
BRICS
Basic Research in Computer Science

A Dynamic Continuation-Passing Style for
Dynamic Delimited Continuations
(Preliminary Version)

Dariusz Biernacki
Olivier Danvy
Kevin Millikin

BRICS Report Series RS-05-5

ISSN 0909-0878 February 2005

B
R

IC
S

R
S

-05-5
B

iernackietal.:
A

D
ynam

ic
C

ontinuation-P
assing

S
tyle

for
D

ynam
ic

D
elim

ited
C

ontinuations

Copyright c© 2005, Dariusz Biernacki & Olivier Danvy & Kevin
Millikin.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/5/

A Dynamic Continuation-Passing Style

for Dynamic Delimited Continuations∗

Dariusz Biernacki, Olivier Danvy, and Kevin Millikin

BRICS†

Department of Computer Science
University of Aarhus‡

February 2005

Abstract

We present a new abstract machine that accounts for dynamic delimited
continuations. We prove the correctness of this new abstract machine with
respect to a definitional abstract machine. Unlike this definitional abstract ma-
chine, the new abstract machine is in defunctionalized form, which makes it
possible to state the corresponding higher-order evaluator. This evaluator is
in continuation+state passing style, and threads a trail of delimited continua-
tions and a meta-continuation. Since this style accounts for dynamic delimited
continuations, we refer to it as ‘dynamic continuation-passing style.’

We illustrate that the new machine is more efficient than the definitional
one, and we show that the notion of computation induced by the corresponding
evaluator takes the form of a monad.

∗Preliminary version.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {dabi,danvy,kmillikin}@brics.dk

i

Contents

1 Introduction 1

2 The definitional abstract machine 3

3 The new abstract machine 5

4 Equivalence of the definitional machine and of the new machine 5

5 The evaluator corresponding to the new abstract machine 10

6 Efficiency issues 10

7 A monad for dynamic continuation-passing style 12

8 Related work 13

9 Conclusion and issues 14

List of Figures

1 The definitional call-by-value abstract machine for the λ-calculus ex-
tended with F and # . 4

2 A new call-by-value abstract machine for the λ-calculus extended with
F and # . 6

3 A call-by-value evaluator for the λ-calculus extended with F and # . 11

ii

1 Introduction

Delimited continuations have been a topic of study for 15 years now [9,13], with two
main lines of work: Felleisen’s operational approach [13, 15] where dynamic delim-
ited continuations are represented as lists of control-stack frames and composed by
list concatenation, and Danvy and Filinski’s denotational approach [9] where static
delimited continuations are represented with continuation-passing functions and com-
posed by continuation-passing function composition. It is well known that static and
dynamic delimited continuations differ in behavior, even though they have the same
expressive power [21]. Recently, we have pointed out in which sense dynamic delim-
ited continuations are incompatible with continuation-passing style (CPS) [3, Sec-
tion 4.5], and how they make it possible to program a breadth-first tree traversal in
direct style and with no auxiliary parameter [4].

Static delimited continuations are compatible with continuation-passing style be-
cause a program using them can be CPS-transformed using a traditional notion of
CPS transformation [10, 19, 22]. The abstract machine accounting for static delim-
ited continuations is in defunctionalized form [11,20] and corresponds to a definitional
evaluator in CPS [3,20], which itself corresponds to the associated CPS transformer:

CPS transformer

continuation-passing evaluator

associated transformer
into the term model

OO�
�
�
�
�
�

defunctionalization

��
abstract machine

refunctionalization

OO

In contrast, dynamic delimited continuations are specified with an abstract machine
which is not in defunctionalized form [3, Section 4.5], and only recently have they
been characterized with a non-standard notion of CPS [21].

This work: We present a new abstract machine that accounts for dynamic delim-
ited continuations and that is in defunctionalized form, and we prove its equivalence
with a definitional abstract machine that is not in defunctionalized form. We also
present the corresponding new evaluator from which one can obtain the correspond-
ing new CPS transformer. The resulting ‘dynamic continuation-passing style’ threads
a list of trailing delimited continuations, i.e., it is a continuation+state-passing style.
This style is equivalent to, but simpler than the one recently proposed by Shan [21],
and structurally similar to the one recently proposed by Dybvig, Peyton Jones, and
Sabry [12]. We also show that it corresponds to a computational monad.

1

Prerequisites: We assume a passing familiarity with the notions of continuation, of
delimited continuation, and of defunctionalization. In particular, we use Danvy and
Nielsen’s characterization of a program being in the range of defunctionalization [11]:
the first-order representation of functions should have a single point of consumption.
So for example, the following ML program traverses a binary tree in depth-first order,
using a stack (represented as a list):

datatype tree = LEAF of int

| NODE of tree * int * tree

(* depth_first_stack_based_enumeration : tree -> int list *)

fun depth_first_stack_based_enumeration t

= let (* visit : tree * tree list -> int list *)

fun visit (LEAF i, a)

= i :: (continue (a, ()))

| visit (NODE (t1, i, t2), a)

= i :: (visit (t1, t2 :: a))

(* continue : tree list * unit -> int list *)

and continue (nil, ())

= nil

| continue (t :: a, ())

= visit (t, a)

in visit (t, nil)

end

The intermediate list of trees is constructed in the inductive case (with the expression
t2 :: a) and consumed by continue. This program is therefore in defunctionalized
form, and the corresponding higher-order program reads as follows:

(* depth_first_higher_order_enumeration : tree -> int list *)

fun depth_first_higher_order_enumeration t

= let (* visit : tree * (unit -> int list) -> int list *)

fun visit (LEAF i, a)

= i :: (a ())

| visit (NODE (t1, i, t2), a)

= i :: (visit (t1, fn () => visit (t2, a)))

in visit (t, fn () => nil)

end

Defunctionalizing the higher-order program yields the stack-based program, and con-
versely, Church-encoding the list in the stack-based program yields the higher-order
program [11].

