y) = x for some substitution σ and inequational axiom y 4 q in E.
By the soundness of E, clearly r -PT u for each summand r of qσ. So by

ω-completeness, E ` r 4 u. By assumption, the inequational axioms in E are
all of the form as 4

∑n
i=1 asi (with n ≥ 1) or 0 4 s or z 4 s, for some variable

z. This implies that each of these derivations is not longer than the derivation
of E ` qσ 4 u. So by induction and A3,

A(E) ` qσ + u ≈ u .

Furthermore, according to step A of the algorithm, the axiom y+q ≈ q is present
in A(E). Hence,

A(E) ` yσ + u ≈ yσ + qσ + u ≈ qσ + u ≈ u .

The proof of the theorem is now complete. 2
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6 Examples

We show how our algorithm produces equational axiomatizations for three equiv-
alences in the linear time - branching time spectrum—namely simulation, fail-
ures and partial traces equivalence—from the inequational axiomatizations for
the corresponding preorders. For the simulation and partial traces preorders, we
leave out the pre-supposed inequational axiom ax 4 ax + ay, since it can be
derived from the defining inequational axioms for these preorders.

6.1 Simulation

Let |A| > 1. Then A1–4 plus one inequational axiom

0 4 x

is a sound and ground-complete axiomatization for BCCSP(A) modulo the sim-
ulation preorder [12].

Step A of the algorithm produces the already present axiom A4:

0 + x ≈ x .

Step B of the algorithm produces the defining axioms for simulation equivalence
for each b ∈ B:

b(0 + y) + b(x + y) ≈ b(x + y) .

6.2 Failures

Let |A| ≥ 1. The axiomatization consisting of A1–4 plus one inequational axiom

a(x + y) 4 ax + a(y + z)

for each a ∈ A is sound and ground-complete for BCCSP(A) modulo the failures
preorder [12].

Step A of the algorithm produces, for all a ∈ A:

a(x + y) + ax + a(y + z) ≈ ax + a(y + z) .

This axiom is one of the two defining axioms for failures equivalence. (The second
defining axiom for failures equivalence is the ready simulation axiom, which is
assumed to be present from the start.)

Step B of the algorithm produces, for all a, b ∈ A:

b(a(x + y) + w) + b(ax + a(y + z) + w) ≈ b(ax + a(y + z) + w) .
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This axiom is redundant; it can be derived from the other axioms as follows.
(The subterm to which an axiom is applied is underlined.)

b(ax + a(y + z) + w)

≈ b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + a(y + z) + w) + b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + w) + b(a(x + y) + a(y + z) + w) + b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + w) + b(a(x + y) + ax + a(y + z) + w)

≈ b(a(x + y) + w) + b(ax + a(y + z) + w)

6.3 Partial traces

Let |A| > 1. The axiomatization consisting of A1–4 plus

0 4 x and
ax + ay ≈ a(x + y) (one axiom for each a ∈ A)

is sound and ground-complete for BCCSP(A) modulo the partial traces pre-
order [12].

Each axiom of the latter form, for a ∈ A, is split into two inequational axioms:

ax 4 a(x + y)
a(x + y) 4 ax + ay .

Step A of the algorithm produces, for each a ∈ A:

0 + x ≈ x

ax + a(x + y) ≈ a(x + y)
a(x + y) + ax + ay ≈ ax + ay .

The first of these axioms coincides with A4, which is assumed to be present from
the start.

Step B of the algorithm produces, for all a, b ∈ A:

b(0 + y) + b(x + y) ≈ b(x + y)
b(ax + z) + b(a(x + y) + z) ≈ b(a(x + y) + z)

b(a(x + y) + z) + b(ax + ay + z) ≈ b(ax + ay + z) .

Note that the defining axiom for partial traces equivalence, namely ax + ay ≈
a(x + y) for a ∈ A, can be derived from the second and third axiom that were
produced in step A as follows:

ax + ay ≈ a(x + y) + ax + ay ≈ a(x + y) + ay ≈ a(x + y) .

In turn, from this defining axiom and A3–4, one can derive the second and third
axiom that were produced in step A, and the three axioms that were produced
in step B, for all a, b ∈ A.
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7 Conclusions and Comparison with Related Work

In this paper, we have offered an algorithm for generating a ground-complete
(respectively, ω-complete) axiomatization for behavioural equivalences in the
linear time - branching time spectrum starting from a ground-complete (respec-
tively, ω-complete) axiomatization for their underlying preorders—that is, of the
preorders that have the equivalences as their kernels. Our algorithm applies to
all of the process semantics in the spectrum whose discriminating power lies
in between that of ready simulation semantics and of partial traces semantics.
Moreover, in the presence of a finite set of actions, our procedure preserves finite-
ness of axiomatizations, and thus can be used to obtain automatically finite basis
results for behavioural equivalences in the spectrum from similar results for their
underlying preorders. In fact, our results apply to any behavioural precongru-
ence whose discriminating power lies in between that of the ready simulation
preorder and of the partial traces preorder, provided that Lemmas 1–3 hold for
the precongruence in question.

Our algorithm may thus be considered as isolating and axiomatizing the
ingredients that all of the extant proofs of completeness results for the class
of behavioural equivalences we study have in common. (See, for example, the
references [4, 5, 7–9, 12, 13] for a sample of such results.) It also eliminates the
need to reprove, essentially from scratch, completeness results for a large frag-
ment of behavioural equivalences in the spectrum once a completeness result
has been obtained for their underlying preorders. As witnessed by the examples
we provided in Section 6, the axiomatizations that are automatically generated
by our algorithm are very similar, when not identical, to those presented in the
literature. In this respect, this study may be seen as a companion to [1]. That
paper offered an algorithm that generates a finite, ground-complete axiomatiza-
tion for bisimulation equivalence from an operational specification of a language
in GSOS format [6]. That procedure relies on the axiomatization of bisimulation
equivalence over the language BCCSP. Here we have focused on the algorithmic
generation of complete axiomatizations for other equivalences in the spectrum
over the language BCCSP.

The spirit of our study is also very similar to the one in the unpublished pa-
per [11]. In that reference, independently of our work and building on their previ-
ous paper [10], de Frutos Escrig and Rodriguez show, amongst other things, how
to generate an inequational axiomatization for preorders in the spectrum from
equational axiomatizations for the corresponding equivalence. They generate this
inequational axiomatization by simply adding the defining inequational axioms
for the ready simulation preorder to the axiomatization for the equivalence—see
Theorem 6 in [11]. That result applies to behavioural equivalences in the linear
time - branching time spectrum that

1. include ready simulation equivalence, and
2. whose underlying preorders only equate processes having the same set of

initial actions.
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The latter condition is not met by completed simulation, simulation, completed
traces and partial traces semantics. Furthermore, the aforementioned result
from [11] only applies to ground-complete axiomatizations.

There are some interesting general connections between the technical devel-
opments in this paper and those in [11]. For instance, Lemma 1 in [11] gives a
soundness proof for the equations generated by step A in our algorithm for the
preorders in the spectrum that satisfy condition 2 above. However, the equations
generated by step A are sound also for completed simulation, simulation, com-
pleted traces and partial traces semantics. So Lemma 1 in [11] is not as general
as it could be.

It would also be interesting to investigate the possible relation between the
cover equations approach, used in this paper to reduce the class of equations to be
considered in the proof of completeness, and the condition of action factorization
mentioned in the statement of Theorem 1 of [11]. (Action factorization means
that if p - q, then, for each action a, the sum of the a-summands of p is also
dominated by the sum of the a-summands of q with respect to -.)

In summary, our work differs from that in [11] in the following fundamental
ways.

– We show how to produce automatically an equational axiomatization for an
equivalence from an inequational axiomatization of its underlying preorder.
Since the equivalences in the linear time - branching time spectrum that
include ready simulation equivalence are the kernels of their underlying pre-
orders, to our mind, the preorders are a more basic notion to build on in this
setting.

