
BRICS
Basic Research in Computer Science

On Obtaining the
Boyer-Moore String-Matching Algorithm
by Partial Evaluation

Olivier Danvy
Henning Korsholm Rohde

BRICS Report Series RS-05-29

ISSN 0909-0878 September 2005

B
R

IC
S

R
S

-05-29
D

anvy
&

R
ohde:

O
n

O
btaining

the
B

oyer-M
oore

S
tring-M

atching
A

lgorithm
by

P
artialE

valuation

Copyright c© 2005, Olivier Danvy & Henning Korsholm Rohde.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/29/

On Obtaining

the Boyer-Moore String-Matching Algorithm

by Partial Evaluation∗

Olivier Danvy and Henning Korsholm Rohde

BRICS†

Department of Computer Science
University of Aarhus‡

August 29, 2005

Abstract

We present the first derivation of the search phase of the Boyer-Moore string-
matching algorithm by partial evaluation of an inefficient string matcher. The
derivation hinges on identifying the bad-character-shift heuristic as a binding-
time improvement, bounded static variation. An inefficient string matcher
incorporating this binding-time improvement specializes into the search phase
of the Horspool algorithm, which is a simplified variant of the Boyer-Moore
algorithm. Combining the bad-character-shift binding-time improvement with
our previous results yields a new binding-time-improved string matcher that
specializes into the search phase of the Boyer-Moore algorithm.

∗To appear in Information Processing Letters.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {danvy,hense}@brics.dk

i

Contents

1 Introduction 1

2 Preliminaries 1

3 Obtaining the bad-character-shift heuristic 3

4 From Horspool to Boyer-Moore 5

5 Correctness issues 6

6 Conclusion 7

ii

1 Introduction

String matching is a traditional application of partial evaluation, and obtaining
the search phases of linear-time algorithms out of inefficient string matchers has
become a standard benchmark [13, 16]. The obtained algorithms include several
non-trivial ones, notably the Knuth-Morris-Pratt left-to-right string-matching algo-
rithm [14] and simplified variants of the Boyer-Moore right-to-left string-matching
algorithm [5].

The Boyer-Moore algorithm uses two heuristics: good-suffix and bad-character-
shift. We observe that on one hand, the simplified variants of the Boyer-Moore
search phase obtained by partial evaluation use only the good-suffix heuristic [2,
4, 10, 11, 15], and that on the other hand, Horspool uses only the bad-character-
shift heuristic for his own string matcher [12]. In the present work, we use both
heuristics.

We follow the partial-evaluation tradition of improving the binding times of an
inefficient string matcher to make it specialize to a known string matcher [8]:

1. Our first step is to express the bad-character-shift heuristic as a binding-time
improvement in a naive, inefficient string matcher. Specializing the binding-
time improved string matcher yields the search phase of the Horspool string
matcher, which is a new result.

2. We then combine the bad-character-shift binding-time improvement with our
previous results [2] and present a new binding-time-improved string matcher.
Specializing this string matcher yields the search phase of the Boyer-Moore
string matcher, which is our main result.

Overview: Section 2 presents the technical background: string matching, the
starting inefficient string matcher, partial evaluation, and binding-time improve-
ments. Section 3 presents the bad-character-shift heuristic and shows how to obtain
the Horspool algorithm. Section 4 shows how to obtain the Boyer-Moore algorithm.
We then address correctness issues in Section 5.

2 Preliminaries

String matching: A string-matching algorithm finds the first occurrence of a
pattern string, p = p0p1 · · · pm−1, in a text string, t = t0t1 · · · tn−1, where strings
are sequences of atomic characters of some finite alphabet, Σ.

