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Abstract

We present the first derivation of the search phase of the Boyer-Moore string-
matching algorithm by partial evaluation of an inefficient string matcher. The
derivation hinges on identifying the bad-character-shift heuristic as a binding-
time improvement, bounded static variation. An inefficient string matcher
incorporating this binding-time improvement specializes into the search phase
of the Horspool algorithm, which is a simplified variant of the Boyer-Moore
algorithm. Combining the bad-character-shift binding-time improvement with
our previous results yields a new binding-time-improved string matcher that
specializes into the search phase of the Boyer-Moore algorithm.
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1 Introduction

String matching is a traditional application of partial evaluation, and obtaining
the search phases of linear-time algorithms out of inefficient string matchers has
become a standard benchmark [13, 16]. The obtained algorithms include several
non-trivial ones, notably the Knuth-Morris-Pratt left-to-right string-matching algo-
rithm [14] and simplified variants of the Boyer-Moore right-to-left string-matching
algorithm [5].

The Boyer-Moore algorithm uses two heuristics: good-suffix and bad-character-
shift. We observe that on one hand, the simplified variants of the Boyer-Moore
search phase obtained by partial evaluation use only the good-suffix heuristic [2,
4, 10, 11, 15], and that on the other hand, Horspool uses only the bad-character-
shift heuristic for his own string matcher [12]. In the present work, we use both
heuristics.

We follow the partial-evaluation tradition of improving the binding times of an
inefficient string matcher to make it specialize to a known string matcher [8]:

1. Our first step is to express the bad-character-shift heuristic as a binding-time
improvement in a naive, inefficient string matcher. Specializing the binding-
time improved string matcher yields the search phase of the Horspool string
matcher, which is a new result.

2. We then combine the bad-character-shift binding-time improvement with our
previous results [2] and present a new binding-time-improved string matcher.
Specializing this string matcher yields the search phase of the Boyer-Moore
string matcher, which is our main result.

Overview: Section 2 presents the technical background: string matching, the
starting inefficient string matcher, partial evaluation, and binding-time improve-
ments. Section 3 presents the bad-character-shift heuristic and shows how to obtain
the Horspool algorithm. Section 4 shows how to obtain the Boyer-Moore algorithm.
We then address correctness issues in Section 5.

2 Preliminaries

String matching: A string-matching algorithm finds the first occurrence of a
pattern string, p = p0p1 · · · pm−1, in a text string, t = t0t1 · · · tn−1, where strings
are sequences of atomic characters of some finite alphabet, Σ.

The following naive string matcher (adapted from our earlier work [2]) compares
the characters of the pattern against the text from right to left, as does the Boyer-
Moore string matcher:
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main(p, t) = match(p, t, |p| − 1, |p| − 1)
match(p, t, j, k) = if j = −1

then match at k + 1
else if k ≥ |t|

then no match
else compare(p, t, j, k)

compare(p, t, j, k) = if pj = tk
then match(p, t, j − 1, k − 1)
else let offset = compute offset(p, t, j, k)

in match(p, t, |p| − 1, k + offset)
compute offset(p, t, j, k) = |p| − j

This program returns match at k (i.e., a result of type int) if the left-most occur-
rence of p in t begins at index k, and no match (i.e., a result of type unit) if p
does not occur in t. We will use this program as a template for our binding-time-
improved programs, modifying only the definition of compute offset . Note that this
function here naively increments the pattern position (i.e., k− j) by one. Since the
pattern position is only incremented after a mismatch, pj−1 6= tk−1 (i.e., a wit-
ness of non-occurrence at the current pattern position), the naive string matcher is
clearly correct.

Partial evaluation: Partial evaluation is a program transformation that propa-
gates constants, unfolds calls, and computes constant expressions [9, 13]. Its goal is
to specialize programs. Given a string matcher of type pattern × text → int + unit
and a pattern string p, a partial evaluator generates a program of type text →
int + unit such that for any text string t, running the source string matcher on p
and t yields the same result as running the generated program on t alone.