– Unlike Theorem 1 of [11], our main result applies to all of the semantics
in the spectrum whose discriminating power lies in between that of ready
simulation semantics and partial traces semantics.

– Last, but not least, unlike Theorem 1 of [11], our results apply to ω-complete
as well as to ground-complete axiomatizations.

It would be interesting to extend our algorithm so that it applies also to nested
simulation semantics [14] and to possible futures semantics [19]. However, as
shown in [2], unlike the semantics we have considered in this study, nested sim-
ulation and possible futures semantics afford no finite ground-complete axioma-
tization over BCCSP even in the presence of a single action. This indicates that
such a generalization of our results will not be easy to achieve without recourse
to conditional equations. We leave such generalizations of our results and proof
techniques as a topic for future investigations.
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A The Linear Time - Branching Time Spectrum

Van Glabbeek presented in [12] the linear time - branching time spectrum of
behavioural semantics for finitely branching, concrete processes. In this section,
for the sake of completeness, we define the semantics in this spectrum.

A labelled transition system contains a set of states, with typical element s,
and a set of transitions s

a→ s′, where a ranges over some set of labels A. The
set I(s) of initial actions of s consists of those labels a for which there exists a
transition s

a→ s′.
First we define four variations on the notion of simulation.

Definition 1 (Simulations). Assume a labelled transition system.

– A binary relation R on states is a simulation if s0 R s1 and s0
a→ s′0 imply

s1
a→ s′1 for some s′1 with s′0 R s′1.

– A simulation R is a completed simulation if s0 R s1 and I(s0) = ∅ imply
I(s1) = ∅.

– A simulation R is a ready simulation if s0 R s1 and a 6∈ I(s0) imply a 6∈
I(s1).

– A bisimulation is a symmetric simulation.

Next we define six types of decorated versions of execution traces.

Definition 2 (Decorated Traces). Assume a labelled transition system.

– A sequence a1 · · ·an, with n ≥ 0, is a (partial) trace of a state s0 if there is
a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn. It is a completed trace
of s0 if moreover I(sn) = ∅.

– A pair (a1 · · · an, X), with n ≥ 0 and X ⊆ A, is a ready pair of a state s0 if
there is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn with I(sn) = X.
It is a failure pair of s0 if I(sn) ∩X = ∅.

– A sequence X0a1X1 . . . anXn, with n ≥ 0 and Xi ⊆ A, is a ready trace of a
state s0 if there is a sequence of transitions s0

a1→ s1
a2→ · · · sn−1

an→ sn with
I(si) = Xi for i = 0, . . . , n. It is a failure trace of s0 if I(si) ∩Xi = ∅ for
i = 0, . . . , n.

In what follows, we shall often write s0
a1...an→ sn if there is a sequence of tran-

sitions s0
a1→ s1

a2→ · · · sn−1
an→ sn, and s0

a1...an→ if there is some sn such that
s0

a1...an→ sn.
Finally, we define the notion of a possible world of a process term.

Definition 3 (Possible Worlds). Assume a labelled transition system. A state
s is deterministic if for each a ∈ I(s) there is exactly one state s′ such that
s

a→ s′, and moreover s′ is deterministic.
A state s is a possible world of a state s0 if s is deterministic and s R s0 for

some ready simulation R.
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ready simulation

2-nested simulation

bisimulation
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simulation

possible futures
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partial traces

completed traces

failures

ready traces

Fig. 1. The linear time - branching time spectrum

Two states s and s′ are related by the simulation, ready simulation, or completed
simulation preorder if there exists a simulation, ready simulation, or completed
simulation R, respectively, with sR s′. They are bisimilar if there is a bisimu-
lation that relates them. They are related by the possible worlds, ready traces,
failure traces, readies, failures, completed traces, or partial traces preorder if the
set of possible worlds, ready traces, failure traces, ready pairs, failure pairs, com-
pleted traces, or traces of the former is included in that of the latter, respectively.

Figure 1 depicts the linear time - branching time spectrum, where a directed
edge from one semantics to another means that the source of the edge is finer
than the target. We use - to denote a preorder in this spectrum, and ' to denote
the corresponding equivalence. When we want to refer to a specific preorder in
the spectrum, we shall subscribe the symbol - with the initials of the intended
semantics in the spectrum.

We note that for each of the preorders in the spectrum, if p - q, then
depth(p) ≤ depth(q).
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B Proof of Lemma 3

In this section, we collect the proof of Lemma 3 in the main body of the paper for
each of the behavioural preorders in the linear time - branching time spectrum
ranging between the ready simulation and partial traces preorders. Throughout
this section, we use σ0 to stand for the substitution mapping each variable to 0.
For each closed substitution σ, variable x, and closed term p, we use the notation
σ[x 7→ p] to stand for the substitution mapping x to p, and acting like σ on all
of the other variables.

B.1 Proof of Lemma 3 for -CT

We begin our proof of Lemma 3 for -CT by stating a couple of useful lemmas.

Lemma 4. Let t =
∑

i∈I xi and u =
∑

k∈K bk.uk +
∑

j∈J yj. Then t -CT u iff
K = ∅ and {xi | i ∈ I} = {yj | j ∈ J}.
Proof. The “if” implication is trivial, since then t and u are bisimilar. We there-
fore focus on establishing the implication from left to right. First note that
K must be empty because otherwise σ0(u) would not have the empty string
ε as one of its completed traces, contradicting t -CT u. We now prove that
{xi | i ∈ I} = {yj | j ∈ J}.

To this end, we begin by observing that each xi must occur as a summand
of u by Lemma 1. We are therefore left to prove that each yj is also a summand
of t. To see that this does hold, pick an action a ∈ A, and consider the closed
substitution σ = σ0[yj 7→ a0]. The only completed trace of σ(u) is a. It follows
that yj must be a summand of t. Indeed, if yj is not a summand of t, then
σ(t) = σ0(t) = 0 has only the empty string ε as completed trace, contradicting
t -CT u. 2

Lemma 5. Let σ be a closed substitution. Then σ(t) a1...an→ 0, for some sequence
of actions a1 . . . an and n ≥ 0, iff there are a j ≤ n and a term t′ such that
t

a1...aj→ t′ and

1. either j = n and σ(t′) = 0
2. or j < n and σ(x)

aj+1...an→ 0, for some summand x of t′.

Proof. Both statements can be shown by induction on the structure of t. The
details are tedious, but not hard, and are therefore omitted. 2

We are now ready to prove that Lemma 3 holds for -CT.

Proof of Lemma 3 for -CT Assume that t + x -CT u + x, and x is not a
summand of t+u. Let σ be a closed substitution. We prove that each completed
trace of σ(t) is also a completed trace of σ(u). This is immediate from the proviso
of the lemma if σ(x) = 0. Assume therefore that σ(x) 6= 0.

Let a1 . . . an be a completed trace of σ(t)—that is, σ(t) a1...an→ 0. If n = 0,
then σ(t) = 0. This means that t =

∑
i∈I xi for some set of variables {xi | i ∈ I}
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such that σ(xi) = 0 for each i ∈ I. Note that, by the proviso of the lemma,
x 6= xi for each i ∈ I. Since t + x -CT u + x, Lemma 4 yields that u = t, and
therefore σ(u) a1...an→ 0.

Assume now that n ≥ 1. Since σ(t) a1...an→ 0, Lemma 5 yields that there are
a j ≤ n and a term t′ such that t

a1...aj→ t′ and

1. either j = n and σ(t′) = 0
2. or j < n and σ(y)

aj+1...an→ 0, for some summand y of t′.

In the former case, t′ =
∑

m∈M zm for some collection {zm | m ∈ M} of variables
such that σ(zm) = 0 for each m ∈ M . By assumption, σ(x) 6= 0, so zm 6= x for
each m ∈ M . We wish to argue that σ(u) a1...an→ 0. Let ` > n. By Lemma 5,

σ[x 7→ a`0](t) a1...an→ σ[x 7→ a`0](t′) = σ(t′) = 0 .