The following naive string matcher (adapted from our earlier work [2]) compares
the characters of the pattern against the text from right to left, as does the Boyer-
Moore string matcher:

1

main(p, t) = match(p, t, |p| − 1, |p| − 1)
match(p, t, j, k) = if j = −1

then match at k + 1
else if k ≥ |t|

then no match
else compare(p, t, j, k)

compare(p, t, j, k) = if pj = tk
then match(p, t, j − 1, k − 1)
else let offset = compute offset(p, t, j, k)

in match(p, t, |p| − 1, k + offset)
compute offset(p, t, j, k) = |p| − j

This program returns match at k (i.e., a result of type int) if the left-most occur-
rence of p in t begins at index k, and no match (i.e., a result of type unit) if p
does not occur in t. We will use this program as a template for our binding-time-
improved programs, modifying only the definition of compute offset . Note that this
function here naively increments the pattern position (i.e., k− j) by one. Since the
pattern position is only incremented after a mismatch, pj−1 6= tk−1 (i.e., a wit-
ness of non-occurrence at the current pattern position), the naive string matcher is
clearly correct.

Partial evaluation: Partial evaluation is a program transformation that propa-
gates constants, unfolds calls, and computes constant expressions [9, 13]. Its goal is
to specialize programs. Given a string matcher of type pattern × text → int + unit
and a pattern string p, a partial evaluator generates a program of type text →
int + unit such that for any text string t, running the source string matcher on p
and t yields the same result as running the generated program on t alone.

Binding-time improvements: A binding-time improvement is a source-program
transformation that makes a program specialize better [13, Chapter 12]. For exam-
ple, if we assume x to be of boolean type and unknown at partial-evaluation time,
we can transform the function call “foo(x)” into “case x of true → foo(true) |
false → foo(false),” by enumerating the possible values of x. The transformation
is a binding-time improvement because the argument of foo changes from being
known only at run time (dynamic) to being known already at partial-evaluation
time (static). This particular binding-time improvement—colloquially known as
“The Trick”—is more descriptively referred to as “bounded static variation” nowa-
days [13].

2

Partial evaluation applied to string matching: Efficient string matchers usu-
ally consist of a pre-calculation phase (on the pattern) and a search phase (on the
pattern, the result of the pre-calculation, and the text). Ideally, by specializing
a string matcher with respect to a pattern, a partial evaluator computes what
amounts to a pre-calculation phase and yields a specialized program that com-
putes the search phase (on the text). A naive string matcher such as the one
above, however, does not readily allow significant optimization through specializa-
tion. Successful partial evaluation of string matchers is based on the observation
that after every character comparison, static information about the dynamic text
must be maintained, expressed as equalities (‘ti = pj’) or inequalities (‘ti 6= pj’)
with characters from the pattern. Keeping and using this information at partial-
evaluation time, either by a clever partial evaluator or by a clever rewriting of the
naive string matcher (i.e., a binding-time improvement), is the key to obtaining
specialized programs that compute the search phase efficiently.

Challenge: Although generally successful [2, 3, 4, 8, 10, 11, 13, 15, 16], so far
the program-specialization approach to string matching has failed to obtain the
Boyer-Moore string matcher.

3 Obtaining the bad-character-shift heuristic

The bad-character-shift heuristic improves the special case where the first compar-
ison fails (which gives us only the single inequality, ‘ti 6= p|p|−1’). The heuristic
works by taking the “bad character”, ti, and exploiting knowledge of its last posi-
tion (if any) in the pattern to safely skip a number of non-occurrence positions [5].
It works in constant time using a pre-calculated table of size |Σ|. For example,
after a mismatch, T 6=N, at

text: "-A-TEXT-IN-WHICH-PATTERN-OCCURS-"
pattern: "PATTERN"

↑
the heuristic allows matching to be resumed at

text: "-A-TEXT-IN-WHICH-PATTERN-OCCURS-"
pattern: "PATTERN"

= ↑
where the faulting T is safely matched. The correctness of the heuristic follows
from choosing the right-most T in p (not counting the last character of p), since
we thereby have witnesses of non-occurrence (here, T 6=E and T 6=R) for the skipped
positions.

