
BRICS
Basic Research in Computer Science

Static Validation of XSL Transformations

Anders Møller
Mads Østerby Olesen
Michael I. Schwartzbach

BRICS Report Series RS-05-32

ISSN 0909-0878 October 2005

B
R

IC
S

R
S

-05-32
M

ø
lleretal.:

S
tatic

V
alidation

ofX
S

L
Transform

ations

Copyright c© 2005, Anders Møller & Mads Østerby Olesen &
Michael I. Schwartzbach.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/32/

Static Validation of XSL Transformations

Anders Møller∗, Mads Østerby Olesen, and Michael I. Schwartzbach

BRICS†, Department of Computer Science
University of Aarhus, Denmark

{amoeller,madman,mis}@brics.dk
October 28, 2005

Abstract

XSL Transformations (XSLT) is a programming language for defining
transformations between XML languages. The structure of these lan-
guages is formally described by schemas, for example using DTD, which
allows individual documents to be validated. However, existing XSLT
tools offer no static guarantees that, under the assumption that the input
is valid relative to the input schema, the output of the transformation is
valid relative to the output schema.

We present a validation technique for XSLT based on the summary
graph formalism introduced in the static analysis of JWIG Web services.
Being able to provide static guarantees, we can detect a large class of
errors in an XSLT stylesheet at the time it is written instead of later
when it has been deployed, and thereby provide benefits similar to those
of static type checkers for modern programming languages.

Our analysis takes a pragmatic approach that focuses its precision
on the essential language features but still handles the entire XSLT 1.0
language. We evaluate the analysis precision on a range of real stylesheets
and demonstrate how it may be useful in practice.

1 Introduction

XSL Transformations (XSLT) 1.0 [12] is a popular language for defining trans-
formations of XML documents. It is a declarative language based on notions
of pattern matching and template instantiation and has an XML syntax itself.
Although designed primarily for hypertext stylesheet applications, it is more
widely used for simple database operations or other transformations that do
not require a full general-purpose programming language.

∗Supported by the Carlsberg Foundation contract number 04-0080.
†Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

1

The term stylesheet is commonly used for a transformation specified in
XSLT. Generally, a stylesheet transforms from one class of XML documents
to another. The syntax of such a class of documents is specified formally by
a schema using a schema language, such as DTD [9], XML Schema [35], or
DSD2 [29]. An XML document is valid relative to a given schema if all the
syntactic requirements specified by the schema are satisfied.

With XSLT being a specialized programming language it is natural to view
the schemas as types. The notion of types is normally used in programming for
detecting programming errors at an early stage in the form of type checking—
however, the semantics of XSLT is independent of schemas. Our main goal is
to remedy this through a mechanism for statically checking that the output of
a given stylesheet is guaranteed to be valid relative to an output schema, under
the assumption that the input is valid relative to an input schema.

Although the basic principles in XSLT are straightforward, it contains many
features that cause intricate interplays and make static validation difficult. In
fact, XSLT is Turing complete [21], so a fully automatic solution that is both
sound and complete is not possible: the static validation problem is mathe-
matically undecidable. We aim for a solution that conservatively approximates
the behavior of the given stylesheet but has a sufficiently high precision and
performance on typical stylesheets to be practically useful.

Example

Consider the following XML document which describes a collection of people
that are registered for an event:

<registrations xmlns="http://eventsRus.org/registrations/">

<name id="117">John Q. Public</name>

<group type="private" leader="214">

<affiliation>Widget, Inc.</affiliation>

<name id="214">John Doe</name>

<name id="215">Jane Dow</name>

<name id="321">Jack Doe</name>

</group>

<name>Joe Average</name>

</registrations>

People are either registered as individuals or as belonging to a group. Each
person has a unique id attribute. A group element has attributes identifying
its type and its leader (referring to the id attributes). Such documents are
described by the following DTD schema:

<!ELEMENT registrations (name|group)*>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name id ID #REQUIRED>

<!ELEMENT group (affiliation,name*)>

<!ATTLIST group type (private|government) #REQUIRED>

<!ATTLIST group leader IDREF #REQUIRED>

<!ELEMENT affiliation (#PCDATA)>

2

XSLT may be used to transform such documents into XHTML for presentation
purposes. (A brief overview of DTD and XSLT is provided in Section 3.) We
consider the following stylesheet:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:reg="http://eventsRus.org/registrations/"

xmlns="http://www.w3.org/1999/xhtml">

<xsl:template match="reg:registrations">

<html>

<head><title>Registrations</title></head>

<body>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

<xsl:template match="*">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="reg:group">

<table border="1">

<thead>

<tr>

<td>

<xsl:value-of select="reg:affiliation"/>

<xsl:if test="@type=’private’">®</xsl:if>

</td>

</tr>

</thead>

<xsl:apply-templates select="reg:name">

<xsl:with-param name="leader" select="@leader"/>

</xsl:apply-templates>

</table>

</xsl:template>

<xsl:template match="reg:group/reg:name">

<xsl:param name="leader" select="-1"/>

<tr>

<td>

<xsl:value-of select="."/>

<xsl:if test="$leader=@id">!!!</xsl:if>

</td>

</tr>

</xsl:template>

</xsl:stylesheet>

3

Registrations are displayed in an ordered list, where people belonging to the
same group are collected in a table. The affiliation of a private group is adorned
with a r© symbol, and group leaders are indicated by triple exclamation marks.
For the above example document, the resulting XHTML document is rendered
as follows by a standard browser:

The question that we address is, for this example, the following: given an input
document that is valid according to the above schema, will the stylesheet always
produce an output document that is valid XHTML?

Contributions

The main contribution of this paper is an algorithm for statically checking va-
lidity of XSLT transformations, where we use DTD as the schema language
for specification of input and output types. The algorithm is based on static
analysis. It is sound in the sense that all validity errors are guaranteed to be
detected, but incomplete since it may produce spurious warnings. If potential
validity errors are detected, precise warning messages are automatically gener-
ated, which aids the programmer in debugging. To be able to design a precise
analysis, we have investigated a large number of existing stylesheets resulting
in some statistics about the typical use of the various language features.

Additionally, our algorithm is able to detect select expressions that never
hit anything and template rules that are never used. These are not necessarily
errors in the stylesheet, but presumably unintended by the programmer.

In a preliminary phase in our analysis, we simplify the given stylesheet into
a Reduced XSLT language. This simplification involves different levels: some
reductions are semantics preserving while others involve conservative approx-
imation. We believe that such a simplification phase may also be useful in
making other XSLT tools easier to design and implement.

Another central constituent of our analysis is an XSLT flow analysis that
determines the possible outcome of pattern matching operations. This informa-
tion may also be useful for other purposes than static validation, for example
in XSLT processors for improving runtime performance or in XSLT editors for
stylesheet development.

Moreover, we define a notion of summary graphs as a variation of earlier
definitions, tailored to reasoning about XSLT stylesheets.

It is not a goal of this paper formally to prove soundness of our analysis,
nor to discuss theoretical complexities of the algorithms we propose—instead
we rely on informal arguments and practical experiments.

4

Overview

Our analysis builds on earlier results on static validation of XML transforma-
tions in the Xact project and its predecessors [23, 11, 10, 7].

We first, in Section 2, describe related work on analysis of XSLT. Section 3
provides a brief overview of DTD, XPath, and XSLT, and introduces the ter-
minology that we use. In Section 4, we summarize results of our statistical
investigation of a large number of existing stylesheets.

Section 5 presents the structure of our validation algorithm. The sections
that follow describe each phase in detail. First, in Section 6, we simplify the
given stylesheet to use only the core features of XSLT. In Section 7, the simplified
stylesheet is subjected to a flow analysis which uses a fixed point algorithm to
compute a sound approximation of the flow of template invocations. From this
information together with the DTD for the transformation input, we are in
Sections 8, 9, and 10 in a position to construct a summary graph, which is a
structure that represents the possible outcomes of transformations using that
particular stylesheet and input schema. Finally, in Section 11, we explain how
this summary graph is validated relative to the output schema using a previously
published algorithm [11].

In Section 12, we describe our prototype implementation and the results of
applying it to a number of benchmarks.

2 Related Work

To our knowledge, no others have presented a solution to the problem of static
validation for the complete XSLT language, although there are noteworthy re-
sults for fragments of XSLT and for other XML transformation languages.

An early attempt at static validation of XSLT is [3], which uses a set of
typing rules to establish relationships between the input and output languages
of XSLT transformations. Their goals are ambitious, but their method is only
applicable to a tiny fragment of XSLT. However, the paper was influential in
clearly defining the static validation problem.

The paper [36] examines a fragment of XSLT, called XSLT0, which covers
the structural recursion core of XSLT. It uses inverse type inference, in the style
of [28], to perform exact static output validation in exponential time. However,
since XSLT0 only allows simple child axis steps in the recursion and ignores
attributes, a reduction from XSLT to XSLT0 is only possible for the simplest
transformations. Furthermore, the practical usability of the technique has not
been demonstrated.

The work in [14] has the same aims as Section 7 of this paper: conservatively
analyzing the flow of an XSLT stylesheet. Compared to our analysis, theirs is
less precise in exploiting the information present in DTD schemas and XPath
expressions. Also, [14] uses the control-flow information to detect unreachable
templates and guarantee termination whereas we focus on the validity problem.

The article [31] presents a stylesheet that transforms XSLT stylesheets into

5

SVG representations of the possible control flow for the purpose of documen-
tation and debugging. However, the precision is rather weak compared to [14]
and our Section 7.

Continuing with the XSLT technology, numerous tools, such as [32, 1, 34],
enable step-by-step debugging of stylesheets. Such tools are particularly useful
during the development phase, but they cannot provide static validation guar-
antees. In fact, the popularity of XSLT debuggers seems to emphasize the need
for tools as the one we provide here.

The correctness of our work depends on the formal semantics of XSLT, which
is discussed in [37, 5]. Also, the algorithm in Section 7.4 is related to the work
on analysis of XPath expressions presented in [38, 33, 4], though our problem in
somewhat different and we sacrifice exact decidability for a useful conservative
approximation.

The problem of static validation has been solved for more restricted for-
malisms, such as tree transducers. The work in [28] introduces the technique
of inverse type inference to compute the allowed input language for a so-called
k-pebble transducer given its output language. The resulting algorithm has non-
elementary complexity. The paper [27] investigates how the expressive power of
tree transducers must be further restricted in order to allow a polynomial time
decision algorithm.

Static validation has been investigated for a host of other XML transforma-
tion languages, many of which have been designed with this feature in mind.
Notable examples are XDuce [18], XQuery [15], Xact [23], XJ [16], and Cω [6]
These languages cannot solve our problem, since neither supports an embedding
of XSLT stylesheets that allows static validation of the resulting programs. A
more comprehensive survey of this area is available in [30].

Our translation into Reduced XSLT in Section 6 may prove useful for other
projects working on XSLT. For example, XSLT compilers such as [2] might
benefit from translating only a smaller subset.

3 Background

We assume that the reader is familiar with XSLT and DTD, but to explain the
terminology that we use, we recapitulate the main points in these languages and
in XPath, which is an integral part of XSLT.