By folding the definition of continue in the induction case of the stack-based
definition, we can make it even more clear that the definition uses a stack:

| visit (NODE (t1, i, t2), a)

= i :: (continue (t1 :: t2 :: a, ()))

By replacing the stack with a queue, we obtain a program that traverses the source
tree in breadth-first order:

2

| visit (NODE (t1, i, t2), a)

= i :: (continue (a @ (t1 :: t2 :: nil), ()))

(Nothing else changes in the definition.) This queue-based program is not in de-
functionalized form because the intermediate list of trees, which is constructed in
the inductive case (with the expression t1 :: t2 :: nil), is not solely consumed by
continue—it may also be consumed by @ (i.e., the list-concatenation function) in a
subsequent recursive call.

Overview: We first present the definitional machine for dynamic delimited contin-
uations in Section 2. We then present the new machine in Section 3 and we establish
their equivalence in Section 4. The new machine is in defunctionalized form and
we present the corresponding higher-order evaluator in Section 5. This evaluator is
expressed in a dynamic continuation-passing style. We address the issue of efficiency
in Section 6 and in Section 7, we show that dynamic continuation-passing style can
be characterized with a computational monad.

2 The definitional abstract machine

In our earlier work [3], we obtained an abstract machine for static delimited continua-
tions by defunctionalizing a definitional evaluator that had two layered continuations.
In this abstract machine, the first continuation takes the form of an evaluation context
and the second one takes the form of a stack of evaluation contexts. By construc-
tion, this abstract machine is an extension of Felleisen et al.’s CEK machine [14],
which has one evaluation context and is itself a defunctionalized evaluator with one
continuation [8].

The abstract machine for static delimited continuations implements the applica-
tion of a delimited continuation (represented as a captured context) by pushing the
current context on the stack of contexts and installing the captured context as the
new current context. In contrast, applying a dynamic delimited continuation (also
represented as a captured context) is implemented by concatenating the captured
context to the current context. As a result, static and dynamic delimited continua-
tions differ because a subsequent control operation will capture either the remainder
of the reinstated context (in the static case) or the remainder of the reinstated context
together with the then-current context (in the dynamic case). An abstract machine
implementing dynamic delimited continuations therefore requires one to define an
operation to concatenate contexts.

Figure 1 displays the definitional abstract machine for dynamic delimited con-
tinuations, including the operation to concatenate contexts. It only differs from
our earlier abstract machine for static delimited continuations [3, Figure 7 and Sec-
tion 4.5] in the way captured delimited continuations are applied, and is otherwise
consistent with Felleisen et al.’s definition of delimited-continuation composition by
concatenation of their representation [15].

Contexts form a monoid:

Proposition 1. The operation ? defined in Figure 1 satisfies the following properties:

3

• Terms: e ::= x | λx .e | e0 e1 | #e | Fk .e

• Values (closures and captured continuations): v ::= [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{x 7→ v}
• Contexts: C1 ::= end | arg ((e, ρ), C1) | fun (v, C1)

• Concatenation of contexts:

end ? C′
1

def= C′
1

arg ((e, ρ), C1) ? C′
1

def= arg ((e, ρ), C1 ? C′
1)

fun (v, C1) ? C′
1

def= fun (v, C1 ? C′
1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒ 〈e, ρmt , end, nil〉eval
〈x , ρ, C1, C2〉eval ⇒ 〈C1, ρ(x), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒ 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒ 〈e0, ρ, arg ((e1, ρ), C1), C2〉eval
〈#e, ρ, C1, C2〉eval ⇒ 〈e, ρ, end, C1 :: C2〉eval

〈Fk .e, ρ, C1, C2〉eval ⇒ 〈e, ρ{k 7→ C1}, end, C2〉eval
〈end, v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈arg ((e, ρ), C1), v, C2〉cont1 ⇒ 〈e, ρ, fun (v, C1), C2〉eval
〈fun ([x , e, ρ], C1), v, C2〉cont1 ⇒ 〈e, ρ{x 7→ v}, C1, C2〉eval

〈fun (C′
1, C1), v, C2〉cont1 ⇒ 〈C′

1 ? C1, v, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒ v

Figure 1: The definitional call-by-value abstract machine
for the λ-calculus extended with F and #

(1) C1 ? end = C1 = end ? C1,

(2) (C1 ? C′
1) ? C′′

1 = C1 ? (C′
1 ? C′′

1).

Proof. By induction on the structure of C1.

4

In Figure 1, the constructors of contexts are not solely consumed by the cont1
transitions of the abstract machine, but also by ?. Therefore, the definitional ab-
stract machine is not in the range of defunctionalization, and does not correspond
to a higher-order evaluator. In the next section, we present a new abstract machine
that implements dynamic delimited continuations and is in the range of defunction-
alization.