Since t + x -CT u + x and n ≥ 1, σ[x 7→ a`0](u + x) also affords a1 . . . an as one
of its completed traces. As ` > n, it follows that σ[x 7→ a`0](u) a1...an→ 0. Using
Lemma 5 and the assumption that ` > n, we may conclude that σ(u) a1...an→ 0,
which was to be shown.

In the latter case, it suffices to show that u
a1...aj→ u′ for some u′ that has

y as a summand. Let N > depth(u). By Lemma 5, σ0[y 7→ aN0](t) affords the
completed trace a1 . . . aja

N . Since j + N ≥ 1, a1 . . . aja
N is also a completed

trace of σ0[y 7→ aN0](t + x), and therefore of σ0[y 7→ aN0](u + x). Note that if
j = 0, then y 6= x because x is not a summand of t by the proviso of the lemma.
Hence it follows that a1 . . . aja

N is also a completed trace of σ0[y 7→ aN0](u).

Let b1 . . . bN+j = a1 . . . aja
N . Since N > depth(u), by Lemma 5, u

b1...bk→ u′ and

σ0[y 7→ aN0](z)
bk+1...bN+j→ 0 for some term u′, variable z and k < N , where

u′ has z as a summand. Since N + j > k, it follows that z = y, k = j and
bk+1 . . . bN+j = aN . Concluding, u

a1...aj→ u′ where u′ has y as a summand. Since
σ(y)

aj+1...an→ 0 and j < n, by Lemma 5, σ(u) a1...an→ 0, which was to be shown.
This concludes the proof. 2

B.2 Proof of Lemma 3 for the Simulation Preorders

In this section, we collect the proof of Lemma 3 for the ready simulation, com-
pleted simulation and simulation preorders.

Proof of Lemma 3 for -RS Assume that t + x -RS u + x, and x is not a
summand of t + u. Let σ be a closed substitution. We prove that σ(t) -RS σ(u).

In order to prove that σ(t) -RS σ(u), we need to show the following two
claims:

1. if σ(t) a→ p, then σ(u) a→ q for some q such that p -RS q, and
2. I(σ(u)) ⊆ I(σ(t)).
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We prove these two claims separately.

Proof of Claim 1. Suppose that σ(t) a→ p. Either this transition is due to a
variable summand y of t such that σ(y) a→ p, or there is a summand at′ of t such
that p = σ(t′). In the former case, y 6= x by the proviso of the lemma. Therefore,
by Lemma 1, y is also a summand of u. It follows that σ(u) a→ p, and we are
done.

Suppose now that there is a summand at′ of t such that p = σ(t′). If σ(y) a→ q
for some variable summand y of u and closed term q such that p -RS q, we are
done. Assume therefore that, for each r and variable summand y of u,

σ(y) a→ r implies p 6-RS r . (1)

We claim that p -RS σ(u′) for some summand au′ of u. We proceed with the
proof of this claim by distinguishing two cases, depending on whether x occurs
in t′ or not.

– Case x does not occur in t′. Let N ≥ depth(σ(t)). Define the closed
term s as follows:

s =
∑

b∈I(σ(x))

baN0 .

Since at′ is a summand of t and x does not occur in t′,

σ[x 7→ s](t + x) a→ σ[x 7→ s](t′) = σ(t′) = p .

Therefore
σ[x 7→ s](u + x) a→ q ,

for some q such that p -RS q. Note that p 6-RS aN0, because depth(p) < N
and aN0 affords only one completed trace whose length is N . Hence, by
assumption (1), u must have a summand of the form au′ such that

p -RS σ[x 7→ s](u′) .

We now prove, by induction on the depth of p, that

p -RS σ(u′) .

First of all, note that I(σ(x)) = I(s) implies I(σ(u′)) = I(σ[x 7→ s](u′)) =
I(p).
Suppose that p

b→ p′. We prove that σ(u′) b→ q′ for some q′ such that p′ -RS

q′. Since p -RS σ[x 7→ s](u′), there is a q′′ such that σ[x 7→ s](u′) b→ q′′ and
p′ -RS q′′. Note that this transition cannot be due to a summand x of u′,
because depth(p′) ≤ N − 2. If the transition σ[x 7→ s](u′) b→ q′′ is due to
a variable summand y 6= x of u′, then σ(u′) b→ q′′ also holds, and we are
done. Otherwise, there is a summand bu′′ of u′ such that q′′ = σ[x 7→ s](u′′).
As p′ -RS σ[x 7→ s](u′′), the induction hypothesis yields that p′ -RS σ(u′′).
Since σ(u′) b→ σ(u′′), we are done.
Therefore p -RS σ(u′), as claimed above. Since σ(u) a→ σ(u′), we are done.
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– Case x occurs in t′. In this case,

depth(p) = depth(σ(t′)) ≥ depth(σ(x)) .

Since each a-derivative of σ(x) has depth smaller than that of p, it cannot
simulate p. Since σ(t + x) -RS σ(u + x) and σ(t + x) a→ p, it follows that
σ(u) a→ σ(u′) and p -RS σ(u′) for some summand au′ of u.

Proof of Claim 2. Assume that a ∈ I(σ(u)). Since x is not a summand of
u by the proviso of the lemma, a ∈ I(σ[x 7→ 0](u + x)). As t + x -RS u + x,
it follows that a ∈ I(σ[x 7→ 0](t + x)). Using the assumption that x is not a
summand of t, we may conclude that a ∈ I(σ(t)), which was to be shown.

This concludes the proof. 2

Proof of Lemma 3 for -CS Assume that t + x -CS u + x, and x is not a
summand of t +u. Let σ be a closed substitution. We prove that σ(t) -CS σ(u).

In order to prove that σ(t) -CS σ(u), we need to show the following two
claims:

1. if σ(t) a→ p, then σ(u) a→ q for some q such that p -CS q, and
2. if σ(t) = 0, then σ(u) = 0.

We prove these two claims separately.

Proof of Claim 1. Suppose that σ(t) a→ p. We show that σ(u) a→ q for some
q such that p -CS q. This is immediate if there is a variable summand y of u
such that σ(y) a→ q and p -CS q.

Assume therefore that, for each r and variable summand y of u,

σ(y) a→ r implies p 6-CS r . (2)

By Lemma 1, it follows that σ(t) a→ p because t has a summand at′ such that
σ(t′) = p.

We claim that p -CS σ(u′) for some summand au′ of u. We proceed with the
proof of this claim by distinguishing two cases, depending on whether x occurs
in t′ or not.

– Case x does not occur in t′. Let N > depth(σ(t)). Since at′ is a summand
of t and x does not occur in t,

σ[x 7→ aN0](t + x) a→ σ[x 7→ aN0](t′) = σ(t′) = p .

Therefore
σ[x 7→ aN0](u + x) a→ q ,

for some q such that p -CS q. Note that p 6-CS aN−10, because depth(p) <
N − 1 and aN−10 affords only a completed trace of length N − 1. Hence, by
assumption (2), u must have a summand of the form au′ such that

p -CS σ[x 7→ aN0](u′) .
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We now prove, by induction on the depth of p, that

p -CS σ(u′) .

First of all, if p = 0, then σ[x 7→ aN0](u′) = 0, which yields that x does not
occur in u′. Therefore, σ[x 7→ aN0](u′) = σ(u′), and we are done.
Suppose that p

b→ p′. We prove that σ(u′) b→ q′ for some q′ such that p′ -CS

q′. Since p -CS σ[x 7→ aN0](u′), there is a q′′ such that σ[x 7→ aN0](u′) b→ q′′

and p′ -CS q′′. Note that this transition cannot be due to a summand x of
u′ because depth(p′) < N − 2. If the transition σ[x 7→ aN0](u′) b→ q′′ is due
to a variable summand y 6= x of u′, then σ(u′) b→ q′′ also holds, and we are
done. Otherwise, there is a summand bu′′ of u′ such that

q′′ = σ[x 7→ aN0](u′′) .