3.1 Document Type Definitions (DTD)

The DTD formalism is a simple schema language for XML and is described in
the XML specification [9]. A DTD schema is a grammar for a class of XML
documents defining for each element the required and permitted child elements
and attributes. The content of an element is the sequence of its immediate
children. It is specified using a restricted form of regular expression over element
names and #PCDATA, which refers to arbitrary character data. Attributes can
be declared as required or optional for a given element, and their values can be

6

constrained to finite collections of fixed strings or to various predefined regular
language of identifiers (such as NMTOKEN). An XML document is valid according
to a given DTD schema if it describes the contents and attributes of all elements.
Implicitly, we only consider well-formed XML documents, and we assume that
entity references have been expanded.

When D is a DTD schema, we will assume that a specific root element,
root(D), has been designated (the DTD formalism does not by itself do this).
Correspondingly, we use the notation L(D) to denote the set of XML documents
with that root element name that are valid according to D. Thus, DTD schemas
are similar to programming language types which also describe sets of allowed
values.

Consider now our earlier example of a DTD schema:

<!ELEMENT registrations (name|group)*>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name id ID #REQUIRED>

<!ELEMENT group (affiliation,name*)>

<!ATTLIST group type (private|government) #REQUIRED>

<!ATTLIST group leader IDREF #REQUIRED>

<!ELEMENT affiliation (#PCDATA)>

The designated root element name is in this case registrations, whose content
is defined to consist of an arbitrary sequence of name and group elements. The
content of a name element is just a character data node and it has a single
mandatory attribute named id of type ID. A group element must contain a a
single affiliation element followed by any number of name elements and it has
two mandatory attributes. The first, type, can only have the value private or
government, whereas the second, leader, is of type IDREF. The affiliation
node has as content a character data node and it has no attributes.

The attributes of type ID are required to have unique values throughout
the document and, dually, those of type IDREF are required to have the same
value as some ID attribute. This relationship is beyond the scope of our static
validator, and, as other XML transformation type checkers [30], we ignore these
attribute types in this paper.

3.2 XML Path Language (XPath)

XPath [13] is a simple but versatile notation for addressing parts of XML docu-
ments. It imposes a particular data model in which elements, attribute values,
and character data are represented as nodes in a tree. The content of an element
node is formed by a sequence of element nodes and character data nodes. It is
not allowed to have two character data nodes as siblings in a tree. Attribute
nodes are associated with a given element node as an unordered set.

An XPath expression can, relatively to an evaluation context, evaluate to a
boolean, a number, a string, or a set of nodes. A node set expression is called
a location path and consists of a sequence of location steps, each having three
parts: (1) an axis, for example child or following-sibling, which selects

7

a set of nodes relative to the context node, (2) a node test, which filters the
selected nodes by considering their type or name, and (3) a number of predicates,
which are boolean expressions that perform a further, potentially more complex,
filtration. Thus, the result of evaluating a location step on a specific node is
a set of nodes. A whole location path is evaluated compositionally left-to-
right. A location path starting with / is evaluated relative to the root node,
independently of the initial evaluation context.

Consider the XML documents described by the above DTD schema of which
the earlier tiny XML document is an example:

<registrations xmlns="http://eventsRus.org/registrations/">

<name id="117">John Q. Public</name>

<group type="private" leader="214">

<affiliation>Widget, Inc.</affiliation>

<name id="214">John Doe</name>

<name id="215">Jane Dow</name>

<name id="321">Jack Doe</name>

</group>

<name>Joe Average</name>

</registrations>

On such documents, the XPath location path

//group[@type=’private’]/name[@id=../@leader]/text()

will select the names of the leaders of private groups, in this case John Doe. This
example uses an abbreviated syntax which expands into the following expression
in which all axis steps are made explicit:

/descendant-or-self::group[attribute::type=’private’]/

child::name[attribute::id=parent::node()/attribute::leader]/

child::text()

In the following, we use the notation x
p y to mean that evaluation of a XPath

location path p starting at the node x in some XML document X ∈ L(D) results
in a node set containing the node y.

3.3 XSL Transformations (XSLT)

XSLT, or XSL Transformations [12], is a declarative language for program-
ming transformations on XML documents. It uses XPath as a powerful sublan-
guage for locating document fragments, performing pattern matching, express-
ing branch conditions, and computing simple values.

Consider the example stylesheet in Section 1. It has the following overall
structure, which declares namespaces for the XSLT language itself (the prefix
xsl), the input language (reg), and the output language (the default names-
pace):

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:reg="http://eventsRus.org/registrations/"

8

xmlns="http://www.w3.org/1999/xhtml">

...

</xsl:stylesheet>

The remaining content of the stylesheet is a collection of template rules, such
as this one:

<xsl:template match="reg:registrations">

<html>

<head><title>Registrations</title></head>

<body>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

The template rule has a match attribute, which defines the kind of nodes on
which it may be applied. The value of this attribute is a location path (restricted
to downward axes) and a given node is matched if it is a possible target of the
location path (starting evaluation from some node in the tree). The body of the
template rule is an expression, called a template, that evaluates to a fragment of
the output document. As the above example shows, this is a mixture of literal
fragments and computations (identified by the xsl namespace prefix). Another
template rule shows a variety of such computations:

<xsl:template match="reg:group">

<table border="1">

<thead>

<tr>

<td>

<xsl:value-of select="reg:affiliation"/>

<xsl:if test="@type=’private’">®</xsl:if>

</td>

</tr>

</thead>

<xsl:apply-templates select="reg:name">

<xsl:with-param name="leader" select="@leader"/>

</xsl:apply-templates>

</table>

</xsl:template>

The value-of instruction evaluates the XPath expression given by the select
attribute and converts the result into a string. The if instruction is a condi-
tional that similarly converts the value of the test attribute into a boolean.
The apply-templates instruction performs recursive invocations by using the
select attribute to compute a sequence of nodes that must subsequently be
processed.

XSLT is a large language, which we here consider in its entirety. In the
remainder of paper we must deal with many features and subtleties that are
described in detail in the specification [12].

9

195

100

157

200

83

300

39

400

31

500

27

600

17

700

17

800

4

900

4

1K

20

2K

4

3K

1

4K

0

5K

1

6K

2

7K

Figure 1: Sizes of stylesheets used in mining.

An XSLT stylesheet S may be viewed as a (potentially parameterized) map
from XML documents to XML documents. We say that S is valid relative to
the schemas Din and Dout iff ∀X ∈ L(Din) : S(X) ∈ L(Dout) (for any values of
the stylesheet parameters). The challenge of static validation is to decide this
property given S, Din , and Dout , conservatively but with reasonable precision
and efficiency.

Note that a stylesheet may use both variables and parameters that may each
be local (defined inside a template) or global (defined at the top-level of the
stylesheet). Each of these four cases will be treated differently in our analysis.

4 Stylesheet Mining

XSLT is a complex language with many peculiar features. To better understand
how those are used in realistic applications, we have collected and analyzed
XSLT samples. Googling for the XSLT namespace string, we have obtained 603
stylesheets with a total of 187,015 lines of code written by hundreds of different
authors. These samples have then been subjected to various statistical inves-
tigations, the results of which have been remarkably stable once the collection
went beyond a few hundred stylesheets. The sizes of the stylesheets measured
in number of lines are distributed as shown in Figure 1. It indicates that most
stylesheets are of moderate size, but a few are quite large. We have anecdotal
evidence that some stylesheets are in the 100K range, but none so large has
been available to us.

We are particularly interested in the complexities of XPath expressions used
in select and match attributes. The samples contained 10,768 select expres-
sions that can be divided into disjoint categories indicated by typical examples
or brief descriptions as shown in Figure 2. The category name(s) known means
that the name of the selected node is known to belong to a (small) set of con-
stant node names. The “nasty” expressions, which resist reasonable analysis,
almost all involve the key or id function or extension functions that are specific
to a given XSLT implementation.

The samples similarly contained 8,739 match expressions which are broken

10

Select Category Number Fraction

default 3,418 31.7%

a 3,349 31.1%

a/b/c 1,173 10.9%

* 749 7.0%

a | b | c 480 4.5%

text() 235 2.2%

a[...] 223 2.1%

/a/b/c 110 1.0%

a[...]/b[...]/c[...] 101 0.9%

@a 68 0.6%

/a[...]/b[...]/c[...] 43 0.4%

.. 34 0.3%

/ 8 0.1%

name(s) known 602 5.6%

nasty 175 1.6%

Total 10,768 100.0%

Figure 2: Classification of select expressions.

down as shown in Figure 3. Here, the nasty expressions are those where the
matched node is only characterized by a predicate.

An important conclusion from this statistical analysis is that the downward
axes (child, attribute, descendant, descendant-or-self, and self) are
dominant for select expressions with 92.5% (when we ignore XPath expressions
that occur as predicates). Also, even when other axes are employed, it is usually
fairly simple to determine some characteristic information about its target that
allows us to limit its possible names to a small set. These observations form the
basis for the approximation algorithm that we introduce in Section 7.4.

In later sections, we will mention other interesting observations that we have
made on this collection of stylesheets.

5 Structure of the Validation Algorithm

Our analysis technique is inspired by the program analyses developed for the
languages <bigwig> [8], JWIG [11], and Xact [23]. The <bigwig> language
uses a notion of templates for constructing HTML or XHTML pages in inter-
active Web services, JWIG is a Java-based variant, and Xact generalizes the
ideas to encompass general XML transformations. Using a lattice structure of
summary graphs, originally introduced in the paper [7], the program analyses
are able to provide static guarantees of validity of the output of programs writ-
ten in these languages. The present analysis is also based on summary graphs,
although we use a variant that is tailored towards analysis of XSLT stylesheets.
(Compared to the earlier analyses, the one for Xact bears the closest resem-

11

Match Category Number Fraction

a 4,710 53.9%

absent 1,369 15.7%

a/b 523 6.0%

a[@b=’...’] 467 5.3%

a/b/c 423 4.8%

/ 256 2.9%

* 217 2.5%

a | b | c 177 2.0%

text() 52 0.6%

@a 24 0.3%

@* 16 0.2%

n:* 12 0.1%

processing-instruction() 11 0.1%

@n:* 4 0.0%

a[...] 225 2.6%

.../a[...] 225 2.6%

.../a 108 1.2%

.../@a 24 2.7%

.../text() 11 0.1%

.../n:* 1 0.0%

nasty 97 1.1%

Total 8,739 100.0%

Figure 3: Classification of match expressions.

blance.) In Section 8, we formally define the notion of summary graphs that
we use here. All we need at this stage is that a summary graph SG is a finite
structure that represents a set of XML documents L(SG).

Given an input schema Din , an XSLT stylesheet S, and an output schema
Dout , we wish to construct a summary graph SG such that S(L(Din)) ⊆ L(SG),
that is, SG represents a conservative approximation of the possible output of
transformations with S using input from Din . We then check that L(SG) ⊆
L(Dout), that is, the transformation output is always valid relative to Dout .

We aim to construct SG such that L(SG) is as small as possible to avoid too
many spurious warnings and such that the entire algorithm is efficient enough
to be practically useful. Our approach is pragmatic. We aim to handle the full
language, not just a toy subset. This requires us to focus the analysis precision
on the essential language features, applying different degrees of approximation.

6 Stylesheet Simplification

The first phase of our approach simplifies the given stylesheet to use only a small
number of core XSLT features. We divide the steps into two categories: some

12

are semantics preserving, others introduce approximation. This simplification
phase is quite complicated because of the intricate details of the many language
features and their interplay. We here present highlights of the simplification
steps and describe the resulting language Reduced XSLT.

We first, however, need to deal with the fact that XSLT contains a few special
language constructs that are inordinately difficult to model with reasonable
precision:

• We do not support the text output method; nor do we allow uses of
disable-output-escaping. (If the output method is set to html, we
automatically convert to XHTML and use XML mode.)