3

From a partial-evaluation perspective, the key observation is that since Σ is
finite, we can exploit not only that ‘ti 6= p|p|−1’ after a mismatch, but also that
‘ti = cj ’ by applying bounded static variation over Σ. Continuing matching using
just this better piece of information turns out to precisely mimic the bad-character-
shift heuristic, and integrating it into the inefficient string matcher of Section 2
gives a (non-trivial) binding-time-improved program. As announced in Section 2,
we only modify the definition of compute offset :

compute offset(p, t, j, k) = |p| − j − 1 + shift(p, tk+|p|−j−1)

shift(p, c) = case c of

c1 → rematch(p, 1, c1)
...

c|Σ| → rematch(p, 1, c|Σ|)
rematch(p, i, c) = if i = |p|

then i
else if c = p|p|−1−i

then i
else rematch(p, i + 1 , c)

Note that shift simply wraps an application of bounded static variation around
rematch, and that the continued matching performed by rematch amounts to find-
ing the last occurrence of c in p, using i to count the number of subsequent witnessed
non-occurrence positions (plus one). Since compute offset now simply skips these
positions, the modification preserves the correctness of the naive program.

This new string matcher performs the same sequence of character comparisons
between the pattern and the text as the right-to-left variant of the Horspool variant
of the Boyer-Moore algorithm [12]. In addition it performs comparisons between a
given character c and the pattern. Since the character c is subject to bounded static
variation, rematch is static and specializing this program with respect to a pattern
p (and an alphabet Σ) yields a program of size |p| + |Σ| that performs the same
sequence of character comparisons as the search phase of the Horspool algorithm.
We assume that case is a constant-time primitive operation, possibly achieved sepa-
rately by tabulation. The specialized program then also performs the same number
of primitive operations as the search phase of the Horspool algorithm (disregarding
potential language and formulation differences and some arithmetic operations due
to our non-optimized formulation).

For example, specializing the binding-time-improved string matcher with re-
spect to p = ‘aba’ and Σ = {a, b, c} yields the following program:

4

mainaba(t) = match(aba ,2)(t, 2)
match(aba ,2)(t, k) = if k ≥ |t|

then no match
else if ′a′ = tk

then match(aba ,1)(t, k − 1)
else match(aba ,2)(t, k + shiftaba(tk))

match(aba ,1)(t, k) = if k ≥ |t|
then no match
else if ′b′ = tk

then match(aba ,0)(t, k − 1)
else match(aba ,2)(t, k + 1 + shiftaba(tk+1))

match(aba ,0)(t, k) = if k ≥ |t|
then no match
else if ′a′ = tk

then match(aba ,−1)(t, k − 1)
else match(aba ,2)(t, k + 2 + shiftaba(tk+2))

match(aba ,−1)(t, k) = match at k + 1

shiftaba(x) = case x of

a → 2
b → 1
c → 3

The specialized version of shift (i.e., shiftaba) is equivalent to the pre-calculated bad-
character-shift lookup-table [5], in terms of both size and access time. Hence, the
bad-character-shift heuristic, in the imperative formulation of string matching, can
be viewed as an application of bounded static variation—one that is represented
efficiently.

4 From Horspool to Boyer-Moore

We can now obtain the Boyer-Moore algorithm by unifying the result from Section 3
with our earlier results on the good-suffix heuristic [2, Section 5]:

5

compute offset(p, t, j, k) = |p| − j − 1 + max(rematchgs (p, j, |p| − 1, |p| − 2),
shift(p, tk)− |p|+ j + 1)

rematchgs (p, j, j′, k′) = if k′ = −1
then j′ + 1
else if j = j′

then if pj′ 6= pk′

then j′ − k′

else rematchgs (p, j, |p| − 1, k′ + |p| − j′ − 2)
else if pj′ = pk′

then rematchgs (p, j, j′ − 1, k′ − 1)
else rematchgs (p, j, |p| − 1, k′ + |p| − j′ − 2)