3 The new abstract machine

The definitional machine is not in the range of defunctionalization because of the
concatenation of contexts. We therefore introduce a new component in the machine
to avoid this concatenation. This new component, the trail of contexts, holds the
then-current contexts that would have been concatenated to the captured context
in the definitional machine. These then-current contexts are then reinstated in turn
when the captured context completes. Together, the current context and the trail of
contexts represent the current dynamic context. The final component of the machine
holds a stack of dynamic contexts (represented as a list: nil denotes the empty list,
the infix operator :: denotes list construction, and the infix operator @ denotes list
concatenation, as in ML).

Figure 2 displays the new abstract machine for dynamic delimited continuations.
It only differs from the definitional abstract machine in the way dynamic contexts are
represented (a context and a trail of contexts (represented as a list) instead of one
concatenated context). In Section 4, we establish the equivalence of the definitional
machine and of the new machine.

In the new machine, and unlike in the definitional machine, context construc-
tors are only consumed in the cont1 transitions (instead of also in the context-
concatenation function). Therefore, the new machine, unlike the definitional ma-
chine, is in the range of defunctionalization. It can be refunctionalized to produce a
higher-order evaluator, which we present in Section 5.

4 Equivalence of the definitional machine and of
the new machine

We relate the configurations and transitions of the definitional abstract machine to
those of the new abstract machine. As a diacritical convention [23], we annotate the
components, configurations, and transitions of the definitional machine with a tilde
(·̃). Also, we convert a dynamic context of the new machine (a context and a trail
of contexts) into another context of the new machine in order to relate it to a context
of the definitional machine:

Definition 1. We define an operation ?̂, concatenating a new context and a trail of
new contexts, by induction on its second argument:

C1 ?̂ nil
def= C1

C1 ?̂ (C′
1 :: T1) def= C1 ? (C′

1 ?̂ T1)

5

• Terms: e ::= x | λx .e | e0 e1 | #e | Fk .e

• Values (closures and captured continuations): v ::= [x , e, ρ] | [C1, T1]

• Environments: ρ ::= ρmt | ρ{x 7→ v}
• Contexts: C1 ::= end | arg ((e, ρ), C1) | fun (v, C1)

• Trail of contexts: T1 ::= nil | C1 :: T1

• Meta-contexts: C2 ::= nil | (C1, T1) :: C2

• Initial transition, transition rules, and final transition:

e ⇒ 〈e, ρmt , end, nil, nil〉eval
〈x , ρ, C1, T1, C2〉eval ⇒ 〈C1, ρ(x), T1, C2〉cont1

〈λx .e, ρ, C1, T1, C2〉eval ⇒ 〈C1, [x , e, ρ], T1, C2〉cont1

〈e0 e1, ρ, C1, T1, C2〉eval ⇒ 〈e0, ρ, arg ((e1, ρ), C1), T1, C2〉eval
〈#e, ρ, C1, T1, C2〉eval ⇒ 〈e, ρ, end, nil, (C1, T1) :: C2〉eval

〈Fk .e, ρ, C1, T1, C2〉eval ⇒ 〈e, ρ{k 7→ [C1, T1]}, end, nil, C2〉eval
〈end, v, nil, C2〉cont1 ⇒ 〈C2, v〉cont2

〈end, v, C1 :: T1, C2〉cont1 ⇒ 〈C1, v, T1, C2〉cont1

〈arg ((e, ρ), C1), v, T1, C2〉cont1 ⇒ 〈e, ρ, fun (v, C1), T1, C2〉eval
〈fun ([x , e, ρ], C1), v, T1, C2〉cont1 ⇒ 〈e, ρ{x 7→ v}, C1, T1, C2〉eval
〈fun ([C′

1, T ′
1], C1), v, T1, C2〉cont1 ⇒ 〈C′

1, v, T ′
1 @ (C1 :: T1), C2〉cont1

〈(C1, T1) :: C2, v〉cont2 ⇒ 〈C1, v, T1, C2〉cont1

〈nil, v〉cont2 ⇒ v

Figure 2: A new call-by-value abstract machine
for the λ-calculus extended with F and #

Proposition 2. C1 ?̂ (C′
1 :: T1) = (C1 ? C′

1) ?̂ T1,

Proof. Follows from Definition 1 and from the associativity of ? (Proposition 1(2)).

Proposition 3. (C1 ?̂ T1) ?̂ T ′
1 = C1 ?̂ (T1 @ T ′

1).

Proof. By induction on the structure of T1.