• We do not support any implementation-specific extension elements or
functions, except a few ones introduced in the simplification.

• We ignore namespace nodes that are selected by for-each instructions or
assigned to variables or parameters.

Whenever these constructs are encountered, a warning is issued. Unless the out-
put method text is used, the analysis continues after applying a suitable patch,
such as, replacing value-of instructions that use disable-output-escaping
by elements with computed unknown names.

These limitations are not severe. Naturally, the text output method should
not be used when XML is output. Also, according to the spec [12], “since dis-
abling output escaping may not work with all XSLT processors and can result
in XML that is not well-formed, it should be used only when there is no alterna-
tive”. Namespace nodes are rarely selected explicitly in typical stylesheets. (In
the 187,015 lines of XSLT mentioned in Section 4, it occurs only 6 times.) The
typical use is in generic stylesheets that output a tree view of the input docu-
ment where the selection of namespace nodes is not essential for the structure
of the output documents.

To simplify the presentation, we assume that the input and output docu-
ments each use only one namespace. Our techniques, however, can be extended
straightforwardly to accommodate multiple namespaces.

6.1 Semantics Preserving Simplifications

The simplification steps in the first category are semantics preserving, so they
can in principle be applied in an initial phase of any tool that analyzes XSLT
stylesheets.

First, we fill in defaults. The built-in template rules are inserted using ex-
plicit priority attributes to ensure that they have the lowest matching prece-
dence. For each template rule without a priority attribute, the default priority
is computed and inserted explicitly. Also, for each apply-templates without a
select attribute, the default value child::node() is inserted.

We then α-convert all variables and parameters to make code motion trans-
formations easier in the later steps. More precisely, all variables and parameters

13

are renamed consistently such that their uses still refer to the original declara-
tions but they all have unique names. This is straightforward since the decla-
rations in XSLT have lexical scope. Also, all qualified XML names are changed
such that XSLT instructions use the default namespace, and the prefixes in and
out identify the input and output language, respectively.

XPath location paths in variable and parameter definitions appearing at
top-level are prefixed by / to ensure that evaluation remains starting at the
document root, even if the definitions are moved away from top-level in later
steps. Likewise, all top-level uses of functions that rely on the context node,
size, or position are changed appropriately.

We then desugar certain constructs to more basic ones. This includes the
following steps:

• For all occurrences of include, import, and apply-imports, the external
definitions are inserted into the main stylesheet. For the import mecha-
nism, we use priority and mode to ensure proper overriding. Imported
template rules that cause naming conflicts by this transformation are re-
named consistently.

• All XPath expressions that use abbreviated syntax are expanded (except
for some abbreviated syntax in patterns where expansion is not allowed)—
for example, // is changed to /descendant-or-self::node()/. Also,
implicit coercions are made explicit.

• Each use of a variable is replaced by its definition. There are two excep-
tions, though. First, to preserve evaluation contexts, variables that are
used inside a for-each instruction but declared outside are instead con-
verted to template parameters, which we treat later. Second, for variables
of type result tree fragment, the situation is a little more complicated. If
such a variable appears in a copy-of instruction as in

<copy-of select="$x "/>

which is a common use of this instruction, then the entire copy-of in-
struction is replaced by the definition of x . Result tree fragment variables
used in other contexts are unchanged for now. Note that this step only
involves variables; parameters are treated later.

• All literal result elements and their attributes are converted to element
and attribute instructions, and all text nodes and all occurrences of
text are converted to value-of. Each use of use-attribute-sets is
replaced by the corresponding attribute definitions. Furthermore, each
if instruction is converted to the more general choose, and in each choose
instruction, if no otherwise branch is present, one with an empty template
is inserted.

14

• The instructions for-each, call-template, copy-of, and copy can all
be reduced to apply-template instructions and new template rules. For
example, every for-each instruction is desugared as follows:

<for-each select="exp "> sort templ </for-each>

where sort is a sequence of sort instructions and templ is the template
part, is converted to

<apply-templates select="exp " mode="x ">

sort

</apply-templates>

where x is a unique mode name, and the template part is moved to a new
template rule:

<template match="child::node()|attribute::*|/"

mode="x " priority="0">

templ

</template>

The value of priority is irrelevant here. The soundness of this reduction
relies on the assumption that namespace nodes are not selected, as men-
tioned earlier. If the template templ uses any locally declared parameters,
then these are forwarded by adding corresponding with-param and param
instructions to the new apply-templates instruction and the template
rule.

• All call-template instructions are handled similar to for-each instruc-
tions and we omit the details.

• Every copy-of instruction is desugared according to the type of its select
expression. However, if the expression involves parameters, then we gen-
erally do not know the type statically, in which case we leave the copy-of
instruction unmodified for now. Otherwise, if the type is string, boolean,
or number, then the instruction is changed to a value-of instruction. If
the type is node-set, then the copy-of instruction instead becomes

<apply-templates select="exp " mode="x "/>

where x is a unique mode name, and a new template rule is constructed
using a copy instruction:

<template match="child::node()|attribute::*|/"

mode="x " priority="0"/>

<copy>

<apply-templates mode="x " select="child::node()|attribute::*"/>

</copy>

</template>

15

• To desugar a copy instruction

<copy> templ </copy>

we convert it to

<apply-templates select="self::node()" mode="x ">

and add some new template rules to accommodate for the different kinds
of nodes that may be copied:

<template match="/" mode="x " priority="0">

templ

</template>

<template match="child::*" mode="x " priority="0">

<element name="{name()}"> templ </element>

</template>

<template match="attribute::*" mode="x " priority="0">

<attribute name="{name()}">

<value-of select="string(self::node())"/>

</attribute>

</template>

<template match="child::text()" mode="x " priority="0">

<value-of select="string(self::node())"/>

</template>

<template match="child::comment()" mode="x " priority="0">

<comment>

<value-of select="string(self::node())"/>

</comment>

</template>

<template match="child::processing-instruction()"

mode="x " priority="0">

<processing-instruction name="name()">

<value-of select="string(self::node())"/>

</processing-instruction>

</template>

Again, x is a fresh mode name, which we use to tie together the new
apply-templates instruction and the template rules. Any locally declared
parameters being used in the original template are forwarded by adding
corresponding with-param and param instructions.

At this stage, we unify template rules that are identical except for different
values of mode. This is strictly not necessary, but it helps in limiting the size of
the simplified stylesheet.

16

6.2 Approximating Simplifications

The second category introduces approximations. In particular, we do not wish
to model computations of strings or booleans in XPath expressions. To model
unknown values, we introduce three special extension functions, xslv:unknown-
String(), xslv:unknownBoolean(), and xslv:unknownRTF(), which return an
arbitrary string, boolean, or result tree fragment, respectively, at each invoca-
tion.

Regarding instructions involved with computation of character data or at-
tribute values, we preserve only value-of instructions whose select expression
is either a constant string, string(self::node()), or string(attribute::a)
for some name a (the latter two may originate from copy instructions or from
explicitly moving attribute values from input to output without modifications).
Other expressions are replaced by <value-of select="xslv:unknown
String()"/>. Likewise, occurrences of strip-space, preserve-space, and
decimal-format are simply removed, and number is treated as value-of. Since
DTD has limited control over text values (only simple constraints on attribute
values can be expressed), these approximations seem plausible, and our experi-
ments in Section 12 support the choices made here.

Regarding boolean expressions, we replace all test expressions in when con-
structs by xslv:unknownBoolean(). This is usually sufficient since there is
rarely a correlation between the choose branch taken and the name of the par-
ent element in the output. (In fact, in the 187,015 lines of XSLT fra Section 4,
this never occurs.)

Also, all location step predicates (that is, the contents of [...] in location
steps) are replaced by xslv:unknownBoolean(). We discuss possible improve-
ments of this simplification in Section 7.5.

The later phases of our analysis do not work well with computed (that
is, non-constant) element or attribute names. Fortunately, such constructs
are uncommon, except for the expression name(), which, for example, arises
in the desugaring of copy instructions. To this end, we replace the value
of each name attribute occurring in an attribute or element instruction by
{xslv:unknownString()}, unless the value is {name()} or a constant string.
(In the XSLT stylesheets mentioned in Section 4, this approach handles all but
12 of 940 element names and all but 10 of 5,904 attribute names.)

For sort instructions, we do not model the sorting criteria but merely change
their select expressions to xslv:unknownString(). Also, uses of result tree
fragment variables that have not been handled earlier are simply replaced by
xslv:unknownRTF().

We approximate each use of the key function by replacing it by //M where
M is the match expression of the corresponding key declaration. All key decla-
rations can then be removed. Similarly, each use of the id function is replaced
by //child::e 1|....|//child::en where the e i ’s are the names of elements
in the input schema that contain an ID attribute. (In the XSLT samples men-
tioned in Section 4, the 10,768 select attributes only contain 25 occurrences
of the key function and 16 occurrences of the id function.)

17

All occurrences of processing-instruction and comment instructions are
removed. However, since elements whose content model are EMPTY according
to the DTD schema are not even allowed to contain processing instructions or
comments, we issue a warning in case the stylesheet contains a literal result
element that has this content model but is not empty. (This never occurs in our
mining samples.)

Finally, we look at parameters. As mentioned, we distinguish between local
and global parameters. At this stage, parameters can be used only in select
expressions in apply-templates and copy-of instructions and in assignments
to other parameters via param and with-param.

Global parameters pose an obvious problem to the validation task: if such
parameters may end up in the result document, then we clearly cannot statically
guarantee validity in the way the validation challenge was defined in Section 3.3.
Not even the types of the actual parameters are known until runtime. Typically,
however, global parameters occur in, for example, value-of instructions and
thus have been approximated by xslv:unknownString(). We ensure that all re-
maining uses of global parameters will be reported as potential validity errors by
reducing them to the instruction <copy-of select="xslv:unknownRTF()"/>.
Fortunately, in our mining samples this happens a total of zero times, so this
does not appear to be a significant problem in practice.

Local parameters are in most cases more manageable. We handle these
with a simple flow-insensitive analysis as follows. For each parameter name
p, all param and with-param assignments to p are collected. If p is used
in, for example, an apply-templates instruction we make a choose instruc-
tion with a branch for each possible assignment to p, containing a copy of
the apply-templates instruction, and the parameters are then desugared as
if they were variables, as explained earlier. The only remaining problem is cy-
cles of param and with-param instructions, that is, assignments to a parameter
p that directly or indirectly use p itself. In this rather obscure case we con-
sider the possible types of the result and approximate the parameter use corre-
spondingly using either xslv:unknownString(), xslv:unknownBoolean(), or
xslv:unknownRTF().

At this point, the stylesheet has been simplified to a core language that we
can focus the analysis on. Note that each approximation step is conservative in
the sense that if the resulting stylesheet is valid then so is the original one (but
not necessarily the opposite).