As p′ -CS σ[x 7→ aN0](u′′), the induction hypothesis yields that p′ -CS

σ(u′′). Since σ(u′) b→ σ(u′′), we are done.
Therefore p -CS σ(u′), as claimed above. Since σ(u) a→ σ(u′), we are done.

– Case x occurs in t′. In this case,

depth(p) = depth(σ(t′)) ≥ depth(σ(x)) .

Since each a-derivative of σ(x) has depth smaller than that of p, it cannot
simulate p. As σ(t + x) -CS σ(u + x) by the proviso of the lemma, and
σ(t + x) a→ p, it follows that σ(u) a→ σ(u′) and p -CS σ(u′) for some
summand au′ of u.

Proof of Claim 2. Assume that σ(t) = 0. This means that t is a sum of
variables, and t = u by Lemma 4. (Recall that -CS⊆-CT; see Figure 1 on
page 18.) Hence σ(u) = 0.

This concludes the proof. 2

Proof of Lemma 3 for -S Assume that t+x -S u+x, and x is not a summand
of t + u. Let σ be a closed substitution. We prove that σ(t) -S σ(u).

Suppose that σ(t) a→ p. We show that σ(u) a→ q for some q such that p -S q.
Assume, first of all, that the transition σ(t) a→ p is due to a variable summand

y of t, that is σ(y) a→ p. In this case, y 6= x by the proviso of the lemma. If
|A| > 1, then y is also a variable summand of u (Lemma 1), and we are done
because σ(u) a→ p. If A = {a}, then Lemma 1.3 in [7] yields that y occurs in

u. Therefore, u
an→ u′ for some n ≥ 0 and term u′ having y as a summand. If

n = 0, then σ(u) a→ p as above, and we are done. If instead u
a→ u1

an−1→ u′ for
some u1, then σ(u) a→ σ(u1). Moreover, we claim that p -S σ(u1). Indeed, since

u1
an−1→ u′, the variable y occurs in u1. This yields that

depth(p) < depth(σ(y)) ≤ depth(σ(u1)) .
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The claim now follows because, in the presence of a single action a, the par-
tial traces preorder and the simulation preorder coincide—see, e.g., [3]—, and
therefore

depth(p) < depth(σ(u1)) implies p -S σ(u1) .

We are now left to examine the case in which σ(t) a→ p because t has a summand
at′ such that p = σ(t′). If σ(y) a→ q for some variable summand y of u and closed
term q such that p -S q, we are done. Assume therefore that, for each r and
variable summand y of u,

σ(y) a→ r implies p 6-S r . (3)

We claim that p -S σ(u′) for some summand au′ of u.
We proceed with the proof of this claim by distinguishing two cases, depend-

ing on whether x occurs in t′ or not.

– Case x does not occur in t′. In this case,

σ[x 7→ 0](t + x) a→ σ[x 7→ 0](t′) = σ(t′) = p .

Since t + x -S u + x, there is a q such that σ[x 7→ 0](u) a→ q and p -S q.
By (3), it follows that q = σ[x 7→ 0](u′) for some summand au′ of u. Since
0 -S σ(x) and -S is a precongruence, we may conclude that

p -S q = σ[x 7→ 0](u′) -S σ(u′) .

It follows that σ(u) a→ σ(u′) and p -S σ(u′), and we are done.
– Case x occurs in t′. In this case,

depth(p) = depth(σ(t′)) ≥ depth(σ(x)) .

Since each a-derivative of σ(x) has depth smaller than that of p, it cannot
simulate p. As σ(t + x) -S σ(u + x) by the proviso of the lemma, and
σ(t + x) a→ p, it follows by (3) that σ(u) a→ σ(u′) and p -S σ(u′) for some
summand au′ of u.

This concludes the proof. 2

B.3 Proof of Lemma 3 for -PT

Assume that t + x -PT u + x, and x is not a summand of t + u. We shall
show that t -PT u. This follows from the result for the simulation preorder if
|A| = 1. Indeed, in that case, the partial traces and the simulation preorders
coincide—see, e.g., [3].

Assume therefore that |A| > 1, so that there are two distinct actions a, b in
A. Let σ be a closed substitution. We prove that each trace a1 . . . an of σ(t) is
also a trace of σ(u).

Since σ(t) a1...an→ , we have that
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1. either t
a1...an→

2. or there are a j < n, a variable y and a term t′ such that t
a1...aj→ t′, y is a

summand of t′, and σ(y)
aj+1...an→ .

In the former case, clearly σ0(t+x) a1...an→ . Thus also σ0(u+x) a1...an→ . It follows
that u

a1...an→ , and thus σ(u) a1...an→ , which was to be shown.
Consider the latter case. If j = 0, then y 6= x is a summand of t. By

Lemma 1, it is also a summand of u, and therefore σ(u) a1...an→ , which was
to be shown. Assume therefore that j ≥ 1. Let N ≥ depth(u). Clearly σ0[y 7→
aNb0](t + x)

a1...ajaN b→ , so also σ0[y 7→ aNb0](u + x)
a1...ajaN b→ . Since j ≥ 1,

this implies σ0[y 7→ aNb0](u)
a1...ajaN b→ . Let b1 . . . bN+j+1 = a1 . . . aja

Nb. Since

N ≥ depth(u), clearly u
b1...bk→ u′ and σ0[y 7→ aNb0](z)

bk+1...bN+j+1→ for some term
u′, variable z and k ≤ N , where u′ has z as a summand. Since N + j + 1 > k,
it follows that z = y, k = j and bk+1 . . . bN+j+1 = aNb. Concluding, u

a1...aj→ u′

where u′ has y as a summand. Since σ(y)
aj+1...an→ and j < n, we infer that

σ(u) a1...an→ , which was to be shown.
This concludes the proof. 2

B.4 Proof of Lemma 3 for -RT

We begin by stating a useful lemma relating the ready traces of a term σ(t),
where σ is a closed substitution, to the action transitions and ready traces of
the term t and of the terms σ(x) for each variable x occurring in t.

Lemma 6. Let σ be a closed substitution, and t a term.

1. Assume that X0b1X1 . . . bkXk is a ready trace of σ(t). Then
(a) either there are terms t1, . . . , tk such that

t = t0
b1→ t1 · · · tk−1

bk→ tk

and I(σ(ti)) = Xi, for each 0 ≤ i ≤ k,
(b) or t = t0

b1→ t1 · · · ti−1
bi→ ti for some 0 ≤ i < k, and terms t1, . . . , ti such

that
i. I(σ(tj)) = Xj, for each 0 ≤ j ≤ i, and
ii. ti = y + t′ for some variable y and term t′ such that

I(σ(y)) bi+1Xi+1 . . . bkXk

is a ready trace of σ(y).

2. Assume that t = t0
b1→ t1 · · · tk−1

bk→ tk and I(σ(ti)) = Xi, for each 0 ≤ i ≤ k.
Then X0b1X1 . . . bkXk is a ready trace of σ(t).

3. Assume that t = t0
b1→ t1 · · · ti−1

bi→ ti for some 0 ≤ i < k, and terms
t1, . . . , ti such that
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(a) I(σ(tj)) = Xj, for each 0 ≤ j ≤ i, and
(b) ti = y + t′ for some variable y and term t′ such that

I(σ(y)) bi+1Xi+1 . . . bkXk

is a ready trace of σ(y).
Then X0b1X1 . . . bkXk is a ready trace of σ(t).

We are now ready to prove Lemma 3 for -RT. Following the structure of the
proof of this statement for the failures preorder offered in [9], we establish the
contrapositive statement. To this end, assume that t 6-RT u, and x is not a
summand of t + u. We shall show that t + x 6-RT u + x.