6

Definition 2. We relate the definitional abstract machine and the new abstract ma-
chine with the following family of relations ':

(1) Terms: ẽ 'e e iff ẽ = e

(2) Values:

(a) [x̃ , ẽ, ρ̃] 'v [x , e, ρ] iff x̃ = x , ẽ 'e e and ρ̃ 'env ρ

(b) C̃1 'v [C1, T1] iff C̃1 'c C1 ?̂ T1

(3) Environments: ρ̃ 'env ρ iff dom (ρ̃) = dom (ρ) and for all x ∈ dom (ρ̃),
ρ̃(x) 'v ρ(x)

(4) Contexts:

(a) ẽnd 'c end

(b) ãrg ((ẽ, ρ̃), C̃1) 'c arg ((e, ρ), C1) iff ẽ 'e e, ρ̃ 'env ρ, and C̃1 'c C1

(c) f̃un (ṽ, C̃1) 'c fun (v, C1) iff ṽ 'v v and C̃1 'c C1

(5) Meta-contexts:

(a) ñil 'mc nil

(b) C̃1 :: C̃2 'mc (C1, T1) :: C2 iff C̃1 'c C1 ?̂ T1 and C̃2 'mc C2

(6) Configurations:

(a) 〈ẽ, ρ̃, C̃1, C̃2〉geval
' 〈e, ρ, C1, T1, C2〉eval iff

ẽ 'e e, ρ̃ 'env ρ, C̃1 'c C1 ?̂ T1, and C̃2 'mc C2

(b) 〈C̃1, ṽ, C̃2〉c̃ont1
' 〈C1, v, T1, C2〉cont1 iff

C̃1 'c C1 ?̂ T1, ṽ 'v v, and C̃2 'mc C2

(c) 〈C̃2, ṽ〉
c̃ont2

' 〈C2, v〉cont2 iff

C̃2 'mc C2 and ṽ 'v v

Definition 3. The partial functions ẽval and eval mapping terms to values are de-
fined as follows:

(1) ẽval (e) = ṽ if and only if the definitional abstract machine, started with the
term e, stops with the value ṽ,

(2) eval (e) = v if and only if the new abstract machine, started with the term e,
stops with the value v.

We want to prove that ẽval and eval are defined on the same programs (i.e., closed
terms), and that for any given program, they yield equivalent values.

Theorem 1 (Equivalence). For any program e, ẽval (e) = ṽ if and only if eval (e) =
v and ṽ 'v v.

7

Proving Theorem 1 requires proving the following lemmas.

Lemma 1. If C̃1 'c C1 and C̃′
1 'c C′

1 then C̃1 ?̃ C̃′
1 'c C1 ? C′

1.

Proof. By induction on the structure of C̃1.

The following lemma addresses the configurations of the new abstract machine
that break the one-to-one correspondence with the definitional abstract machine. By
writing δ ⇒∗ δ′, δ ⇒+ δ′ and δ ⇒1 δ′, we mean that there is respectively zero or
more, one or more, and at most one transition leading from the configuration δ to
the configuration δ′.

Lemma 2. Let δ = 〈end, v, T1, C2〉cont1 .

(1) If end ?̂ T1 = end then δ ⇒∗ 〈end, v, nil, C2〉cont1 .

(2) If end ?̂ T1 = C1 ?̂ T ′
1 6= end then δ ⇒∗ 〈C1, v, T ′

1, C2〉cont1 .

(3) If T1 6= nil and δ̃ ' δ and δ ⇒ δ′ then δ̃ ' δ′.

Proof. By induction on the structure of T1.

The following key lemma relates single transitions of the two abstract machines.

Lemma 3. If δ̃ ' δ then

(1) if δ̃ ⇒ δ̃′ then there exists a configuration δ′ such that δ ⇒+ δ′ and δ̃′ ' δ′,

(2) if δ ⇒ δ′ then there exists a configuration δ̃′ such that δ̃ ⇒1 δ̃′ and δ̃′ ' δ′.

Proof. By case analysis of δ̃ ' δ. Most of the cases follow directly from the definition
of the relation '. We show the proof of one such case:

Case: δ̃ = 〈x̃ , ρ̃, C̃1, C̃2〉geval
and δ = 〈x , ρ, C1, T1, C2〉eval .

From the definition of the definitional abstract machine, δ̃ ⇒ δ̃′, where
δ̃′ = 〈C̃1, ρ̃(x̃), C̃2〉c̃ont1

.
From the definition of the new abstract machine, δ ⇒ δ′, where
δ′ = 〈C1, ρ(x), T1, C2〉cont1 .
By assumption, ρ̃(x̃) 'v ρ(x), C̃1 'c C1 ?̂ T1 and C̃2 'mc C2. Hence, δ̃′ ' δ′ and
both directions of the lemma are proved in this case.

There are only three interesting cases. One of them arises when a captured con-
tinuation is applied, and the remaining two explain why the two abstract machines
do not operate in lock step:

Case: δ̃ = 〈f̃un (C̃′
1, C̃1), ṽ, C̃2〉c̃ont1

and δ = 〈fun ([C′
1, T ′

1], C1), v, T1, C2〉cont1

From the definition of the definitional abstract machine, δ̃ ⇒ δ̃′, where
δ̃′ = 〈C̃′

1 ?̃ C̃1, ṽ, C̃2〉c̃ont1
.

8

From the definition of the new abstract machine, δ ⇒ δ′, where
δ′ = 〈C′

1, v, T ′
1 @ (C1 :: T1), C2〉cont1 .

By assumption, C̃′
1 'c C′

1 ?̂ T ′
1 and C̃1 'c C1 ?̂ T1.

By Lemma 1, we have C̃′
1 ?̃ C̃1 'c (C′

1 ?̂ T ′
1) ? (C1 ?̂ T1).

By the definition of ?̂, (C′
1 ?̂ T ′

1) ? (C1 ?̂ T1) = (C′
1 ?̂ T ′

1) ?̂ (C1 :: T1).
By Proposition 3, (C′

1 ?̂ T ′
1) ?̂ (C1 :: T1) = C′

1 ?̂ (T ′
1 @ (C1 :: T1)).