6.3 Reduced XSLT

The resulting simplified stylesheet uses only a small subset of the XSLT con-
structs:

• template rules that always use match and priority, and potentially also
mode instructions;

• apply-templates with select, and potentially also with mode and sort
instructions;

18

stylesheet ::= <stylesheet xmlns="http://www.w3.org/1999/XSL/Transform"

xmlns:xslv="http://www.brics.dk/XSLTValidator"

xmlns:in="input-namespace"
xmlns:out="output-namespace"
version="1.0">

templaterule
</stylesheet>

templaterule ::= <template match="pattern" priority="number" (mode="qname")? >

template
</template>

template ::= (templateinstruction)*

templateinstruction ::= applytemplates | element | attribute |
valueof | choose | anything

applytemplates ::= <apply-templates select="exp" (mode="qname")? >

(sort)?
</apply-templates>

element ::= <element name="name" (namespace="ns")? > template </element>

attribute ::= <attribute name="name" (namespace="ns")? > valueof </attribute>

valueof ::= <value-of select="stringexp"/>

choose ::= <choose> (when)* <otherwise> template </otherwise> </choose>

when ::= <when test="xslv:unknownBoolean()"> template </when>

unknown ::= <copy-of select="xslv:unknownRTF()"/>

sort ::= <sort select="xslv:unknownString()"/>

name ::= string | {name()} | {xslv:unknownString()}

stringexp ::= ’string’ | xslv:unknownString() |
string(self::node()) | string(attribute::qname)

In this grammar, pattern is a reduced template pattern, exp is a reduced XPath expression,

qname is a QName, number is a number, ns is a namespace, and string is any string.

We use the notation “?” and “*” representing “optional” and “zero-or-more occurrences”,

respectively.

Figure 4: Syntax of Reduced XSLT.

19

• choose where each branch condition is xslv:unknownBoolean();

• sort criteria are always xslv:unknownString();

• attribute and element whose name is either a constant, {name()}, or
{xslv:unknownString()}, and where the contents of attribute is a sin-
gle value-of;

• value-of where the select expression is either a constant string, xslv:
unknownString(), string(self::node()), or string(attribute::a)
for some name a ; and

• copy-of where the select expression is xslv:unknownRTF().

Furthermore, use of syntactic sugar and coercions in XPath expressions is elimi-
nated, all location step predicates are changed to xslv:unknownBoolean(), and
there are no variables or parameters left. The syntax of the resulting language,
Reduced XSLT, is provided in Figure 4.

As mentioned, we use a few special extension functions: xslv:unknownString(),
xslv:unknownBoolean(), and xslv:unknownRTF() to represent information
that has been abstracted away.

Although tedious, the entire simplification phase is straightforward to imple-
ment, compared to implementing a full XSLT processor. Obviously, this phase
makes the subsequent analysis simpler, and, as argued above and substantiated
further in Section 12, it causes no significant loss of precision of the validity
analysis on typical stylesheets.

Example

Continuing the example from Section 1, we show what the simplified version of
the stylesheet looks like:

<stylesheet xmlns="http://www.w3.org/1999/XSL/Transform"

xmlns:xslv="http://www.brics.dk/XSLTValidator"

xmlns:in="http:///eventsRus.org/registrations"

xmlns:out="http://www.w3.org/1999/xhtml"

version="1.0">

<!-- 1 -->

<template match="in:registrations" priority="0">

<element name="out:html">

<element name="out:head">

<element name="out:title">

<value-of select="’Registrations’"/><!-- 1.1 -->

</element>

</element>

<element name="out:body">

<element name="out:ol">

<apply-templates select="child::node()"/><!-- 1.2 -->

</element>

</element>

20

</element>

</template>

<!-- 2 -->

<template match="*" priority="-0.5">

<element name="out:li">

<value-of select="string(self::node())"/><!-- 2.1 -->

</element>

</template>

<!-- 3 -->

<template match="in:group" priority="0">

<element name="out:li">

<element name="out:table">

<attribute name="border" select="’1’"/><!-- 3.1 -->

<element name="out:thead">

<element name="out:tr">

<element name="out:td">

<value-of select="in:affiliation"/><!-- 3.2 -->

<choose>

<when test="xslv:unknownBoolean()">

<value-of select="’®’"/><!-- 3.3 -->

</when>

<otherwise/>

</choose>

</element>

</element>

</element>

<apply-templates select="in:name"><!-- 3.4 -->

<with-param name="leader" select="@leader"/>

</apply-templates>

</element>

</element>

</template>

<!-- 4 -->

<template match="in:group/in:name" priority="0.5">

<param name="leader" select="-1"/>

<element name="out:tr">

<element name="out:td">

<value-of select="string(self::node())"/><!-- 4.1 -->

<choose>

<when test="xslv:unknownBoolean()">

<value-of select="’!!!’"/><!-- 4.2 -->

</when>

<otherwise/>

</choose>

</element>

</element>

</template>

21

<!-- 5 -->

<template match="/" priority="-1">

<apply-templates select="child::node()"/><!-- 5.1 -->

</template>

</stylesheet>

In the above, we have numbered each template rule and each apply-templates
and value-of instruction. These numbers will be used when we continue the
running example in the later phases of the static validation.

7 Flow Analysis

To be able to produce a precise summary graph that represents the possible
output of the transformation, we begin by analyzing the flow of the stylesheet.

Given a reduced XSLT stylesheet S and a DTD schema Din , we wish to
determine for each apply-templates instruction in S the possible target tem-
plate rules. That is, assuming that X ∈ L(Din), which templates may be
instantiated when processing this particular apply-templates instruction on
input document X using S?

A flow edge is an edge from an apply-templates instruction to a possible
target template rule. In addition to finding flow edges, we also determine where
in S processing may start, that is, which templates may be instantiated when
the document root node is processed. We call these the entry templates.

For each template rule, we furthermore need to know the types and names of
the possible context nodes when the template is instantiated during processing
of S on some input document X ∈ L(Din). Assume that Din describes element
names E and attribute names A. Define

Σ = E ∪ (A× E) ∪ {root, pcdata, comment, pi}

representing the types and names of the possible context nodes. A value from
E represents an element of that name; similarly, the values in A represent at-
tribute names; the dummy names root, pcdata, comment, and pi represent the
document root node, arbitrary character data nodes, comment nodes, and pro-
cessing instructions, respectively. Note that attributes are modeled as pairs of
attribute names and element names, which allows distinction between attributes
that have the same name but belong to elements with different names, reflecting
the way constraints are associated with attributes in DTD. The context set of
a template rule n is a subset of Σ representing the possible context nodes. For
later use, we also define the subset Γ = E ∪{pcdata, comment, pi} corresponding
to the types that can appear in element contents.

Finally, each flow edge is labeled with a map that for each possible context
node type returns a subset of Σ that represents the nodes that may be selected
from the associated expression.

22

Given that the stylesheet S contains a set of template rules TS and a set
of apply-templates instructions AS , we can formally define a flow graph G as
follows:

G = (C, F)

where

C : TS → 2Σ describes the context sets for the template rules, and
F : AS × TS → (Σ → 2Σ) describes the edge flow.

A pair (a, t) ∈ AS × TS where F (a, t)(σ) = ∅ for all σ ∈ Σ corresponds to not
having an edge from a to t. An entry template t is one where root ∈ C(t).

In the following, we describe how this information is obtained statically. We
settle for a conservative approximation meaning that the sets we produce may
be too large but never too small compared to the possible runtime behavior.

Example

The desired flow graph for our example stylesheet should, in particular, show
that root ∈ C(5) and group /∈ F (1.2, 2)(registrations), in other words: tem-
plate rule 5 is an entry template, and group elements never flow from instruction
1.2 to template rule 2 starting from a registration element. We continue the
example in Section 7.5 and show that the flow graph being constructed does
indeed have these properties.

7.1 The Fixed Point Algorithm

Our flow analysis is based on a fixed point algorithm, which computes the least
solution to a system of constraints. First, we find the entry templates:

(1) root ∈ C(t) if the match expression of t matches the root node.

This property can be checked for a given match expression in the same way a
normal XSLT processor finds out where to start.

Second, flow is propagated. In the following sections we introduce a con-
crete approach that provides a function Φ that conservatively approximates the
possible flow. This function is specified as follows. We use selecta to denote the
select expression of an apply-templates instruction a, and matcht denotes
the match expression of a template rule t. Assume that the apply-templates
instruction a is being evaluated during processing of S on an input document in
Din with a current context node of type σ, and control as a result is transferred
to the template rule t′ (see Figure 5). The function Φ(σ, selecta ,matcht′ ,matcht) ⊆
Σ then returns an upper approximation of the set of possible types of the new
context nodes. This gives rise to the following constraint:

(2) σ ∈ C(t) ⇒ Φ(σ, selecta ,matcht′ ,matcht) ⊆ F (a, t′)(σ) where the tem-
plate rule t contains the apply-templates instruction a.

23

selecta matcht’ matchtΦ(σ, , ,)

<apply−templates select=" "/>
.

.

.

.

.
</template>

t

a

matcht

selecta

<template match=" ">

<template match=" ">

</template>

.

.

.

t’ matcht’

Figure 5: Computing flow from an apply-templates instruction.

Note that we allow Φ to depend on matcht . We discuss later the influence this
has on the analysis precision.

Finally, flow through edges is accumulated in the context sets of the targets:

(3) F (a, t)(σ) ⊆ C(t).

Clearly, a simple iterative process will produce the desired solution; the only
challenge is to compute Φ with sufficient precision.

7.2 Abstract Evaluation of Location Paths on DTD Schemas

To be able to compute the Φ function, we will need an algorithm for abstractly
evaluating an XPath location path on a DTD schema. Given a node type σ ∈ Σ
and an XPath location path p, the algorithm finds (an upper approximation of)
the set ∆(σ, p) of all node types δ ∈ Σ that satisfy the following requirement:

There exists an XML document X ∈ L(Din) with nodes x and y

such that x
p y, x is a node of type σ, and y is a node of type δ.

We proceed as follows. First, from Din , we construct a directed graph,
called the axis graph for Din , with a node for each symbol in Σ and with edges
for each axis in XPath: if σ, σ′ ∈ E and σ′ occurs in the content model of σ
according to Din then the graph has a child edge from σ to σ′, and similarly
for the other node types and the axes parent, attribute, following-sibling,
and preceding-sibling. Edges for the descendant axis are computed as the
transitive closure of the child edges, and similarly for the descendant-or-self,
ancestor, and ancestor-or-self axes. Edges for the self axis are made from
every node to itself. The following and preceding axes are handled very
abstractly by edges between all nodes in Γ. (These two axes are used in only
0.7% of the select expressions in our mining samples.)

24

root

registrations

name

group

type

leader

affiliation

id

picomment pcdata

Figure 6: Axis graph for the example DTD schema. (To keep the figure reason-
ably simple, only the child and attribute edges are shown; the former are solid
and the latter are dashed.)

As an example, the axis graph for the DTD schema from Section 3.1 looks
as shown in Figure 6 (provided that we ignore all but the child and attribute
edges).

Now, the approximation of ∆(σ, p) is computed by abstractly evaluating p
on the axis graph, starting at the σ node: axis steps correspond to moving along
the appropriate edges, and node tests filter the intermediate results. Predicates
are simply ignored—this may give a loss of precision but only on the safe side.
(The technique could easily be extended to model nested location paths, that
is, predicates containing location paths, but the current precision appears to be
sufficient.)

As an example, computing ∆(name, ../*) for the example DTD schema
results in the set {name, group, affiliation}.

Notice the approximation that is taking place, even if ignoring the following
and preceding axes: for example, the location path parent::x/child::y/
parent::z may for some schemas yield a nonempty result, but clearly, the
exact result will always be empty. Still, for more natural location paths, this
abstract evaluation approach gives reasonable precision.