Binding-time improvements: A binding-time improvement is a source-program
transformation that makes a program specialize better [13, Chapter 12]. For exam-
ple, if we assume x to be of boolean type and unknown at partial-evaluation time,
we can transform the function call “foo(x)” into “case x of true → foo(true) |
false → foo(false),” by enumerating the possible values of x. The transformation
is a binding-time improvement because the argument of foo changes from being
known only at run time (dynamic) to being known already at partial-evaluation
time (static). This particular binding-time improvement—colloquially known as
“The Trick”—is more descriptively referred to as “bounded static variation” nowa-
days [13].

2



Partial evaluation applied to string matching: Efficient string matchers usu-
ally consist of a pre-calculation phase (on the pattern) and a search phase (on the
pattern, the result of the pre-calculation, and the text). Ideally, by specializing
a string matcher with respect to a pattern, a partial evaluator computes what
amounts to a pre-calculation phase and yields a specialized program that com-
putes the search phase (on the text). A naive string matcher such as the one
above, however, does not readily allow significant optimization through specializa-
tion. Successful partial evaluation of string matchers is based on the observation
that after every character comparison, static information about the dynamic text
must be maintained, expressed as equalities (‘ti = pj’) or inequalities (‘ti 6= pj’)
with characters from the pattern. Keeping and using this information at partial-
evaluation time, either by a clever partial evaluator or by a clever rewriting of the
naive string matcher (i.e., a binding-time improvement), is the key to obtaining
specialized programs that compute the search phase efficiently.

Challenge: Although generally successful [2, 3, 4, 8, 10, 11, 13, 15, 16], so far
the program-specialization approach to string matching has failed to obtain the
Boyer-Moore string matcher.

3 Obtaining the bad-character-shift heuristic

The bad-character-shift heuristic improves the special case where the first compar-
ison fails (which gives us only the single inequality, ‘ti 6= p|p|−1’). The heuristic
works by taking the “bad character”, ti, and exploiting knowledge of its last posi-
tion (if any) in the pattern to safely skip a number of non-occurrence positions [5].
It works in constant time using a pre-calculated table of size |Σ|. For example,
after a mismatch, T 6=N, at

text: "-A-TEXT-IN-WHICH-PATTERN-OCCURS-"
pattern: "PATTERN"

↑
the heuristic allows matching to be resumed at

text: "-A-TEXT-IN-WHICH-PATTERN-OCCURS-"
pattern: "PATTERN"

= ↑
where the faulting T is safely matched. The correctness of the heuristic follows
from choosing the right-most T in p (not counting the last character of p), since
we thereby have witnesses of non-occurrence (here, T 6=E and T 6=R) for the skipped
positions.
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From a partial-evaluation perspective, the key observation is that since Σ is
finite, we can exploit not only that ‘ti 6= p|p|−1’ after a mismatch, but also that
‘ti = cj ’ by applying bounded static variation over Σ. Continuing matching using
just this better piece of information turns out to precisely mimic the bad-character-
shift heuristic, and integrating it into the inefficient string matcher of Section 2
gives a (non-trivial) binding-time-improved program. As announced in Section 2,
we only modify the definition of compute offset :

compute offset(p, t, j, k) = |p| − j − 1 + shift(p, tk+|p|−j−1)

shift(p, c) = case c of




c1 → rematch(p, 1, c1)
...

c|Σ| → rematch(p, 1, c|Σ|)
rematch(p, i, c) = if i = |p|

then i
else if c = p|p|−1−i

then i
else rematch(p, i + 1 , c)

Note that shift simply wraps an application of bounded static variation around
rematch, and that the continued matching performed by rematch amounts to find-
ing the last occurrence of c in p, using i to count the number of subsequent witnessed
non-occurrence positions (plus one). Since compute offset now simply skips these
positions, the modification preserves the correctness of the naive program.

This new string matcher performs the same sequence of character comparisons
between the pattern and the text as the right-to-left variant of the Horspool variant
of the Boyer-Moore algorithm [12]. In addition it performs comparisons between a
given character c and the pattern. Since the character c is subject to bounded static
variation, rematch is static and specializing this program with respect to a pattern
p (and an alphabet Σ) yields a program of size |p| + |Σ| that performs the same
sequence of character comparisons as the search phase of the Horspool algorithm.
We assume that case is a constant-time primitive operation, possibly achieved sepa-
rately by tabulation. The specialized program then also performs the same number
of primitive operations as the search phase of the Horspool algorithm (disregarding
potential language and formulation differences and some arithmetic operations due
to our non-optimized formulation).