The good-suffix heuristic exploits that—by going right-to-left—we know after a
mismatch not only that ‘tk 6= pj ’, but also that ‘tk+i = pj+i’ for i ∈ {1, . . . , |p|−1−
j} [2, 5]. The function rematchgs continues matching using exactly this information,
returning the number of witnessed subsequent non-occurrence positions. Note that
for the heuristics to co-operate optimally, the bad-character-shift heuristic is used
at the mismatch position (instead of the last position) and then adjusted. This
perhaps subtle optimization is safe and avoids that the good-suffix heuristic would
otherwise subsume the bad-character-shift when the last character in p is a match.

This final string matcher performs the same sequence of character comparisons
between the pattern and the text as the Boyer-Moore algorithm. In addition it
performs comparisons between characters in the pattern. These comparisons can
be specialized away by a partial evaluator. Consequently, specializing this program
with respect to a pattern p (and an alphabet Σ) yields a program of size 2|p|+ |Σ|
that performs the same sequence of character comparisons as the search phase
of the Boyer-Moore algorithm. Under the same assumptions as in Section 3, the
specialized program also performs the same number of primitive operations as the
search phase of the Boyer-Moore algorithm. Hence, we have obtained the Boyer-
Moore string-matching algorithm by partial evaluation.

5 Correctness issues

As in our earlier work [1], we characterize a string matcher by a notion of trace: the
sequence of character comparisons between the pattern and the text in the course
of a run. Using a large test suite (several hundreds of runs), we have verified the
correctness of each of our programs by automatically comparing its traces and the
corresponding traces of a reference implementation [6]. A formal alternative would

6

be to give a trace semantics to our programs and to the reference programs and to
prove that they operate in lock step [1].

6 Conclusion

We have shown how to obtain the elusive search phase of the Boyer-Moore string-
matching algorithm by partial evaluation of a binding-time-improved program with
respect to a pattern and an alphabet. Our stepping stone has been the recognition
of the bad-character-shift heuristic as an efficient application of bounded static
variation.

From a string-matching point of view, we have shown that the search phase of
the Boyer-Moore string matching algorithm can be obtained using partial-evaluation
concepts. From a partial-evaluation point of view, we have shown that bounded
static variation—instead of a new concept in partial evaluation—is therefore suffi-
cient to obtain the search phase of the Boyer-Moore string matching algorithm.

Acknowledgments: We would like to thank Mads Sig Ager for our pleasant joint
initial study of partial evaluation of string matchers [1, 2]. We are also grateful to
him, Julia Lawall, and the anonymous referees for their insightful comments.

This work is partially supported by the ESPRIT Working Group APPSEM II
(http://www.appsem.org) and by the Danish Natural Science Research Council,
Grant no. 21-03-0545.

References

[1] Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde. On obtaining
Knuth, Morris, and Pratt’s string matcher by partial evaluation. In Chin [7],
pages 32–46. Extended version available as the technical report BRICS-RS-
02-32.

[2] Mads Sig Ager, Olivier Danvy, and Henning Korsholm Rohde. Fast partial
evaluation of pattern matching in strings. ACM Transactions on Program-
ming Languages and Systems, 2005. To appear. Available as the technical re-
port BRICS RS-04-40. A preliminary version was presented at the 2003 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM 2003).

[3] Torben Amtoft. Sharing of Computations. PhD thesis, DAIMI, Department of
Computer Science, University of Aarhus, Aarhus, Denmark, 1993. Technical
report PB-453.

7

[4] Torben Amtoft, Charles Consel, Olivier Danvy, and Karoline Malmkjær. The
abstraction and instantiation of string-matching programs. In Torben Æ. Mo-
gensen, David A. Schmidt, and I. Hal Sudborough, editors, The Essence of
Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil
D. Jones, number 2566 in Lecture Notes in Computer Science, pages 332–357.
Springer-Verlag, 2002.