7.3 Select–Match Compatibility

We now look into computing the Φ function. Considering the semantics of
apply-templates, we can reformulate the specification of Φ from Section 7.1
using a compatibility condition on XPath location paths:

σ′ ∈ Φ(σ, selecta ,matcht′ ,matcht) if there exists an XML document

X ∈ L(Din) with nodes x1, x2, x3, x4 such that x1
matcht x2, x2

selecta
x3,x4

matcht′ x3, x2 is a node of type σ, and x3 is a node of type σ′.

25

x1

x2

x4

x3

matcht

selecta

matcht’

Figure 7: The select–match compatibility condition.

Intuitively, when the apply-templates instruction is processed, x2 can only be
a context node if it matches matcht, and when selecta is evaluated starting from
x2 then some node x3 in the resulting node set must match matcht′ in order for
x3 to be a possible target (see Figure 7). Note that this is a necessary but not
always sufficient condition for having control-flow from a to m.

Notice an analogy with k-CFA analysis [19], in particular 1-CFA: our analysis
of an apply-templates instruction may depend on information from the caller
in the form of the matcht expression. 0-CFA would then correspond to not
considering matcht, 2-CFA corresponds to also considering the match expression
of template rules that have a flow edge to t, and so on. Hence, there is an
opportunity for tuning the precision, but our experiments indicate that the
present choice of context sensitivity is adequate.

We can simplify the condition above by combining the expressions and node
tests as follows. Unfortunately, XPath does not make it easy to test that the
current node is an element or attribute with a certain name or that it is a root
node, so we first introduce some syntactic sugar:

element(σ) = self::*[name()=’σ’]
attribute(a) = self::node[name()=’a’ and

not(self::*) and
not(self::processing-instruction())]

root() = self::node()[not(parent::node())]

(One may ask why we choose to go into so much trouble to stay within the
XSLT language rather than simply introduce a clean intermediate language;
the answer is that (1) in this way, we do not have to explain the semantics of a
new language, and (2) it is more likely that the techniques we develop will be
of a more general use when we stay close to the existing language.) Now, define

α =

{
selecta if selecta starts with /

matcht/type(σ)/selecta otherwise

β = matcht′

26

where the type function encodes the node type:

type(σ) =

self::element(σ) if σ ∈ E
self::attribute(a)

[parent::*[name()=’e’]] if σ = (a, e) ∈ A× E
self::root() if σ = root

self::text() if σ = pcdata

self::comment() if σ = comment

self::processing-instruction() if σ = pi

The compatibility condition is then seen to be equivalent with the following
simpler requirement:

σ′ ∈ Φ(σ, selecta ,matcht′ ,matcht) if there exists an XML document

X ∈ L(Din) with nodes x1, x3, x4 such that x1
α x3, x4

β x3, and
x3 is a node of type σ′.

Compared to the earlier condition, we have here combined the matcht and
selecta expressions and the type requirement on the x2 node into a single expres-
sion. The result shows that obtaining the flow information essentially amounts
to checking that two XPath location paths, α, β, are “compatible” relative to a
schema Din .

As an aside, we can also use this as an alternative technique to easily find
the entry templates: simply check for each template rule whether its match
expression is compatible with the select expression / (for some arbitrary value
of σ).

Every DTD schema defines a regular tree language and hence can be cap-
tured as a formula in monadic second-order logic on trees (M2L-Tree) [24].
XPath location paths, as they appear at this stage, can also be encoded into
M2L-Tree, essentially in the same way auxiliary pointers are encoded in graph
types [26]. This sketch of an argument indicates that the problem of check-
ing compatibility is decidable; however, based on our previous experience with
M2L-Tree [25], we foresee that an algorithm based entirely on this approach will
not be sufficiently efficient in practice.

Instead, we suggest, based on the statistical results from Section 4, a more
pragmatic approach that does not involve regular tree languages, as described
in the following.

7.4 Computing Flow

As pointed out in Section 4, more that 90% of all select expressions use only the
downward axes. All match expressions are in XSLT always constrained to these
axes also. For the remaining select expressions, which use a non-downward axis
(parent, ancestor, ancestor-or-self, following, preceding, following-
sibling, or preceding-sibling), we approximate the expression as follows.
Assume that the expression has the form s1/s2/. . . /sn and that si is the

27

rightmost location step containing a non-downward axis. We then compute
{σ1, . . . , σm} = ∆(σ,s1/s2/. . . /si) and rewrite the expression to

//type(σ1)/si+1/ . . ./sn | . . . | //type(σm)/si+1/ . . . /sn

which is a union of downward expressions. Of course, if {σ1, . . . , σm} contains
all of, for instance, E , then the resulting expression can be simplified accordingly.
The approximation of the non-downward steps intuitively loses track of concrete
nodes but retains their types.

As an example, the non-downward expression ../a/b will, under the as-
sumption that ∆(σ, ..) = {c, d} where c, d ∈ E , be approximated by the fol-
lowing expression:

//element(c)/a/b | //element(d)/a/b

At this stage, we can assume that α and β use only the downward axes,
which we exploit in the following.

Define a valid downward path relative to Din as a finite string w over the
alphabet Σ starting with root and satisfying the property that for every symbol
σ in w, the successor σ′, if present, respects the DTD schema Din :

• root only appears as the very first symbol in the string;

• if σ = root then σ′ ∈ {root(Din), comment, pi};
• if both σ ∈ E and σ′ ∈ E then σ′ may appear as child of σ according to

the content model of σ;

• if σ ∈ E and σ′ = pcdata, then the content model of σ permits character
data;

• if σ ∈ E and σ′ = (σ′A, σ) ∈ A × E , then σ elements may have attributes
named σ′A according to the schema; also, if σ′ = (σ′A, σ′E) then σ = σ′E ;

• if σ ∈ E and the content model of σ is EMPTY, then σ has no successors
(not even a comment); and

• pcdata, comment, and pi symbols and all symbols from A × E have no
successors;

The set of such paths forms a simple regular string language Π(Din). A DFA
(deterministic finite-state automaton) representing this language can easily be
constructed in linear time in the size of Din .

As an example,

root registrations group (type, group)

is a valid downward path relative to the example DTD schema shown in Sec-
tion 3.1.

28

The downward XPath expressions α and β can similarly be encoded as reg-
ular expressions over Σ, as defined by the function R(p) below. We aim for a
regular expression that has the property that if x

p y for some nodes x, y then
the path from x to y corresponds to a string over Σ that matches R(p), and vice
versa.

R(p) =

R(p1) + R(p2) if p has the form p1 | p2

R(q)Raxis(a) ∩ Σ∗Rtest
a (t) if p has the form q a::t

where a::t is the rightmost location step
root if p is /
ε if p is empty
R(q) if p has the form q/

Raxis(a) =

ε if a = self

Γ if a = child

E∗Γ if a = descendant

E∗Γ + ε if a = descendant-or-self

A× E if a = attribute

Rtest
a (t) =

t if t ∈ E
{t} × E if t ∈ A
E if t = * and a 6= attribute

A× E if t = * and a = attribute

Σ if t = node()

e if t = element(e)

(b, e) if t = attribute(b)[parent::*[name()=’e’]]

root if t = root()

pcdata if t = text()

comment if t = comment()

pi if t = processing-instruction()

or t = processing-instruction(x)

The function Raxis models axes, and Rtest
a models a node test relative to an

axis. We here assume the non-abbreviated form of XPath expressions (for ex-
ample, a/b is an abbreviation of child::a/child::b). We can safely ignore all
predicates here since we are computing an upper approximation. We do, how-
ever, consider the special XPath predicates used above in the attribute(a)
construct and in the definitions of the syntactic sugar (element, attribute,
and root) in order to increase precision.

The construction of the regular expressions is complicated by the self and
descendant-or-self axes, which permit multiple location steps to examine the
same node. Also, the use of intersections is not typical in regular expressions,
but, of course, we stay within the regular languages.

29

A few examples (the rightmost simplified expressions are included to help
readability):

R(/a) = root Γ ∩ Σ∗ a = root a

R(a/b) = (ε Γ ∩ Σ∗ a) Γ ∩ Σ∗ b = a b

R(//element(c)/a/b | //element(d)/a/b)
= (((root Γ∗ ∩ Σ∗ Σ) Γ ∩ Σ∗ c) Γ ∩ Σ∗ a) Γ ∩ Σ∗ b +

(((root Γ∗ ∩ Σ∗ Σ) Γ ∩ Σ∗ d) Γ ∩ Σ∗ a) Γ ∩ Σ∗ b
= root Σ∗(c + d) a b

We can now compute an approximation of the Φ function specified on page 27
as follows by combining the regular languages R(α), R(β), and Π(Din):

σ′ ∈ Φ(σ, selecta ,matcht′ ,matcht)

iff

wσ′ ∈ Σ∗R(α) ∩ Σ∗R(β) ∩Π(Din) for some w ∈ Σ∗

The intersection of Σ∗R(α) and Σ∗R(β) corresponds to downward paths that are
feasible with both α and β. The intersection with Π(Din) ensures that we only
consider valid input documents. The last symbol in each of the resulting strings
represents the type of the destination context node for the apply-templates
instruction.

This can all be computed with well-known algorithms for regular expressions
and finite-state automata [17]. Efficiency can be improved by exploiting the
special structure of the regular expressions being used.

In summary, this approach of computing the flow involves conservative ap-
proximations only in the modeling of non-downward axes and XPath predicates.

7.5 Refinements

The following refinements of the above techniques allow us to improve precision
or performance of the flow analysis.

Context and Schema Insensitive Analysis

In the algorithm described above, a select–match compatibility check is per-
formed for every match expression each time a context set is extended. We can
improve efficiency by first performing a less precise analysis that filters out a
number of infeasible flow edges. First, we define a variant of α that does not
consider the evaluation context:

α′ =

{
selecta if selecta starts with /

matcht/selecta otherwise

30

If the expression α′ uses non-downward axes, we approximate it much like be-
fore but without considering the evaluation context: assuming that α′ has the
form s1/s2/. . . /sn and that si is the rightmost location step containing a non-
downward axis, we change the expression to //si+1/ . . ./sn. Now, if

Σ∗R(α′) ∩Σ∗R(matcht′) = ∅

then we can safely set F (a, t′)(σ) = ∅. Clearly, this can be checked more quickly
than the full version, which also depends on δ and Din .

Our experiments indicate that this extension in a few cases causes a small
slowdown but in many cases results in dramatic performance improvements.

Handling Modes

The mode attributes are modeled by two small modifications of the procedure
described in Section 7.4. First, a template rule can only be marked as an
entry if its mode is absent. Second, a flow edge is never added if the mode of
the apply-templates instruction is different from that of the target template
rule—that is, the edge flow function F always yields ∅ in this case.

Handling Priorities

By considering the priority attributes of the template rules, we can improve
precision of the flow analysis by omitting flow from a to to a template rule
t1 if we can guarantee that another template rule t2 with higher priority will
always be applicable whenever t1 is. As a static approximation, we consider the
following problem.

Let priority(t) denote the value of the priority attribute of tem-
plate rule t. If, for two flow edges (a, t1), (a, t2) ∈ AS × TS and
context node types σ, σ′ ∈ Σ, both of the following conditions are
satisfied, then σ′ nodes can never flow along (a, t2) when a is pro-
cessed with a context node of type σ:

• priority(t1) > priority (t2); and

• for every XML document X ∈ L(Din) with nodes x1, x2, x3,

if x1

matcht2 x2, x2 has type σ′, x3 has type σ, and x3
selecta x2,

then x4

matcht1 x2 for some x4.

In other words, we may in this case safely omit the flow σ′ in
F (a, t2)(σ).