Since ṽ 'v v and C̃2 'mc C2, we infer that δ̃′ ' δ′ and both directions of the lemma
are proved in this case.

Case: δ̃ = 〈ẽnd, ṽ, C̃2〉c̃ont1
and δ = 〈end, v, T1, C2〉cont1

(1) From the definition of the definitional abstract machine, δ̃ ⇒ δ̃′, where δ̃′ =
〈C̃2, ṽ〉

c̃ont2
.

By the definition of ', ẽnd 'c end ?̂ T1, so end ?̂ T1 = end by the definition of
'c.
Then by Lemma 2(1), δ ⇒∗ 〈end, v, nil, C2〉cont1 .
Hence, δ ⇒+ δ′, where δ′ = 〈C2, v〉cont2 and δ̃′ ' δ′.

(2) If T1 = nil then δ ⇒ δ′, where δ′ = 〈C2, v〉cont2 , and δ̃ ⇒ δ̃′, where δ̃′ =
〈C̃2, ṽ〉

c̃ont2
, with δ̃′ ' δ′.

Otherwise, T1 = end :: T ′
1 and δ ⇒ δ′, where δ′ = 〈end, v, T ′

1, C2〉cont1 . Obvi-
ously, δ̃′ ' δ′.

Case: δ̃ = 〈C̃1, ṽ, C̃2〉c̃ont1
and δ = 〈end, v, T1, C2〉cont1 , where C̃1 6= end.

(1) Assume that δ̃ ⇒ δ̃′. By Lemma 2(2), δ ⇒+ δ′, where
δ′ = 〈C1, v, T ′

1, C2〉cont1 and C1 6= end and δ̃ ' δ′. Hence, we have reduced
this case to one of the trivial cases (not shown in the proof), where δ̃ ' δ′

and δ̃ ⇒ δ̃′. Therefore, there exists a configuration δ′′ such that δ′ ⇒ δ′′ and
δ̃′ ' δ′′.

(2) Assume that δ ⇒ δ′. By Lemma 2(3), δ̃ ' δ′.

Given the relation between single-step transitions of the two abstract machines, we
can generalize it straightforwardly to the relation between their multi-step transitions.

Lemma 4. If δ̃ ' δ then

(1) if δ̃ ⇒+ δ̃′ then there exists a configuration δ′ such that δ ⇒+ δ′ and δ̃′ ' δ′;

(2) if δ ⇒+ δ′ then there exists a configuration δ̃′ such that δ̃ ⇒∗ δ̃′ and δ̃′ ' δ′.

Proof. Both directions follow from Lemma 3 by induction on the number of transi-
tions.

We are now in position to prove the equivalence theorem.

9

Proof of Theorem 1. The initial configuration of the definitional abstract machine,
i.e., 〈e, ρ̃mt , ẽnd, ñil〉geval

, and the initial configuration of the new abstract machine,
i.e., 〈e, ρmt , end, nil, nil〉eval , are in the relation '. Therefore, if the definitional
abstract machine reaches the final configuration 〈ñil, ṽ〉

c̃ont2
, then by Lemma 4, there

is a configuration δ′ such that δ ⇒+ δ′ and δ̃′ ' δ′. By the definition of ', δ′ must
be 〈nil, v〉cont2 , with ṽ 'v v. The proof of the converse direction follows the same
steps.

5 The evaluator corresponding to the new abstract
machine

The raison d’être of the new abstract machine is that it is in defunctionalized form.
We present the corresponding higher-order evaluator in Figure 3. This evaluator is
expressed in a continuation+state-passing style where the state consists of a trail of
continuations and a meta-continuation. Since this continuation+state-passing style
came into being to account for dynamic delimited continuations, we refer to it as a
‘dynamic continuation-passing style.’

The corresponding dynamic CPS transformer can be immediately obtained as the
associated syntax-directed encoding into the term model of the meta-language. The
full version of this article presents it in detail [5].

6 Efficiency issues

The new abstract machine implements the dynamic delimited control operatorsF and
more efficiently than the definitional abstract machine. The efficiency gain comes
from allowing continuations to be implemented as lists of stack segments—which
is generally agreed to be the most efficient implementation for first-class continua-
tions [6, 7, 17]—without imposing a choice of representation on the stack segments.

In particular, when the definitional abstract machine applies a captured context
C′

1 in a current context C1, the new context is C′
1 ? C1, and constructing it requires

work proportional to the length of the context C′
1. In contrast, when the new ab-

stract machine applies the equivalent context [C′
1, T ′

1] in a current context C1 with
a current trail of contexts T1, the new trail is T ′

1 @ (C1 :: T1), and constructing it re-
quires work proportional to the number of contexts (i.e., stack segments) in the trail,
independently of the length of each of these contexts. In the worst case, each context
in the trail has length one and the new abstract machine does the same amount of
work as the definitional machine. In all other cases it does less.