Since t 6-RT u, there is a closed substitution σ such that σ(t) 6-RT σ(u). This
means that there is a ready trace X0b1X1 . . . bkXk of σ(t) that is not a ready
trace of σ(u). In the remainder of the proof, we use this information to construct
a closed substitution ρ such that ρ(t + x) 6-RT ρ(u + x), thus establishing our
claim that t + x 6-RT u + x.

Suppose that I(σ(t)) 6= I(σ(u)). As x is not a summand of t+u, then clearly
σ[x 7→ 0](t + x) 6-RT σ[x 7→ 0](u + x). Hence, t + x 6-RT u + x, which was to be
shown.

So we may assume that I(σ(t)) = I(σ(u)) = X0. In particular this implies
that k > 0.

Our order of business now will be to construct a closed substitution ρ with
the following properties:

1. I(ρ(x)) = I(σ(x)), and ρ(y) = σ(y) for each variable y 6= x,
2. ρ(x) and σ(x) have the same ready traces of length smaller than k, and
3. ρ(x) does not have any ready pairs of the form (c1 . . . ck, Xk).

Before giving the construction of ρ, we shall argue that from these three prop-
erties it follows that

ρ(t + x) 6-RT ρ(u + x) .

Observe, first of all, that (X0 ∪ I(σ(x))) b1X1 . . . bkXk is a ready trace of ρ(t +
x). To see this, recall that, as X0b1X1 . . . bkXk is a ready trace of σ(t), by
Lemma 6(1) we have that

1. either there are terms t1, . . . , tk such that

t = t0
b1→ t1 · · · tk−1

bk→ tk

and I(σ(ti)) = Xi, for each 0 ≤ i ≤ k,
2. or t = t0

b1→ t1 · · · ti−1
bi→ ti for some 0 ≤ i < k, and terms t1, . . . , ti such

that
(a) I(σ(tj)) = Xj , for each 0 ≤ j ≤ i, and
(b) ti = y + t′ for some variable y and term t′ such that

I(σ(y)) bi+1Xi+1 . . . bkXk

is a ready trace of σ(y).
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(Note that, in light of Lemma 1 and our assumptions that X0b1X1 . . . bkXk is
not a ready trace of σ(u) and k > 0, in the latter case i > 0. Indeed, if i = 0,
then y would also be a variable summand of u, and X0b1X1 . . . bkXk would be a
ready trace of σ(u).) We proceed to prove that (X0 ∪ I(σ(x))) b1X1 . . . bkXk is
a ready trace of ρ(t + x) by considering the two possibilities above separately.

– Suppose that t = t0
b1→ t1 · · · tk−1

bk→ tk and I(σ(ti)) = Xi, for each 0 ≤
i ≤ k. By property 1 of ρ, I(ρ(ti)) = I(σ(ti)) = Xi for each 0 ≤ i ≤
k. So X0b1X1 . . . bkXk is also a ready trace of ρ(t). By property 1 of ρ,
(X0 ∪ I(σ(x))) b1X1 . . . bkXk is a ready trace of ρ(t + x), as claimed.

– Suppose that t = t0
b1→ t1 . . . ti−1

bi→ ti for some 0 < i < k, and terms
t1, . . . , ti such that
1. I(σ(tj)) = Xj , for each 0 ≤ j ≤ i, and
2. ti = y + t′ for some variable y and term t′ such that

I(σ(y)) bi+1Xi+1 . . . bkXk

is a ready trace of σ(y).
If y 6= x, then I(σ(y)) bi+1Xi+1 . . . bkXk is a ready trace of ρ(y), by prop-
erty 1 of ρ. By Lemma 6(3) and property 1 of ρ, X0b1X1 . . . bkXk is a
ready trace of ρ(t). Since I(ρ(x)) = I(σ(x)), we may conclude that (X0 ∪
I(σ(x))) b1X1 . . . bkXk is a ready trace of ρ(t + x), as claimed.
If y = x, then I(σ(y)) bi+1Xi+1 . . . bkXk is a ready trace of ρ(x), by prop-
erty 2 of ρ because i > 0. By Lemma 6(3) and property 1 of ρ, X0b1X1 . . . bkXk

is a ready trace of ρ(t). Since I(ρ(x)) = I(σ(x)), we may again conclude that
(X0 ∪ I(σ(x))) b1X1 . . . bkXk is a ready trace of ρ(t + x), as claimed.

We now prove that (X0∪I(σ(x))) b1X1 . . . bkXk is not a ready trace of ρ(u+x).
Since k > 0, this follows if we can argue that I(σ(x)) b1X1 . . . bkXk is not a
ready trace of ρ(x) and X0b1X1 . . . bkXk is not a ready trace of ρ(u). To this
end, note, first of all, that I(σ(x)) b1X1 . . . bkXk is not a ready trace of ρ(x) by
property 3 of ρ. Therefore, we are left to show that X0b1X1 . . . bkXk is not a
ready trace of ρ(u).

By Lemma 6(1), X0b1X1 . . . bkXk is a ready trace of ρ(u) only if

1. either there are terms u1, . . . , uk such that

u = u0
b1→ u1 · · ·uk−1

bk→ uk

and I(ρ(ui)) = Xi, for each 0 ≤ i ≤ k,
2. or u = u0

b1→ u1 · · ·ui−1
bi→ ui for some 0 ≤ i < k, and terms u1, . . . , ui such

that
(a) I(ρ(uj)) = Xj , for each 0 ≤ j ≤ i, and
(b) ui = z + u′ for some variable z and term u′ such that

I(ρ(z)) bi+1Xi+1 . . . bkXk

is a ready trace of ρ(z).



28

We now proceed to argue that both of these possibilities contradict our assump-
tion that X0b1X1 . . . bkXk is not a ready trace of σ(u). Indeed, in the former
case, we could conclude that X0b1X1 . . . bkXk is a ready trace of σ(u) using
property 1 of ρ and Lemma 6(2). In the latter case, we could reach the same
conclusion using properties 1 and 2 of ρ and Lemma 6(3).

All that we are left to do to complete the proof for this case is to construct
a closed substitution ρ having properties 1–3. We begin by defining, for each
closed term p, n ≥ 0 and set of actions X , the closed term πX

n (p) as follows:

πX
0 (p) =

∑
{a0 | a ∈ I(p) ∩X}+

∑
{aa0 | a ∈ I(p)−X}

πX
n+1(p) =

∑
{aπX

n (p′) | p a→ p′} .

Take ρ = σ[x 7→ πXk

k−1(σ(x))]. By definition, I(πX
n (p)) = I(p), for each closed

term p, n ≥ 0 and X ⊆ A. Therefore ρ meets property 1.
We claim that ρ(x) and σ(x) have the same ready traces of length smaller

than k. This follows immediately from the following two observations:

– I(πXk
n (p)) = I(p), for each p and n ≥ 0, and

– for all closed terms p, q, action c and n > 0,

p
c→ q iff πXk

n (p) c→ πXk
n−1(q) .

So ρ enjoys property 2.
Finally, to see that ρ meets property 3, assume that πXk

k−1(σ(x)) c1...ck→ q for
some sequence c1 . . . ck of actions and closed term q. It is not hard to see that
either Xk 6= ∅ and q = 0, or q = a0 for some a 6∈ Xk. In both cases, I(q) 6= Xk.

This concludes the proof. 2

B.5 Proof of Lemma 3 for -FT

We begin by stating a useful lemma relating the failure traces of a term σ(t),
where σ is a closed substitution, to the action transitions and failure traces of
the term t and of the terms σ(x) for each variable x occurring in t.

Lemma 7. Let σ be a closed substitution, and t be a term.