The first condition is, of course, trivial to check. To check the second condition,
we apply the techniques developed in Section 7.4. Concretely, if

Σ∗(R(matcht2 ∩ σΣ∗)) ∩ Σ∗σ′ ∩ Σ∗R(selecta) ∩Π(Din) ⊆ Σ∗R(matcht1)

31

and matcht1 contains no predicates, then the second condition above is satis-
fied, and this can again be checked with standard automata operations. (Con-
sequently, we do not attempt to exploit priority attributes if matcht1 does
contain predicates, but, on the other hand, predicates in matcht2 can simply be
ignored here.) If selecta involves non-downward axes, we first rewrite it using
the technique described in Section 7.4.

The soundness of this check relies on a property of the definition of the
encoding R(matcht1): for expressions without predicates, the encoding is exact
in the sense that x

p y for some nodes x, y iff the path from x to y corresponds
to a string over Σ that matches R(p).

As an example, consider a case where priority(t1) = 2, priority(t2) = 0.5,
matcht1 = c/d, matcht2 = b/c[@a=’42’]/*, σ = e, and σ′ = d. With the tech-
nique presented above, we can determine—in this case even without considering
Π(Din)—that the conditions are satisfied, so d /∈ F (a, t2)(e).

Handling Predicates

Currently, we do not exploit relationships between location step predicates
in the flow analysis. (Recall from Section 6.2 that we approximate them by
xslv:unknownBoolean()—however we do introduce a few artificial predicates
in the flow analysis that are taken into account.) Obviously, there is room for
improvement here, although our experiments indicate that the current level of
precision is usually sufficient.

One concrete improvement would be to use a simple theorem prover in the
select–match compatibility checker (see Section 7.3). For example, consider
an apply-templates instruction with select expression item[@class = 2], a
template rule with match expression item[not(@class) and @type] and an-
other with match expression item[@class > 7]. A theorem prover that can
reason about propositional logic and simple arithmetic would be able to deter-
mine that neither match expression matches the select expression, and hence
that no flow can occur along the corresponding edges.

Example

For our example stylesheet (see the reduced version in Section 6.3), the flow
analysis proceeds as follows. First, the only match expression that matches the
root node is that of template rule 5, so initially, the context set map maps 5 to
{root} and all others to ∅. We write this as [5 7→{root}]. The edge flow map is
initially constantly ∅, which we write as [].

Template rule 5 contains a single apply-templates instruction, 5.1, so we
apply the flow propagation constraint. This requires us to compute
Φ(root, child::node(),matcht′ , /) for each potential destination template rule
t′. For t′ = 1, this results in the set {registrations}; for all others, the result
is ∅. In other words, control may flow from instruction 5.1 to template rule 1,
and the new context node, which is added to the context set of template rule 1,
is of type registrations (for such a simple case, this should not be surprising).

32

([5 7→{root}], [])
↓

([1 7→{registrations}, 5 7→{root}], [(5.1, 1) 7→{registrations}])
↓

([1 7→{registrations}, 2 7→{name}, 3 7→{group}, 5 7→{root}],
[(1.2, 2) 7→{name}, (1.2, 3) 7→{group}, (5.1, 1) 7→{registrations}])

↓
([1 7→{registrations}, 2 7→{name}, 3 7→{group}, 4 7→{name}, 5 7→{root}],

[(1.2, 2) 7→{name}, (1.2, 3) 7→{group}, (3.4, 4) 7→{name}, (5.1, 1) 7→{registrations}])

Figure 8: Fixed point computation for the example.

Figure 8 shows the continued fixed point iterations. The last line shows
the complete flow, which is also illustrated as a graph in Figure 9. Note that
the analysis discovers that the only possible context nodes of template rule 2,
which has the match expression *, are name elements. (Without the modeling
of priorities, the flow graph would contain additional edges from 3.4 and 5.1
to 2.)

8 Summary Graphs

With the information provided by the flow analysis, we can now begin construct-
ing a summary graph that represents the possible output of the stylesheet. The
following definition of what summary graphs are is a variation of the one pre-
sented in [23]. Due to the highly flexible nature of XSLT (for example, attribute
values, attributes, and elements can be constructed separately by XSLT instruc-
tions located in distinct template rules), we need a number of modifications of
the earlier definition; we describe these after presenting the definition we use
here.

A summary graph is defined relative to an input schema Din and an XSLT
stylesheet S (the output schema is not used yet). Let NE , NA, NT , NS , and NC
be sets of element nodes, attribute nodes, text nodes, sequence nodes, and choice
nodes, respectively. Intuitively, the former three kinds of nodes shall represent
the possible elements, attributes, and character data or attribute values that
may occur when running the stylesheet. The sequence and choice nodes are
used for modeling element contents and attribute lists. The edges in the graph
describe how the constituents can be composed to form XML documents. More
precisely, a summary graph SG is a tuple

SG = (NE , NA, NT , NS ,NC , R, S, contains, seq, choice)

where

• NE , NA, NT , NS , and NC are finite disjoint sets of nodes of the different
kinds mentioned above; for later use we define N = NE∪NA∪NT ∪NS∪NC ;

33

5
5.1

4

3.4

2

1
1.2

3

registrations

name

group

name

root

name

namegroup}

{

{

{

{

{

{

}{

}

}

}

}

}

{

registrations{

}

}

Figure 9: Resulting flow for the example. (Only edges with non-empty flow are
shown; the blobs indicate the context sets.)

• R ⊆ N is a set of designated root nodes ;

• S : NE ∪NA∪NT → 2STRINGS , where STRINGS is the set of all Unicode
strings, defines node labels ;

• contains : NE ∪NA → N defines contains edges ;

• seq : NS → N∗ defines sequence edges; and

• choice : NC → 2N defines choice edges.

The language L(SG) of a summary graph SG is the set of XML trees that can
be obtained by unfolding the graph, starting from a root node:

L(SG) = {x | ∃r ∈ R : r ⇒ x}

We here use the unfolding relation, ⇒, between summary graph nodes and XML
trees, which is defined inductively as follows:

n ∈ NE e ∈ S(n) contains(n) = m m
attr⇒ {a1, . . . , ak} m

cont⇒ c

n ⇒ <e a1 . . . ak> c </e>

n ∈ NA a ∈ S(n) contains(n) = m m
text⇒ s

n ⇒ a="s"

n ∈ NT s ∈ S(n)
n ⇒ s

34

n ∈ NS seq(n) = a1 . . . ak ai ⇒ bi for all i = 1, . . . , k

n ⇒ b1 . . . bk

n ∈ NC a ∈ choice(n) a ⇒ b

n ⇒ b

This definition uses the operations attr⇒, cont⇒ , and text⇒ to extract attributes, con-
tents, and text. These relations are defined as follows:

n ∈ NA n ⇒ a

n
attr⇒ {a}

n ∈ NE ∪NT

n
attr⇒ ∅

n ∈ NS seq(n) = a1 . . . ak ai
attr⇒ Ai for all i = 1, . . . , k

n
attr⇒ ⋃k

i=1 Ai

n ∈ NC a ∈ choice(n) a
attr⇒ A

n
attr⇒ A

n ∈ NE ∪NT n ⇒ x

n
cont⇒ x

n ∈ NA

n
cont⇒ ε

n ∈ NS seq(n) = a1 . . . ak ai
cont⇒ bi for all i = 1, . . . , k

n
cont⇒ b1 . . . bk

n ∈ NC a ∈ choice(n) a
cont⇒ b

n
cont⇒ b

n ∈ NT n ⇒ x

n
text⇒ x

n ∈ NE ∪NA

n
text⇒ ε

n ∈ NS seq(n) = a1 . . . ak ai
text⇒ bi for all i = 1, . . . , k

n
text⇒ b1 . . . bk

n ∈ NC a ∈ choice(n) a
text⇒ b

n
text⇒ b

As an example, we can construct a summary graph whose language is the
set of ul lists with zero or more li items that each contain a string from some
language L: NE = {1, 5}, NA = ∅, NT = {6}, NS = {3, 4}, NC = {2}, R = {1},
S(1) = ul, S(5) = li, S(6) = L, contains(1) = 2, contains(5) = 6, seq(3) = ε,
seq(4) = 5 2, and choice(2) = {3, 4}. This may be shown graphically as in
Figure 10.

The present definition of summary graphs differs from the one in [23] in the
following ways: first, since we are here not constructing summary graphs in a
fixed point process, we do not need labeled gaps or the gap presence map; second,
we here have a looser connection between elements, attributes, and attribute
values; and third, we can here also represent elements and attributes that do not

35

E
ul

2

1

C

S S

E
li

T
L

1

2

3 4

5

6

Figure 10: Summary graph representing ul lists with zero or more li items. The
contents of the boxes indicate node ID, node label (for those nodes that have a
label), and node type (where E, A, T , S, and C represent element, attribute,
text, sequence, and choice node, respectively). For brevity, singleton node labels
are written without brackets, and the edge types (contains, sequence, or choice)
can be inferred from the context. The edge numbers at the sequence node with
ID 4 indicate their order.

have fixed names. Although the basic ideas are not new, these differences permit
a more smooth construction of summary graphs, and the existing algorithm for
comparing a summary graph and a schema can be modified accordingly, which
we return to in Section 11.

9 Construction of Summary Graphs

For each pair of a template rule t ∈ TS and a context node type σ ∈ C(t), we
construct a summary graph fragment by recursively traversing the structure of
the template (see Figure 4):

• A sequence of XSLT instructions in the template becomes a sequence node
with an edge to each of the summary graph fragments being constructed
for the instructions in the same order.

• An element instruction becomes an element node n. Its name S(n) is
determined by the name attribute of the instruction:

– for a constant string s, we let S(n) = {s};
– for {xslv:unknownString()}, we let S(n) = STRINGS ; and

36

– for {name()}, we choose S(n) according to the semantics of the
name() function:

S(n) =

{σ} if σ ∈ E
{a} if σ = (a, e) ∈ A× E
STRINGS if σ = pi

{ε} otherwise

A summary graph fragment represented by a node m is constructed re-
cursively for the contents of the instruction, and contains(n) is set to m.

• An attribute instruction becomes an attribute node. Its name and con-
tents are handled as for element instructions.

• A value-of instruction becomes a text node n. Its label S(n) is deter-
mined by the select expression:

– for a constant string s, we let S(n) = {s};
– for xslv:unknownString(), we let S(n) = STRINGS ;

– for string(self::node()), we choose S(n) according to the type of
σ:

S(n) =

{
values(Din , e, a) if σ = (a, e) ∈ A× E
STRINGS otherwise

Here, the function values(Din , e, a) returns the set of strings that are
valid values of a attributes in e elements according to Din . (This is
always a regular language over the Unicode alphabet.)

– for string(attribute::a) for some name a , we again choose S(n)
according to the type of σ:

S(n) =

{
values(Din , σ, a) if σ ∈ E
{ε} otherwise

• A choose instruction becomes a choice node with an edge to each of the
summary graph fragments being constructed for the branches.

• A copy-of instruction (which, at this point, we only use to represent com-
putation of an unknown result tree fragment, as explained earlier) becomes
an element node n, S(n) = STRINGS , attr(n) = ∅, and content(n) = m
where m is a sequence node with seq(m) = ε. That is, this instruction
is modeled as an empty element with an unknown name, which is suffi-
cient to trigger a meaningful validity error message in the validation phase
described in Section 11.

• An apply-templates instruction results in combining the summary graph
fragment for t with fragments corresponding to other templates or context
node types; we explain how this is done in Section 10.