The following implementation of a list copy function (expressed in ML syntax)
illustrates the situation:

10

• Terms: Exp 3 e ::= x | λx .e | e0 e1 | #e | Fk .e

• Answers, meta-continuations, continuations and values:

Ans = Val
θ2, k2 ∈ Cont2 = Val → Ans
θ1, k1 ∈ Cont1 = Val × List(Cont1) × Cont2 → Ans

v ∈ Val = Val × Cont1 × List(Cont1) × Cont2 → Ans

• Initial meta-continuation: θ2 = λv.v

• Initial continuation: θ1 = λ(v, t1, k2).case t1
of nil ⇒ k2 v
| k1 :: t′1 ⇒ k1 (v, t′1, k2)

• Environments: Env 3 ρ ::= ρmt | ρ{x 7→ v}
• Evaluation function: eval : Exp × Env × Cont1 × List(Cont1) × Cont2 → Ans

eval (x , ρ, k1, t1, k2) = k1 (ρ(x), t1, k2)
eval (λx .e, ρ, k1, t1, k2) = k1 (λ(v, k1, t1, k2).eval (e, ρ{x 7→ v}, k1, t1, k2), t1, k2)
eval (e0 e1, ρ, k1, t1, k2) = eval (e0, ρ, λ(v0, t1, k2).eval (e1, ρ, λ(v1, t1, k2).v0 (v1, k1, t1, k2), t1, k2), t1, k2)

eval (#e, ρ, k1, t1, k2) = eval (e, ρ, θ1, nil, λv.k1 (v, t1, k2))
eval (Fk .e, ρ, k1, t1, k2) = eval (e, ρ{k 7→ λ(v, k′

1, t
′
1, k2).k1 (v, t1 @ (k′

1 :: t′1), k2)}, θ1, nil, k2)

• Main function: evaluate : Exp → Val

evaluate (e) = eval (e, ρmt , θ1, nil, θ2)

Figure 3: A call-by-value evaluator for the λ-calculus extended with F and #

11

(* list_copy : ’a list -> ’a list *)

fun list_copy xs

= let fun visit nil

= control (fn k => k nil)

| visit (x :: xs)

= x :: (visit xs)

in prompt (fn () => visit xs)

end

The initial call to visit is delimited by prompt (alias #), and in the base case, the
(delimited) continuation is captured with control (alias F). This delimited contin-
uation is represented by a context whose size is proportional to the length of the
list. In the definitional abstract machine, the entire context must be traversed and
copied when invoked (i.e., immediately). In the new machine, only the (empty) trail
of contexts is traversed and copied. Therefore, the definitional abstract machine does
work proportional to the length of the input list, whereas the new abstract machine
does the same work in constant time.

A small variation on the function above causes the definitional machine to perform
an amount of work which is quadratic in the length of the input list, by copying
contexts whose size is proportional to the length of the list on every recursive call:

(* list_copy’ : ’a list -> ’a list *)

fun list_copy’ xs

= let fun visit nil

= control (fn k => k nil)

| visit (x :: xs)

= x :: (control (fn k => k (visit xs)))

in prompt (fn () => visit xs)

end

The delimited continuation captured by control is represented by a context whose
size is proportional to the length of the list traversed so far (i.e., 0, 1, 2, etc.). In
contrast to this quadratic behavior, the new abstract machine performs an amount of
work that is linear in the length of the input list since it performs a constant amount
of work at each application of a continuation (i.e., once per recursive call).

Implementing the composition of delimited continuations by concatenating their
representations incurs an overhead proportional to the size of one of the delimited
continuations, and is therefore subject to pathological situations such as the one
illustrated in this section.

7 A monad for dynamic continuation-passing style

The evaluator of Figure 3 is compositional, and has type:

Exp × Env × Cont1 × List(Cont1) × Cont2 → Ans

Let us curry it to exhibit its notion of computation:

Exp × Env → Cont1 → List(Cont1) × Cont2 → Ans

12

Proposition 4. The type constructor

D(Val) = Cont1 → List(Cont1) × Cont2 → Ans

where Ans = Val
Cont2 = Val → Ans
Cont1 = Val → List(Cont1) × Cont2 → Ans

Val = Val → Cont1 → List(Cont1) × Cont2 → Ans

together with the functions

unit : Val → D(Val)
unit (v) = λk1.λ(t1, k2).k1 v (t1, k2)

bind : D(Val) × (Val → D(Val)) → D(Val)
bind (c, f) = λk1.λ(t1, k2).c (λv.λ(t′1, k

′
2).f v k1 (t′1, k

′
2)) (t1, k2)

form a continuation+state monad, where the state pairs the trail of continuations
and the meta-continuation. (The state could be η-reduced in the definitions of unit
and bind, yielding the definition of the continuation monad.)

Proof. A simple equational verification of the three monad laws [18].

Therefore the evaluator of Figure 3 is a specialized version of the usual call-by-value
monadic evaluator with respect to the monad above, given two monad operators,
one for delimiting control with # and one for abstracting control with F . (The full
version of this article contains more detail [5].) Dynamic continuation-passing style
therefore fits the functional correspondence between evaluators and abstract machines
advocated by the two first authors [1, 2]. In particular, we are now in position to
make dynamic delimited continuations coexist with arbitrary computational effects
expressed as monads.

8 Related work

As mentioned in the introduction, the original approaches to delimited continua-
tions were split between composing continuations by concatenating their represen-
tations and composing them using continuation-passing function composition. Re-
cently, Shan [21] and Dybvig, Peyton Jones, and Sabry [12] each have proposed an
account of dynamic delimited continuations using a continuation+state-passing style.