1. Assume that X0b1X1 . . . bkXk is a failure trace of σ(t). Then
(a) either there are terms t1, . . . , tk such that

t = t0
b1→ t1 · · · tk−1

bk→ tk

and I(σ(ti)) ∩Xi = ∅, for each 0 ≤ i ≤ k,

(b) or t = t0
b1→ t1 · · · ti−1

bi→ ti for some 0 ≤ i < k, and terms t1, . . . , ti such
that
i. I(σ(tj)) ∩Xj = ∅, for each 0 ≤ j ≤ i, and
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ii. ti = y + t′ for some variable y and term t′ such that

∅ bi+1Xi+1 . . . bkXk

is a failure trace of σ(y).
2. Assume that t = t0

b1→ t1 · · · tk−1
bk→ tk and I(σ(ti)) ∩ Xi = ∅, for each

0 ≤ i ≤ k. Then X0b1X1 . . . bkXk is a failure trace of σ(t).
3. Assume that t = t0

b1→ t1 · · · ti−1
bi→ ti for some 0 ≤ i < k, and terms

t1, . . . , ti such that
(a) I(σ(tj)) ∩Xj = ∅, for each 0 ≤ j ≤ i, and
(b) ti = y + t′ for some variable y and term t′ such that

∅ bi+1Xi+1 . . . bkXk

is a failure trace of σ(y).
Then X0b1X1 . . . bkXk is a failure trace of σ(t).

We are now ready to prove Lemma 3 for -FT. Following the structure of the
proof of this statement for the readies preorder, we establish the contrapositive
statement. To this end, assume that t 6-FT u, and x is not a summand of t + u.
We shall show that t + x 6-FT u + x.

Since t 6-FT u, there is a closed substitution σ such that σ(t) 6-FT σ(u). This
means that there is a failure trace X0b1X1 . . . bkXk of σ(t) that is not a failure
trace of σ(u). In the remainder of the proof, we use this information to construct
a closed substitution ρ such that ρ(t + x) 6-FT ρ(u + x), thus establishing our
claim that t + x 6-FT u + x.

Suppose that I(σ(t)) 6= I(σ(u)). As x is not a summand of t+u, then clearly
σ[x 7→ 0](t + x) 6-FT σ[x 7→ 0](u + x). Hence, t + x 6-FT u + x, which was to be
shown.

So we may assume that I(σ(t)) = I(σ(u)). In particular this implies that
k > 0. We distinguish two cases, depending on whether k = 1 or k > 1.

– Case k = 1 Our order of business now will be to construct a closed substi-
tution ρ with the following properties:
1. I(ρ(x)) = I(σ(x)) ∩X1, and ρ(y) = σ(y) for each variable y 6= x, and
2. ρ(x) does not have any failure pairs of the form (c1, X1).

Before giving the construction of ρ, we shall argue that from these two prop-
erties it follows that

ρ(t + x) 6-FT ρ(u + x) .

Observe, first of all, that (b1, X1) is a failure pair of ρ(t + x). To see this,
recall that, as X0b1X1 is a failure trace of σ(t), by Lemma 7(1) we have two
possibilities. Either there are is a term t′ such that t

b1→ t′ and I(σ(t′))∩X1 =
∅. Or t = y + t′ for some variable y and term t′ such that (b1, X1) is a failure
pair of σ(y).
In the second case, in light of Lemma 1, y would also be a variable summand
of u, and X0b1X1 would be a failure trace of σ(u) because I(σ(t)) = I(σ(u)).
This contradicts one of our assumptions.
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So we can assume that that t
b1→ t′ with I(σ(t′))∩X1 = ∅. By property 1 of

ρ, I(σ(t′)) ∩X1 = ∅ implies that I(ρ(t′)) ∩X1 = ∅. So (b1, X1) is a failure
pair of ρ(t). We conclude that (b1, X1) is a failure pair of ρ(t+x), as claimed.
We now prove that (b1, X1) is not a failure pair of ρ(u + x). This follows if
we can argue that (b1, X1) is neither a failure pair of ρ(x) nor a failure pair
of ρ(u). To this end, note, first of all, that (b1, X1) is not a failure pair of
ρ(x) by property 2 of ρ. Therefore, we are left to show that (b1, X1) is not a
failure pair of ρ(u).
By Lemma 7(1), (b1, X1) is a failure pair of ρ(u) only if

• either there are is a term u′ such that u
b1→ u′ and I(ρ(u′)) ∩X1 = ∅;

• or u = z + u′ for some variable z and term u′ such that (b1, X1) is a
failure pair of ρ(z).

We now proceed to argue that both of these possibilities contradict our
assumption that X0b1X1 is not a failure trace of σ(u). Indeed, in the former
case, we could conclude that X0b1X1 is a failure trace of σ(u) using our
assumption that I(σ(t)) = I(σ(u)), property 1 of ρ and Lemma 7(2). In
the latter case, by assumption z 6= x, so by property 1 of ρ, ρ(z) = σ(z).
So again we could conclude that X0b1X1 is a failure trace of σ(u) using our
assumption that I(σ(t)) = I(σ(u)) and Lemma 7(3).
All that we are left to do to complete the proof for this case is to construct
a closed substitution ρ having properties 1–2. We begin by defining, for each
closed term p, the closed term chopX1(p) as follows:

chopX1(p) =
∑

{aa0 | a ∈ I(p) ∩X1} .

Take ρ = σ[x 7→ chopX1(σ(x))]. By definition, I(chopX1(p)) = I(p) ∩ X1,
for each closed term p. Therefore ρ meets property 1.
To see that ρ meets property 2, assume that chopX1(σ(x)) c1→ q for some
action c1 and closed term q. Then clearly c1 ∈ X1 and q = c10. Therefore
ρ(x) does not have any failure pairs of the form (c1, X1).

– Case k > 1 Our order of business now will be to construct a closed substi-
tution ρ with the following properties:
1. I(ρ(x)) = I(σ(x)), and ρ(y) = σ(y) for each variable y 6= x,
2. ρ(x) and σ(x) have the same failure traces of the form Y0c1Y1 . . . Y`−1c`Xk

for ` < k, and
3. ρ(x) does not have any failure pairs of the form (c1 . . . ck, Xk).

Before giving the construction of ρ, we shall argue that from these three
properties it follows that

ρ(t + x) 6-FT ρ(u + x) .

Observe, first of all, that ∅ b1X1 . . . bkXk is a failure trace of ρ(t + x). To see
this, recall that, as X0b1X1 . . . bkXk is a failure trace of σ(t), by Lemma 7(1)
we have that
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1. either there are terms t1, . . . , tk such that

t = t0
b1→ t1 · · · tk−1

bk→ tk

and I(σ(ti)) ∩Xi = ∅, for each 0 ≤ i ≤ k,

2. or t = t0
b1→ t1 · · · ti−1

bi→ ti for some 0 ≤ i < k, and terms t1, . . . , ti such
that
(a) I(σ(tj)) ∩Xj = ∅, for each 0 ≤ j ≤ i, and
(b) ti = y + t′ for some variable y and term t′ such that

∅ bi+1Xi+1 . . . bkXk

is a failure trace of σ(y).
(Note that, in light of Lemma 1 and our assumptions that X0b1X1 . . . bkXk

is not a failure trace of σ(u) and k > 0, in the latter case i > 0. Indeed, if
i = 0, then y would also be a variable summand of u, and X0b1X1 . . . bkXk

would be a failure trace of σ(u) because I(σ(t)) = I(σ(u)).) We proceed to
prove that ∅ b1X1 . . . bkXk is a failure trace of ρ(t + x) by considering the
two possibilities above separately.

• Suppose that t = t0
b1→ t1 · · · tk−1

bk→ tk and I(σ(ti)) ∩Xi = ∅, for each
0 ≤ i ≤ k. By property 1 of ρ, I(ρ(ti)) = I(σ(ti)) for each 0 ≤ i ≤ k. So
∅b1X1 . . . bkXk is a failure trace of ρ(t). We conclude that ∅ b1X1 . . . bkXk

is a failure trace of ρ(t + x), as claimed.