37

out:body
1 E

Hello!out:hr
5 E 7 T

6 S

2 S

bgcolor

STRINGS

3 A

4 T

2 31

Figure 11: Summary graph fragment for a small template.

If t is an entry template, then the node corresponding to the entire template
rule becomes a root node in the summary graph.

As an example, the following small template is translated into the summary
graph fragment shown in Figure 11:

<element name="out:body">
<attribute name="bgcolor">
<value-of select="xslv:unknownString()"/>

</attribute>
<element name="out:hr"/>
Hello!

</element>

In general, this translation into summary graphs does not introduce any
imprecision that was not already present due to the translation into Reduced
XSLT and the approximative nature of the flow analysis.

10 Translating apply-templates Instructions

To connect the summary graph fragments according to the apply-templates
instructions, we proceed according to Figure 2, which shows how their select
expressions look in practice. In the following, the numbers in parentheses show
how many cases each technique covers.

The Default Expression (31.7%)

The default select expression selects all child nodes of the context node. If
this is not of type E (an element) nor of type root, then the possible content
is simply modeled by an empty sequence node. Otherwise, we look up the
declared content model of σ in Din and build a corresponding summary graph
fragment. The content model is a regular expression over symbols from Γ. We
first translate this regular language into a similar summary graph construction,
using choice nodes, sequence nodes, loop edges, and placeholders for the Γ

38

symbols. (This technique was introduced in [23].) Each placeholder is then
replaced with a choice node that links to the summary graph fragments for the
templates that correspond to the possible outgoing flow for that symbol in the
apply-templates instruction. More precisely, a placeholder γ ∈ Γ is replaced
with a choice node that links to the summary graph fragment for each template
t′ where γ ∈ F (a, t′)(σ).

Projected Contents (+44.8%)

Next, we handle the cases a, *, a | b | c, and text(). We here proceed as
for the default case, except that the regular expression we consider is obtained
from the content model of the context node by deleting the symbols that are
not matched by the select expression.

As an example, consider the apply-templates with number 3.4 in the ex-
panded version of our running example:

<!-- 3 -->

<template match="in:group" priority="0">

<element name="out:li">

<element name="out:table">

...

<apply-templates select="in:name"><!-- 3.4 -->

<with-param name="leader" select="@leader"/>

</apply-templates>

</element>

</element>

</template>

Here, the context node has type in:group. The regular expression describing
the content model is (in:affiliation,in:name*). Restricting to the symbol
in:name we are left with the projected content in:name*. This is represented
by the summary graph fragment shown in Figure 12, where the dashed node
represents the placeholder for the symbol in:name. Consulting the flow graph
in Figure 9, we see that there is a single outgoing flow for this symbol to the
template rule with number 4 and context node in:name. The completed sum-
mary graph fragment for the apply-templates instruction with number 3.4 is
then seen in Figure 13.

Multiple Location Steps (+11.9%)

We now consider the cases a/b/c and /a/b/c. They are handled one step at a
time, by concatenating the summary graph fragments for each step as described
above (where the context node type traverses down the sequence). In the case
of a leading /, the initial context node type is root.

Predicates (+3.4%)

Cases which involve the use of predicates, such as a[..], a[...]/b[...]/c[...],
and /a[...]/b[...]/c[...], are handled as the cases without predicates, ex-

39

1 2

S S

C

in:name

Figure 12: Summary graph fragment modeling projected contents, still with a
placeholder node.

cept that the choice nodes representing the possible outgoing flow is extended
with an edge to an empty sequence node to model the case where the predicate
evaluates to false.

Attributes (+0.6%)

For the case @a we have several possibilities. First, if σ is an element and
a attributes are required (#REQUIRED or #FIXED) in such elements according
to Din , then we know that a single node is selected. We model this with a
choice node with outgoing edges to the template rules that correspond to the
possible outgoing flow from the apply-templates instruction. If the a attribute
is instead optional (#IMPLIED or has a default value), then we do the same but
add an edge to an empty sequence node. In other cases, no nodes are selected,
which is modeled with an empty sequence node.

Parent and Root (+0.4%)

For the cases .. and /, we know that only a single element is selected (or
none, if σ = root). Thus, the appropriate summary graph fragment is a choice
node with outgoing edges to the template rules that correspond to the possible
outgoing flow from the apply-templates instruction.

Others (+7.2%)

In all other cases, we resort to constructing a summary graph fragment de-
scribing all sequences of possible outgoing flow. For the large subset where the
possible names are known (5.6%), this sound approximation can be made more
precise by performing a simple cardinality analysis on Din , deciding for each
element or attribute how many times it may occur in an output document. We
only need to approximate this cardinality with the possibilities ? (zero or one
times), 1 (one time), * (zero or more times), or + (one or more times).

40

1 2

S S

C

C

CT

T S

S

STRINGS

1 2

!!!

E

E
out:tr

out:td

Figure 13: Completed summary graph fragment.

Sorting

If the apply-templates instruction contains any sort directive, then we cannot
rely on the order from the input document. This means that the generated
content model must be scrambled to describe any order of element (but inferred
cardinalities are of course preserved).

Example

The summary graph for the running example is shown in Figure 14.

11 Summary Graph Validation

We rely on an existing algorithm [11] for checking that L(SG) ⊆ L(Dout). (The
modifications to the definition of summary graphs as mentioned in Section 8 are
easily incorporated in the implementation.)

A typical validity error report from the tool looks as follows:

***Validation error: contents of element ’item’ does not match declaration

Rule: <template match="child::*">...</template>

Context node: item

Element: <item category="national">...</item>

Schema: (headline,text)

41

out:html
E

S

E E
out:head out:body

1 2

E E
out:title out:ol

C

S S

1 2

out:li
E C

out:li
E

out:table

S

1 2

S S

C

C

CT

S

S

STRINGS

1 2

!!!

E

E
out:tr

out:td

border
A

out:thead
E

1 2 3

out:tr
E

out:td
E

S

STRINGS
T C

®

1 2

1
T

STRINGS
T

T

T

S

Registrations
T

E

Figure 14: Summary graph for the example.

42

This report consists of four parts:

• The error message, describing the nature of the inconsistency with the
output schema.

• The signature of the involved template rule.

• The context node that is used for instantiating the template when the
inconsistency occurs.

• The relevant fragment of the output DSD schema showing the expected
content model.

The summary graphs that are being produced contain information that al-
lows detection of other problems besides validity errors, for example

• attempts to insert attributes in non-element nodes or non-text contents
in attribute nodes;

• select expressions that never select anything or match expressions that
never match anything (dead code); or

• insertion of attributes after children have been added to an element.

Our present implementation does not exploit these opportunities, but we plan
to do so in future work.

12 Implementation and Experiments

We have developed a proof-of-concept implementation of our static validation
algorithm. It consists of several components, some of which were available
off-the-shelf. A DTD parser is available from www.wutka.com, an XML API
from www.jdom.org, and an XPath parser from www.jaxen.org. DTD schemas
are translated into DSD2 schemas [29], and the summary graph validation from
Section 11 uses the previously published algorithm [11]. Thus, the novel compo-
nents of our implementation are the simplifier from Section 6, the flow analysis
from Section 7, the summary graph construction from Section 9, and a main
part that combines the various components.

Test cases for our tool consist of triples of the form (input DTD schema,
XSLT stylesheet, output DTD schema). Such instances are remarkably diffi-
cult to obtain, since publicly available stylesheets often work on esoteric input
languages for which no documentation is readily available. We have, however,
collected 15 interesting triples of which two are written by ourselves (indepen-
dently of this project). In some cases where we could only obtain a schema
for either the input or the output language, we used the SAXON DTDGenera-
tor [20] to create schemas from sample documents. At least for input schemas,
this should be a safe approximation. Figure 15 shows our collection of bench-
mark triples, which is seen to contain stylesheets of small to medium sizes and

43

Stylesheet Input Schema Output Schema
poem.xsl 35 poem.dtd 8 xhtml.dsd 2,278
AffordableSupplies.xsl 42 Catalog.dtd 31 xhtml.dsd 2,278
agenda.xsl 43 agenda.dtd 19 xhtml.dsd 2,278
news.xsl 54 news.dtd 12 xhtml.dsd 2,278
CreateInvoice.xsl 74 PurchaseOrder.dtd 37 dtdgen.dtd 32
adressebog.xsl 76 dtdgen.dtd 22 xhtml.dsd 2,278
order.xsl 112 order.dtd 31 fo.dtd 1,480
slideshow.xsl 118 slides.dtd 26 xhtml.dtd 1,198
psicode-links.xsl 145 links.dtd 15 xhtml.dtd 1,198
ontopia2xtm.xsl 188 tmstrict.dtd 113 xtm.dtd 202
proc-def.xsl 247 proc.dtd 69 xhtml.dtd 1,198
email list.xsl 257 dtdgen.dtd 41 xhtml.dtd 1,198
tip.xsl 262 dtdgen.dtd 56 xhtml.dsd 2,278
window.xsl 701 dtdgen.dtd 84 xhtml.dtd 1,198
dsd2-html.xsl 1,353 dsd2.dtd 104 xhmtl.dsd 2,278

Figure 15: Benchmark triples, sizes in lines.

schemas ranging from small to largish. Often, the output language is XHTML
and for some of these cases we choose to use directly the corresponding DSD2
schema, which is able to capture more requirements than a DTD schema.

The precision of our tool is presented in Figure 16 which classifies the gen-
erated error reports. True errors are those that may actually produce invalid
output.

Encouragingly (for our tool, not for the stylesheet authors), a significant
number of true errors were reported. They range over a number of different
problems:

• misplaced elements, such as link elements occurring outside the XHTML
header;

• undefined elements, attributes, or attribute values;

• missing elements or attributes, for XHTML typically the alt attribute of
img elements or the title element in the header;

• unexpected empty content, for XHTML typically ul or ol lists that cannot
be guaranteed to contain at least one li element; and

• wrong namespaces, which typically occurs when nodes are copied di-
rectly from input to output without realizing that the namespace must
be changed.

Most errors are easily found and corrected, but in a few cases the intentions of
the stylesheet author escape us. To illustrate the variety of errors found, we list

44

Stylesheet True Errors False Errors
poem.xsl 2 0
AffordableSupplies.xsl 2 0
agenda.xsl 2 0
news.xsl 0 0
CreateInvoice.xsl 4 2
adressebog.xsl 2 0
order.xsl 0 0
slideshow.xsl 12 0
psicode-links.xsl 20 0
ontopia2xtm.xsl 0 1
proc-def.xsl 6 0
email list.xsl 3 0
tip.xsl 1 0
window.xsl 0 0
dsd2-html.xsl 0 0

Figure 16: Results of static validation.

the first line of the six unique kinds of errors among the 12 error messages for
slideshow.xsl:

***Validation error: contents of element ’ul’ may not match declaration

***Validation error: required attribute missing in element ’img’

***Validation error: required attribute missing in element ’script’

***Validation error: sub-element ’div’ of element ’p’ not declared

***Validation error: sub-element ’html’ of element ’div’ not declared

***Validation error: sub-element ’li’ of element ’div’ not declared

These describe sloppy use of XHTML, but the resulting output would of course
be accepted by most browsers. For non-XHTML applications, the consequences
of such errors could be much worse.

The three false errors show cases where the approximations in our algorithm
are too coarse:

• The two false errors in the validation of CreateInvoice.xsl both orig-
inate from instances where a select attribute has value of type //foo,
which means “any foo element occurring in the document”. However, it
turns out that in this particular case, the select expressions could be
simplified to just foo, in which case our current level of approximation is
adequate.