[5] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762–772, 1977.

[6] Christian Charras and Thierry Lecroq. Exact string matching algorithms.
http://www-igm.univ-mlv.fr/~lecroq/string/, 1997.

[7] Wei-Ngan Chin, editor. ACM SIGPLAN Asian Symposium on Partial Eval-
uation and Semantics-Based Program Manipulation, Aizu, Japan, September
2002. ACM Press.

[8] Charles Consel and Olivier Danvy. Partial evaluation of pattern matching in
strings. Information Processing Letters, 30(2):79–86, January 1989.

[9] Charles Consel and Olivier Danvy. Tutorial notes on partial evaluation. In Su-
san L. Graham, editor, Proceedings of the Twentieth Annual ACM Symposium
on Principles of Programming Languages, pages 493–501, Charleston, South
Carolina, January 1993. ACM Press.

[10] Yoshihiko Futamura, Zenjiro Konishi, and Robert Glück. Automatic genera-
tion of efficient string matching algorithms by generalized partial computation.
In Chin [7], pages 1–8.

[11] Manuel Hernández and David A. Rosenblueth. Disjunctive partial deduction
of a right-to-left string-matching algorithm. Information Processing Letters,
87:235–241, 2003.

[12] R. Nigel Horspool. Practical fast searching in strings. Software—Practice and
Experience, 10(6):501–506, 1980.

[13] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice-Hall International, London, UK,
1993. Available online at http://www.dina.kvl.dk/~sestoft/pebook/.

[14] Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast pattern
matching in strings. SIAM Journal on Computing, 6(2):323–350, 1977.

8

[15] Christian Queinnec and Jean-Marie Geffroy. Partial evaluation applied to
pattern matching with intelligent backtrack. In Proceedings of the Second
International Workshop on Static Analysis WSA’92, volume 81-82 of Bigre
Journal, pages 109–117, Bordeaux, France, September 1992. IRISA, Rennes,
France.

[16] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive super-
compiler. Journal of Functional Programming, 6(6):811–838, 1996.

9

Recent BRICS Report Series Publications

RS-05-29 Olivier Danvy and Henning Korsholm Rohde. On Obtaining
the Boyer-Moore String-Matching Algorithm by Partial Evalua-
tion. September 2005. ii+9 pp. To appear inInformation Pro-
cessing Letters. This version supersedes BRICS RS-05-14.

RS-05-28 Jǐr ı́ Srba. On Counting the Number of Consistent Genotype As-
signments for Pedigrees. September 2005.

RS-05-27 Pascal Zimmer. A Calculus for Context-Awareness. August
2005. 21 pp.

RS-05-26 Henning Korsholm Rohde.Measuring the Propagation of In-
formation in Partial Evaluation. August 2005. 39 pp.

RS-05-25 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited Control. August 2005. ii+11 pp.
To appear in Journal of Functional Programming. This version
supersedes BRICS RS-05-10.

RS-05-24 Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy. August 2005. iv+43 pp. To appear in the jour-
nal Logical Methods in Computer Science. This version super-
sedes BRICS RS-05-11.

RS-05-23 Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A
Framework for Concrete Reputation-Systems. July 2005. 48 pp.
This is an extended version of a paper to be presented at ACM
CCS’05.

RS-05-22 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. July 2005. iv+39 pp.

RS-05-21 Philipp Gerhardy and Ulrich Kohlenbach. General Logical
Metatheorems for Functional Analysis. July 2005. 65 pp.

RS-05-20 Ivan B. Damg̊ard, Serge Fehr, Louis Salvail, and Christian
Schaffner. Cryptography in the Bounded Quantum Storage
Model. July 2005. 23 pp.

RS-05-19 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
qLuttik. Finite Equational Bases in Process Algebra: Results
and Open Questions. June 2005. 28 pp.