Shan’s development extends Felleisen et al.’s idea of an algebra of contexts [15]
(the state represents the prefix of a meta-continuation and is equipped with algebraic
operators Send and Compose to propagate intermediate results and compose the
representation of delimited continuations). Like our dynamic continuation-passing
style, Shan’s continuation-passing style hinges on the requirement that the answer
type of continuations be recursive. Our dynamic continuation-passing style also uses
a state, namely a trail of contexts and a meta-continuation. This representation,
however, only requires the usual list operations, instead of the dedicated algebraic
operations provided by Send and Compose. Consequently, the abstract machine of

13

Section 3 is simpler than the abstract machine corresponding to Shan’s continuation-
passing style. (We have constructed this abstract machine.) Shan’s transformation
can account for two other variations on F . Our continuation-passing style can be
adapted to account for these as well, by defunctionalizing the meta-continuation.

Dybvig, Peyton Jones, and Sabry’s continuation+state-passing style threads a
state which is a prompt-annotated list of continuations. This state is structurally sim-
ilar to ours in the sense that defunctionalizing and flattening our meta-continuation
and appending to it our trail of continuations yields their state without prompt anno-
tations. In particular, enriching our meta-continuation with named prompts precisely
yields Dybvig, Peyton Jones, and Sabry’s state. We find this coincidence of result
remarkable considering the difference of motivation and methodology:

• Dybvig, Peyton Jones, and Sabry sought “a typed monadic framework in which
one can define and experiment with arbitrary [delimited] control operators” [12,
Section 7] whereas

• we wanted an abstract machine for dynamic delimited continuations that is
in the range of Reynolds’s defunctionalization in order to provide a consistent
spectrum of tools for programming with and reasoning about delimited contin-
uations, both in direct style and in continuation-passing style.

9 Conclusion and issues

In our earlier work [4], we argued that dynamic delimited continuations need exam-
ples, reasoning tools, and meaning-preserving program transformations, not only new
variations, new formalizations, or new implementations. Our present work partly ful-
fills these wishes by providing an abstract machine that is in defunctionalized form,
the corresponding evaluator, the corresponding CPS transformer, and a monadic no-
tion of continuation-passing style that accounts for dynamic delimited continuations.

In the full version of this article [5], we revisit the breadth-first traversal in direct
style we presented in our earlier work [4] and that we briefly touched upon in Section 1.
This breadth-first traversal uses dynamic delimited continuations; CPS-transforming
it and defunctionalizing the resulting continuations yields an iterative program using
a queue—a situation which is pleasingly symmetric to the depth-first counterpart of
this breadth-first traversal: the depth-first traversal uses static delimited continua-
tions; CPS-transforming it and defunctionalizing the resulting continuations yields
an iterative program using a stack.

Compared to static delimited continuations, dynamic delimited continuations still
remain largely unexplored. We believe that the spectrum of compatible computa-
tional artifacts presented here—abstract machine, evaluator, computational monad,
and dynamic continuation-passing style—puts one in a better position to assess them.

Acknowledgments: We are grateful to Mads Sig Ager, Ma lgorzata Biernacka,
and Kristian Støvring for timely comments. This work is supported by the ESPRIT
Working Group APPSEM (http://www.appsem.org) and by the Danish Natural Sci-
ence Research Council, Grant no. 21-03-0545.

14

References

[1] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. A functional correspon-
dence between evaluators and abstract machines. In D. Miller, editor, Proceed-
ings of the Fifth ACM-SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’03), pages 8–19. ACM Press, Aug.
2003.

[2] M. S. Ager, O. Danvy, and J. Midtgaard. A functional correspondence between
monadic evaluators and abstract machines for languages with computational ef-
fects. Theoretical Computer Science, 2005. To appear. Extended version available
as the technical report BRICS RS-04-28.

[3] M. Biernacka, D. Biernacki, and O. Danvy. An operational foundation for de-
limited continuations in the CPS hierarchy. Tech. report BRICS RS-04-29, De-
partment of Computer Science, University of Aarhus, Aarhus, Denmark, Dec.
2004.

[4] D. Biernacki and O. Danvy. On the dynamic extent of delimited continuations.
Tech. report BRICS RS-05-2, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, Jan. 2005.

[5] D. Biernacki, O. Danvy, and K. Millikin. A dynamic continuation-passing style
for dynamic delimited continuations. Tech. report BRICS RS-05-5, Department
of Computer Science, University of Aarhus, Aarhus, Denmark, Feb. 2005.

[6] W. Clinger, A. H. Hartheimer, and E. M. Ost. Implementation strategies for
first-class continuations. Higher-Order and Symbolic Computation, 12(1):7–45,
1999.

[7] O. Danvy. Formalizing implementation strategies for first-class continuations. In
G. Smolka, editor, Proceedings of the Ninth European Symposium on Program-
ming, number 1782 in Lecture Notes in Computer Science, pages 88–103, Berlin,
Germany, Mar. 2000. Springer-Verlag.

[8] O. Danvy. On evaluation contexts, continuations, and the rest of the com-
putation. In H. Thielecke, editor, Proceedings of the Fourth ACM SIGPLAN
Workshop on Continuations, Tech. report CSR-04-1, Department of Computer
Science, Queen Mary’s College, pages 13–23, Venice, Italy, Jan. 2004. Invited
talk.