• Suppose that t = t0
b1→ t1 · · · ti−1

bi→ ti for some 0 < i < k, and terms
t1, . . . , ti such that
1. I(σ(tj)) ∩Xj = ∅, for each 0 ≤ j ≤ i, and
2. ti = y + t′ for some variable y and term t′ such that

∅ bi+1Xi+1 . . . bkXk

is a failure trace of σ(y).
If y 6= x, then ∅ bi+1Xi+1 . . . bkXk is a failure trace of ρ(y), by property 1
of ρ. By Lemma 7(3) and property 1 of ρ, it follows that ∅b1X1 . . . bkXk

is a failure trace of ρ(t). We conclude that ∅ b1X1 . . . bkXk is a failure
trace of ρ(t + x), as claimed.
If y = x, then ∅ bi+1Xi+1 . . . bkXk is a failure trace of ρ(x), by property 2
of ρ, because i > 0. By Lemma 7(3) and property 1 of ρ, we have that
∅b1X1 . . . bkXk is a failure trace of ρ(t). We may again conclude that
∅ b1X1 . . . bkXk is a failure trace of ρ(t + x), as claimed.

We now prove that ∅ b1X1 . . . bkXk is not a failure trace of ρ(u + x). This
follows if we can argue that ∅ b1X1 . . . bkXk is neither a failure trace of ρ(x)
nor a failure trace of ρ(u). To this end, note, first of all, that ∅ b1X1 . . . bkXk

is not a failure trace of ρ(x) by property 3 of ρ. Therefore, we are left to
show that ∅b1X1 . . . bkXk is not a failure trace of ρ(u).
By Lemma 7(1), ∅b1X1 . . . bkXk is a failure trace of ρ(u) only if
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1. either there are terms u1, . . . , uk such that

u = u0
b1→ u1 · · ·uk−1

bk→ uk

and I(ρ(ui)) ∩Xi = ∅, for each 1 ≤ i ≤ k,
2. or u = u0

b1→ u1 · · ·ui−1
bi→ ui for some 0 ≤ i < k, and terms u1, . . . , ui

such that
(a) I(ρ(uj)) ∩Xj = ∅, for each 1 ≤ j ≤ i, and
(b) ui = z + u′ for some variable z and term u′ such that

∅ bi+1Xi+1 . . . bkXk

is a failure trace of ρ(z).
We now proceed to argue that both of these possibilities contradict our
assumption that X0b1X1 . . . bkXk is not a failure trace of σ(u). Indeed, in
the former case, we could conclude that X0b1X1 . . . bkXk is a failure trace
of σ(u) using our assumption that I(σ(t)) = I(σ(u)), property 1 of ρ and
Lemma 7(2). In the latter case, we could reach the same conclusion using our
assumption that I(σ(t)) = I(σ(u)), properties 1 and 2 of ρ and Lemma 7(3).
All that we are left to do to complete the proof for this case is to construct
a closed substitution ρ having properties 1–3. We begin by defining, for each
closed term p, and n ≥ 0, the closed term chopXk

n (p) as follows:

chopXk
0 (p) =

∑
{aa0 | a ∈ I(p) ∩Xk}

chopXk
n+1(p) =

∑
{a chopXk

n (p′) | p a→ p′} .

Take ρ = σ[x 7→ chopXk

k−1(σ(x))]. By definition, I(chopXk
n (p)) = I(p), for

each closed term p, and n > 0. Since k − 1 > 0, ρ meets property 1.
We claim that ρ(x) and σ(x) have the same failure traces of length smaller
than k. This follows immediately from the following three observations:
• for each closed term p and n > 0,

I(chopXk
n (p)) = I(p) ,

• for all closed terms p, q, action c and n > 0,

p
c→ q iff chopXk

n (p) c→ chopXk
n−1(q) , and

• for each closed term p,

I(p) ∩Xk = ∅ iff I(chopXk
0 (p)) ∩Xk = ∅ .

So ρ enjoys property 2.
Finally, to see that ρ meets property 3, assume that chopXk

k−1(σ(x)) c1...ck→ q
for some sequence c1 . . . ck of actions and closed term q. It is not hard to see
that then ck ∈ Xk and q = ck0. Therefore ρ(x) does not have any failure
pairs of the form (c1 . . . ck, Xk).

This concludes the proof. 2
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B.6 Proof of Lemma 3 for -R

We begin by stating a useful lemma relating the ready pairs of a closed term
σ(t), where σ is a closed substitution, to the action transitions and ready pairs
of t and of the closed terms σ(x) for each variable x occurring in t.

Lemma 8. Let σ be a closed substitution, and let t be a term.

1. Assume that (b1 . . . bk, X) is a ready pair of σ(t). Then

(a) either t
b1...bk→ t′ and I(σ(t′)) = X, for some t′,

(b) or t
b1...bi→ y + t′ for some i < k, variable y and term t′ such that

(bi+1 . . . bk, X) is a ready pair of σ(y).

2. Assume that t
b1...bk→ t′ for some t′. Then (b1 . . . bk, I(σ(t′))) is a ready pair

of σ(t).
3. Assume that t

b1...bi→ y + t′ for some i < k, variable y and term t′ such that
(bi+1 . . . bk, X) is a ready pair of σ(y). Then (b1 . . . bk, X) is a ready pair of
σ(t).

We are now ready to prove Lemma 3 for -R. Following the structure of the proof
of this statement for the ready traces preorder, we establish the contrapositive
statement. To this end, assume that t 6-R u, and x is not a summand of t + u.
We shall show that t + x 6-R u + x.

Since t 6-R u, there is a closed substitution σ such that σ(t) 6-R σ(u). This
means that there is a ready pair (b1 . . . bk, X) of σ(t) that is not a ready pair
of σ(u). In the remainder of the proof, we use this information to construct a
closed substitution ρ such that ρ(t+x) 6-R ρ(u+x), thus establishing our claim
that t + x 6-R u + x.

Suppose that I(σ(t)) 6= I(σ(u)). As x is not a summand of t+u, then clearly
σ[x 7→ 0](t + x) 6-R σ[x 7→ 0](u + x). Hence, t + x 6-R u + x, which was to be
shown.

So we may assume that I(σ(t)) = I(σ(u)) = X . In particular this implies
that k > 0.

As in the proof for the ready traces preorder, we define the closed substitution
ρ by ρ = σ[x 7→ πX

k−1(σ(x))], where the closed term πX
k−1(σ(x)) is defined as on

page 28. We observed in the proof for the ready traces preorder that (stronger
versions of) the following properties hold for ρ:

1. I(ρ(x)) = I(σ(x)), and ρ(y) = σ(y) for each variable y 6= x,
2. ρ(x) and σ(x) have the same ready pairs of length smaller than k, and
3. ρ(x) does not have any ready pairs of the form (c1 . . . ck, X).

We shall argue that
ρ(t + x) 6-R ρ(u + x) ,

showing that t + x 6-R u + x, as claimed.
Observe, first of all, that (b1 . . . bk, X) is a ready pair of ρ(t+x). To see this,

recall that, as (b1 . . . bk, X) is a ready pair of σ(t), by Lemma 8(1) we have that
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– either t
b1...bk→ t′ and I(σ(t′)) = X , for some t′,

– or t
b1...bi→ y+t′ for some i < k, variable y and term t′ such that (bi+1 . . . bk, X)

is a ready pair of σ(y).

(Note that, in light of Lemma 1 and our assumptions that (b1 . . . bk, X) is not a
ready pair of σ(u) and k > 0, in the latter case i > 0. Indeed, if i = 0, then y
would also be a variable summand of u, and (b1 . . . bk, X) would be a ready pair
of σ(u).) We proceed to prove that (b1 . . . bk, X) is a ready pair of ρ(t + x) by
considering the two possibilities above separately.