• The false error in the validation of ontopia2xtm.xsl occurs when an at-
tribute value is tokenized using the XPath substring function, and a
template is instantiated for each token. Constructs like these are inher-
ently difficult to analyze, but fortunately not common.

45

Stylesheet FG SG Flow Build Analyze Total
poem.xsl 26 95 0.22 0.07 0.05 0.93
AffordableSupplies.xsl 4 22 0.05 0.05 0.28 1.07
agenda.xsl 10 38 0.08 0.06 0.08 0.83
news.xsl 21 81 0.18 0.08 0.07 0.92
CreateInvoice.xsl 25 100 0.25 0.11 0.86 1.77
adressebog.xsl 33 412 0.19 0.20 0.32 1.32
order.xsl 31 173 0.26 0.11 0.16 1.17
slideshow.xsl 51 254 0.36 0.14 0.82 2.11
psicode-links.xsl 70 304 0.42 0.15 0.19 1.45
ontopia2xtm.xsl 82 318 0.34 0.20 0.83 2.08
proc-def.xsl 33 344 0.37 0.19 0.80 2.10
email list.xsl 61 291 0.39 0.18 0.35 1.69
tip.xsl 113 492 0.69 0.24 0.28 1.92
window.xsl 100 515 0.41 1.47 3.02 5.83
dsd2-html.xsl 412 72,699 6.95 15.22 56.17 79.55

Figure 17: Performance for validating benchmark triples.

We have in addition considered the following generic identity transformation:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/|@*|node()">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>

</xsl:template>

</xsl:stylesheet>

Our static validation algorithm has been designed to always handle such trans-
formations correctly, and we have verified this property on a large selection of
DTD schemas.

The performance of our tool is shown in Figure 17. Here, “FG” shows the
combined number of nodes and edges in the constructed flow graph, “SG” is the
combined number of nodes and edges in the constructed summary graph, “Flow”
is the time to perform the flow analysis, “Build” is the time to construct the
summary graph, “Analyze” is the time to analyze the inclusion into the output
language, and “Total” is the time for running the entire tool (all measured
in seconds). All experiments were performed on a 3GHz Pentium 4 with 1
GB RAM running Linux. The numbers are seen to be reasonable for these
examples. Note that dsd2-html.xsl is larger and more complicated, which is
quite obvious in the running times.

In Figure 18 we report the running times for the static validation of the iden-
tity transformation on a number of different DTD schemas. This clearly shows

46

Schema SG Flow Build Analyze Total
news.dtd 12 lines 157 0.16 0.16 0.12 0.82
dsd2.dtd 104 lines 3,853 0.44 1.12 1.41 3.52
xhtml.dtd 1,198 lines 26,110 14.46 6.37 3.40 25.04
fo.dtd 1,480 lines 90,544 581.49 25.56 7.32 615.32

Figure 18: Performance for validating the identity transformation.

that the performance of the current implementation of our tool may not scale
to seriously large instances. However, many of our low-level data structures and
algorithms are currently rather naive, so there is ample basis for optimizations.
Note that the time for fo.dtd seems disproportionately high. This is because we
count the number of lines before expansion of entity references, while fo.dtd ac-
tually expands to more than 12,000 lines due to an extreme number of attribute
definitions.

13 Conclusion

We have presented the first working tool that is capable of performing static
validation of XSLT stylesheets. Based on a pragmatic approach that involves
examination of hundreds of existing stylesheets, the technique we have developed
is shown to handle typical cases with sufficient precision and performance to be
practically useful.

The work presented here may be continued in various ways. First, it is
possible to support XML Schema as a replacement for DTD. The ground work
for this extension is described in [22]. Second, we believe that our approach
can be generalized to also handle XSLT 2.0 although this involves a number
of challenges for the flow analysis. Moreover, as mentioned in Section 11, our
approach can also be used to detect other problems besides validity errors. In
another direction, the information provided by our analysis may also be useful
for optimizing code generation and for debugging purposes.

Acknowledgements

We thank Søren Kuula for his many detailed comments and valuable suggestions
to this work.

References

[1] Altova. XMLSpy, 2005. http://www.altova.com/xmlspy.

[2] Jacek Ambroziak et al. XSLTC, 2004. http://xml.apache.org/

xalan-j/xsltc/xsltc compiler.html.

47

[3] Philippe Audebaud and Kristoffer Rose. Stylesheet validation. Technical
Report RR2000-37, ENS-Lyon, November 2000.

[4] Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in
the presence of DTDs. In Proc. 24th ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS ’05, pages 25–36,
2005.

[5] Geert Jan Bex, Sebastian Maneth, and Frank Neven. A formal model for
an expressive fragment of XSLT. Information Systems, 27(1):21–39, 2002.

[6] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data
access in Cω. In Proc. 19th European Conference on Object-Oriented Pro-
gramming, ECOOP ’05, volume 3586 of LNCS. Springer-Verlag, July 2005.

[7] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static
validation of dynamically generated HTML. In Proc. ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engi-
neering, PASTE ’01, pages 221–231, June 2001.

[8] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> project. ACM Transactions on Internet Technology, 2(2):79–114,
2002.

[9] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible Markup Language (XML) 1.0 (third edition), February
2004. W3C Recommendation. http://www.w3.org/TR/REC-xml.

[10] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Static analysis for dynamic XML. Technical Report RS-02-24, BRICS,
May 2002. Presented at Programming Language Technologies for XML,
PLAN-X ’02.

[11] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Ex-
tending Java for high-level Web service construction. ACM Transactions
on Programming Languages and Systems, 25(6):814–875, 2003.

[12] James Clark. XSL transformations (XSLT), November 1999. W3C Rec-
ommendation. http://www.w3.org/TR/xslt.

[13] James Clark and Steve DeRose. XML path language, November 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

[14] Ce Dong and James Bailey. Static analysis of XSLT programs. In Proc.
15th Australasian Database Conference, ADC ’04. Australian Computer
Society, January 2004.

[15] Denise Draper et al. XQuery 1.0 and XPath 2.0 formal semantics, Novem-
ber 2002. W3C Working Draft. http://www.w3.org/TR/query-semantics/.

48

[16] Matthew Harren, Mukund Raghavachari, Oded Shmueli, Michael G. Burke,
Rajesh Bordawekar, Igor Pechtchanski, and Vivek Sarkar. XJ: Facilitating
XML processing in Java. In Proc. 14th International Conference on World
Wide Web, WWW ’05, pages 278–287. ACM, May 2005.

[17] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, April 1979.

[18] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language. ACM Transactions on Internet Technology, 3(2):117–
148, 2003.

[19] Suresh Jagannathan and Stephen Weeks. A unified treatment of flow anal-
ysis in higher-order languages. In Proc. 22th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, pages
393–407, January 1995.

[20] Michael Kay. Saxon, 2004. http://saxon.sourceforge.net/.

[21] Stephan Kepser. A proof of the Turing-completeness of XSLT and XQuery.
Technical report, SFB 441, University of Tübingen, 2002.

[22] Christian Kirkegaard and Anders Møller. Type checking with XML Schema
in Xact. Technical Report RS-05-31, BRICS, 2005.

[23] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. Static
analysis of XML transformations in Java. IEEE Transactions on Software
Engineering, 30(3):181–192, March 2004.

[24] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual.
BRICS, Department of Computer Science, University of Aarhus, January
2001. Notes Series NS-01-1.

[25] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA im-
plementation secrets. International Journal of Foundations of Computer
Science, 13(4):571–586, 2002. World Scientific Publishing Company.

[26] Nils Klarlund and Michael I. Schwartzbach. Graph types. In Proc. 20th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’93, January 1993.

[27] Wim Martens and Frank Neven. Typechecking top-down uniform unranked
tree transducers. In 9th International Conference on Database Theory,
volume 2572 of LNCS. Springer-Verlag, January 2003.

[28] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for XML trans-
formers. Journal of Computer and System Sciences, 66:66–97, February
2002.

49

[29] Anders Møller. Document Structure Description 2.0, December 2002.
BRICS, Department of Computer Science, University of Aarhus, Notes
Series NS-02-7. Available from http://www.brics.dk/DSD/.

[30] Anders Møller and Michael I. Schwartzbach. The design space of type
checkers for XML transformation languages. In Proc. Tenth International
Conference on Database Theory, ICDT ’05, volume 3363 of LNCS, pages
17–36. Springer-Verlag, January 2005.

[31] Chimezie Ogbuji. Visualizing XSLT in SVG, 2003. http://www.

xml.com/pub/a/2003/06/04/xslt-svg.html.

[32] Ovidiu Predescu and Tony Addyman. XSLT-process, 2005.
http://xslt-process.sourceforge.net/.

[33] Thomas Schwentick. XPath query containment. ACM SIGMOD Record,
33(1):101–109, 2004.

[34] Stylus Studio. XSL Debugger, 2005. http://www.stylusstudio.com/

xsl debugger.html.

[35] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendel-
sohn. XML Schema part 1: Structures second edition, October 2004. W3C
Recommendation. http://www.w3.org/TR/xmlschema-1/.

[36] Akihiko Tozawa. Towards static type checking for XSLT. In Proc. ACM
Symposium on Document Engineering, DocEng ’01, November 2001.

[37] Philip Wadler. A formal semantics of patterns in XSLT and XPath. Markup
Languages, 2(2):183–202, 2000.

[38] Peter T. Wood. Containment for XPath fragments under DTD constraints.
In Proc. 9th International Conference on Database Theory, ICDT ’03,
pages 300–314. Springer-Verlag, 2003.

50

Recent BRICS Report Series Publications

RS-05-32 Anders Møller, Mads Østerby Olesen, and Michael I.
Schwartzbach. Static Validation of XSL Transformations. Oc-
tober 2005. 50 pp.

RS-05-31 Christian Kirkegaard and Anders Møller. Type Checking with
XML Schema inXACT. September 2005. 21 pp.

RS-05-30 Karl Krukow. An Operational Semantics for Trust Policies.
September 2005.

RS-05-29 Olivier Danvy and Henning Korsholm Rohde. On Obtaining
the Boyer-Moore String-Matching Algorithm by Partial Evalua-
tion. September 2005. ii+9 pp. To appear inInformation Pro-
cessing Letters. This version supersedes BRICS RS-05-14.

RS-05-28 Jǐr ı́ Srba. On Counting the Number of Consistent Genotype As-
signments for Pedigrees. September 2005. 15 pp. To appear in
FSTTCS ’05.

RS-05-27 Pascal Zimmer. A Calculus for Context-Awareness. August
2005. 21 pp.

RS-05-26 Henning Korsholm Rohde.Measuring the Propagation of In-
formation in Partial Evaluation. August 2005. 39 pp.

RS-05-25 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited Control. August 2005. ii+11 pp.
To appear in Journal of Functional Programming. This version
supersedes BRICS RS-05-10.

RS-05-24 Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy. August 2005. iv+43 pp. To appear in the jour-
nal Logical Methods in Computer Science. This version super-
sedes BRICS RS-05-11.

RS-05-23 Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A
Framework for Concrete Reputation-Systems. July 2005. 48 pp.
This is an extended version of a paper to be presented at ACM
CCS’05.

RS-05-22 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. July 2005. iv+39 pp.

RS-05-21 Philipp Gerhardy and Ulrich Kohlenbach. General Logical
Metatheorems for Functional Analysis. July 2005. 65 pp.