[9] O. Danvy and A. Filinski. Abstracting control. In M. Wand, editor, Proceedings
of the 1990 ACM Conference on Lisp and Functional Programming, pages 151–
160, Nice, France, June 1990. ACM Press.

[10] O. Danvy and A. Filinski. Representing control, a study of the CPS transfor-
mation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

[11] O. Danvy and L. R. Nielsen. Defunctionalization at work. In H. Søndergaard,
editor, Proceedings of the Third International ACM SIGPLAN Conference on
Principles and Practice of Declarative Programming (PPDP’01), pages 162–174,

15

Firenze, Italy, Sept. 2001. ACM Press. Extended version available as the tech-
nical report BRICS RS-01-23.

[12] R. K. Dybvig, S. Peyton-Jones, and A. Sabry. A monadic framework for sub-
continuations. Available at http://www.cs.indiana.edu/~sabry/research.
html, Feb. 2005.

[13] M. Felleisen. The theory and practice of first-class prompts. In J. Ferrante
and P. Mager, editors, Proceedings of the Fifteenth Annual ACM Symposium
on Principles of Programming Languages, pages 180–190, San Diego, California,
Jan. 1988. ACM Press.

[14] M. Felleisen and D. P. Friedman. Control operators, the SECD machine, and the
λ-calculus. In M. Wirsing, editor, Formal Description of Programming Concepts
III, pages 193–217. Elsevier Science Publishers B.V., Amsterdam, 1986.

[15] M. Felleisen, M. Wand, D. P. Friedman, and B. F. Duba. Abstract continua-
tions: A mathematical semantics for handling full functional jumps. In R. C.
Cartwright, editor, Proceedings of the 1988 ACM Conference on Lisp and Func-
tional Programming, pages 52–62, Snowbird, Utah, July 1988. ACM Press.

[16] C. Gunter, D. Rémy, and J. G. Riecke. A generalization of exceptions and control
in ML-like languages. In S. Peyton Jones, editor, Proceedings of the Seventh
ACM Conference on Functional Programming and Computer Architecture, pages
12–23, La Jolla, California, June 1995. ACM Press.

[17] R. Hieb, R. K. Dybvig, and C. Bruggeman. Representing control in the presence
of first-class continuations. In B. Lang, editor, Proceedings of the ACM SIG-
PLAN’90 Conference on Programming Languages Design and Implementation,
SIGPLAN Notices, Vol. 25, No 6, pages 66–77, White Plains, New York, June
1990. ACM Press.

[18] E. Moggi. Notions of computation and monads. Information and Computation,
93:55–92, 1991.

[19] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Com-
puter Science, 1:125–159, 1975.

[20] J. C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference (1972),
with a foreword.

[21] C. Shan. Shift to control. In O. Shivers and O. Waddell, editors, Proceedings of
the 2004 ACM SIGPLAN Workshop on Scheme and Functional Programming,
Snowbird, Utah, Sept. 2004.

[22] G. L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial In-
telligence Laboratory, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, May 1978. Tech. report AI-TR-474.

[23] J. E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. The MIT Press, 1977.

16

Recent BRICS Report Series Publications

RS-05-5 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A Dy-
namic Continuation-Passing Style for Dynamic Delimited Con-
tinuations (Preliminary Version). February 2005. ii+16 pp. Su-
perseded by BRICS RS-05-16.

RS-05-4 Andrzej Filinski and Henning Korsholm Rohde. Denotational
Aspects of Untyped Normalization by Evaluation. February
2005. 51 pp. Extended version of an article to appear in the
FOSSACS 2004 special issue of RAIRO,Theoretical Informat-
ics and Applications.

RS-05-3 Olivier Danvy and Mayer Goldberg. There and Back Again.
January 2005. iii+16 pp. Extended version of an article to
appear in Fundamenta Informaticae. This version supersedes
BRICS RS-02-12.

RS-05-2 Dariusz Biernacki and Olivier Danvy. On the Dynamic Extent
of Delimited Continuations. January 2005. ii+30 pp.

RS-05-1 Mayer Goldberg. On the Recursive Enumerability of Fixed-
Point Combinators. January 2005. 7 pp. Superseedes BRICS
report RS-04-25.

RS-04-41 Olivier Danvy.Sur un Exemple de Patrick Greussay. December
2004. 14 pp.

RS-04-40 Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde.
Fast Partial Evaluation of Pattern Matching in Strings. Decem-
ber 2004. 22 pp. To appear in TOPLAS. Supersedes BRICS
report RS-03-20.

RS-04-39 Olivier Danvy and Lasse R. Nielsen. CPS Transformation
of Beta-Redexes. December 2004. ii+11 pp. Extended ver-
sion of an article appearing in Information Processing Letters,
94(5):217–224, 2005. Also superseedes BRICS report RS-00-
35.

RS-04-38 Olin Shivers and Mitchell Wand. Bottom-Upβ-Substitution:
Uplinks andλ-DAGs. December 2004. iv+32 pp.

RS-04-37 Jørgen Iversen and Peter D. Mosses.Constructive Action Se-
mantics for Core ML. December 2004. 68 pp. To appear in a
specialLanguage Definitions and Tool Generationissue of the
journal IEE Proceedings Software.