– Suppose that t
b1...bk→ t′ and I(σ(t′)) = X , for some t′. Lemma 8(2) yields

that ρ(t) b1...bk→ ρ(t′). Moreover, by property 1 of ρ, I(ρ(t′)) = I(σ(t′)) = X .
Since k > 0, (b1 . . . bk, X) is a ready pair of ρ(t + x), as claimed.

– Suppose that t
b1...bi→ y + t′ for some 0 < i < k, variable y and term t′ such

that (bi+1 . . . bk, X) is a ready pair of σ(y). In this case,

ρ(t) b1...bi→ ρ(y + t′) .

If y 6= x, then (bi+1 . . . bk, X) is a ready pair of ρ(y), by property 1 of ρ.
Since i < k, by Lemma 8(3), (b1 . . . bk, X) is a ready pair of ρ(t). Since
k > 0, (b1 . . . bk, X) is a ready pair of ρ(t + x), as claimed.
If y = x, then (bi+1 . . . bk, X) is a ready pair of ρ(x), by property 2 of ρ
because i > 0. Since i < k, by Lemma 8(3), (b1 . . . bk, X) is a ready pair of
ρ(t). Since k > 0, (b1 . . . bk, X) is a ready pair of ρ(t + x), as claimed.

We now prove that (b1 . . . bk, X) is not a ready pair of ρ(u + x). To this end,
note, first of all, that (b1 . . . bk, X) is not a ready pair of ρ(x) by property 3 of
ρ. Since k > 0, it suffices to show that (b1 . . . bk, X) is not a ready pair of ρ(u).
By Lemma 8(1), (b1 . . . bk, X) is a ready pair of ρ(u) only if

– either u
b1...bk→ u′ and I(ρ(u′)) = X , for some u′,

– or u
b1...bi→ y+u′ for some i < k, variable y and term u′ such that (bi+1 . . . bk, X)

is a ready pair of ρ(y).

We now proceed to argue that both of these possibilities contradict our assump-
tion that (b1 . . . bk, X) is not a ready pair of σ(u). Indeed, in the former case,
we could conclude that (b1 . . . bk, X) is a ready pair of σ(u) using property 1 of
ρ and Lemma 8(2). In the latter case, we could reach the same conclusion using
properties 1 and 2 of ρ and Lemma 8(3).

This concludes the proof. 2

B.7 Proof of Lemma 3 for -PW

We begin by offering a reformulation of the definition of the possible worlds
preorder that will be useful in the proof to follow.
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Definition 4. A closed term ap is a prefixed possible world of a closed term q
if:

1. p is deterministic, and
2. q

a→ q′ for some closed term q′ such that p -RS q′.

For closed terms r and s, we define r vPW s if:

1. the prefixed possible worlds of r are also prefixed possible worlds of s, and
2. I(r) = I(s).

The relation vPW is lifted to open terms in the standard fashion; see page 4.

Lemma 9. The preorders -PW and vPW coincide over BCCSP(A).

Proof. It suffices to show the statement for closed terms. Assume that r -PW s.
We prove that r vPW s also holds. To this end, observe, first of all, that I(r) =
I(s), since -PW is included in the readies preorder. We are therefore left to show
that the prefixed possible worlds of r are also prefixed possible worlds of s.

Suppose that ap is a prefixed possible world of r. It is not hard to see that
ap + p′ is a possible world of r, for some p′. As r -PW s, it follows that ap + p′

is also a possible world of s. We may therefore conclude that ap is a prefixed
possible world of s, which was to be shown.

Assume now that r vPW s. We prove that r -PW s also holds. Observe, first
of all, that I(r) = I(s) by our assumption that r vPW s. Let p be a possible
world of r. Then p is deterministic and p -RS r. Since p is deterministic, for
each a ∈ I(p) there is a unique closed term pa such that p

a→ pa. Moreover,

p =
∑

a∈I(p)

apa

and I(p) = I(r) = I(s). As p -RS r, for each a ∈ I(p) there is a closed term ra

such that pa -RS ra. Since pa is itself deterministic, apa is a prefixed possible
world of r, for each a ∈ I(p). As r vPW s by assumption, it follows that apa is
also a prefixed possible world of s for each a ∈ I(p). We conclude that p is a
possible world of s, which was to be shown. 2

We are now ready to prove Lemma 3 for -PW. In light of the above lemma,
it suffices to prove this statement for vPW. We establish the contrapositive
statement. To this end, assume that t 6vPW u, and x is not a summand of t + u.
We shall show that t + x 6vPW u + x.

Since t 6vPW u, there is a closed substitution σ such that σ(t) 6vPW σ(u).
If I(σ(t)) 6= I(σ(u)), then, reasoning as in the proof for the readies preorder,

it is easy to prove that t+x 6vPW u+x. So we can assume that I(σ(t)) = I(σ(u)).
Because of this assumption, there is a prefixed possible world ap of σ(t) that

is not a prefixed possible world of σ(u). Our order of business will now be to
construct a closed substitution ρ with the following properties:

1. ρ(y) = σ(y) for each variable y 6= x,
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2. ρ(x) and σ(x) have the same prefixed possible worlds of depth at most
depth(p), and

3. ρ(x) does not have any completed traces of length depth(p) + 1.

Before giving the construction of ρ, we shall argue that from these three prop-
erties it follows that

ρ(t + x) 6vPW ρ(u + x) .

In view of properties 1 and 2, it is not hard to see that for any term r,

(i) σ(r) and ρ(r) have the same prefixed possible worlds of depth at most
depth(p), and

(ii) if r does not have a summand x, then σ(r) and ρ(r) have the same prefixed
possible worlds of depth at most depth(p) + 1.

We prove these two claims by induction on depth(r). Suppose that

r =
∑

i∈I

airi +
∑

j∈J

yj .

By induction, for i ∈ I, claim (i) yields that ρ(ri) and σ(ri) have the same
prefixed possible worlds of depth at most depth(p). This implies (cf. Lemma 9)
that ρ(airi) and σ(airi) have the same prefixed possible worlds of depth at most
depth(p) + 1. And for j ∈ J , if yj 6= x, then by property 1, ρ(yj) = σ(yj), so
they have the same prefixed possible worlds. This completes the proof of claim
(ii). Finally, if yj = x, then by property 2, ρ(x) and σ(x) have the same prefixed
possible worlds of depth at most depth(p). Hence we can conclude that claim (i)
also holds.

By assumption, x is not a summand of t, and ap is a prefixed possible world
of σ(t). So by claim (ii), ap is a prefixed possible world of ρ(t), and so also of
ρ(t + x).

By assumption, x is not a summand of u, and ap is not a prefixed possible
world of σ(u). So by claim (ii), ap is not a prefixed possible world of ρ(u).
Moreover, by property 3, ap is not a prefixed possible world of ρ(x). Hence, ap
is not a prefixed possible world of ρ(u + x).

Since ap is a prefixed possible world of ρ(t + x) and not of ρ(u + x), we
conclude that t + x 6vPW u + x, which was to be proved.

All that we are left to do to complete the proof for this case is to construct
a closed substitution ρ having properties 1–3. We define

ρ = σ[x 7→ π∅depth(p)(σ(x))] ,

where the closed term π∅depth(p)(σ(x)) is defined as on page 28. Property 1 triv-
ially holds. And property 2 follows immediately from the following two observa-
tions:

– I(π∅n(q)) = I(q), for each q and n ≥ 0, and
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– for all closed terms q, r, action c and n > 0,

q
c→ r iff π∅n(q) c→ π∅n−1(r) .

Finally, to see that ρ meets property 3, assume that π∅depth(p)(σ(x))
c1...cdepth(p)+1→ r

for some sequence c1 . . . cdepth(p)+1 of actions and closed term r. It is not hard
to see that then r = a0 for some a ∈ A.

This concludes the proof. 2
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