For example, specializing the binding-time-improved string matcher with re-
spect to p = ‘aba’ and Σ = {a, b, c} yields the following program:
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mainaba(t) = match(aba ,2 )(t, 2)
match(aba ,2 )(t, k) = if k ≥ |t|

then no match
else if ′a′ = tk

then match(aba ,1 )(t, k − 1)
else match(aba ,2 )(t, k + shiftaba(tk))

match(aba ,1 )(t, k) = if k ≥ |t|
then no match
else if ′b′ = tk

then match(aba ,0 )(t, k − 1)
else match(aba ,2 )(t, k + 1 + shiftaba(tk+1))

match(aba ,0 )(t, k) = if k ≥ |t|
then no match
else if ′a′ = tk

then match(aba ,−1 )(t, k − 1)
else match(aba ,2 )(t, k + 2 + shiftaba(tk+2))

match(aba ,−1 )(t, k) = match at k + 1

shiftaba(x) = case x of




a → 2
b → 1
c → 3

The specialized version of shift (i.e., shiftaba ) is equivalent to the pre-calculated bad-
character-shift lookup-table [5], in terms of both size and access time. Hence, the
bad-character-shift heuristic, in the imperative formulation of string matching, can
be viewed as an application of bounded static variation—one that is represented
efficiently.

4 From Horspool to Boyer-Moore

We can now obtain the Boyer-Moore algorithm by unifying the result from Section 3
with our earlier results on the good-suffix heuristic [2, Section 5]:
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compute offset(p, t, j, k) = |p| − j − 1 + max(rematchgs (p, j, |p| − 1, |p| − 2),
shift(p, tk)− |p|+ j + 1)

rematchgs (p, j, j′, k′) = if k′ = −1
then j′ + 1
else if j = j′

then if pj′ 6= pk′

then j′ − k′

else rematchgs (p, j, |p| − 1, k′ + |p| − j′ − 2)
else if pj′ = pk′

then rematchgs (p, j, j′ − 1, k′ − 1)
else rematchgs (p, j, |p| − 1, k′ + |p| − j′ − 2)

The good-suffix heuristic exploits that—by going right-to-left—we know after a
mismatch not only that ‘tk 6= pj ’, but also that ‘tk+i = pj+i’ for i ∈ {1, . . . , |p|−1−
j} [2, 5]. The function rematchgs continues matching using exactly this information,
returning the number of witnessed subsequent non-occurrence positions. Note that
for the heuristics to co-operate optimally, the bad-character-shift heuristic is used
at the mismatch position (instead of the last position) and then adjusted. This
perhaps subtle optimization is safe and avoids that the good-suffix heuristic would
otherwise subsume the bad-character-shift when the last character in p is a match.

This final string matcher performs the same sequence of character comparisons
between the pattern and the text as the Boyer-Moore algorithm. In addition it
performs comparisons between characters in the pattern. These comparisons can
be specialized away by a partial evaluator. Consequently, specializing this program
with respect to a pattern p (and an alphabet Σ) yields a program of size 2|p|+ |Σ|
that performs the same sequence of character comparisons as the search phase
of the Boyer-Moore algorithm. Under the same assumptions as in Section 3, the
specialized program also performs the same number of primitive operations as the
search phase of the Boyer-Moore algorithm. Hence, we have obtained the Boyer-
Moore string-matching algorithm by partial evaluation.

5 Correctness issues

As in our earlier work [1], we characterize a string matcher by a notion of trace: the
sequence of character comparisons between the pattern and the text in the course
of a run. Using a large test suite (several hundreds of runs), we have verified the
correctness of each of our programs by automatically comparing its traces and the
corresponding traces of a reference implementation [6]. A formal alternative would
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be to give a trace semantics to our programs and to the reference programs and to
prove that they operate in lock step [1].

6 Conclusion

We have shown how to obtain the elusive search phase of the Boyer-Moore string-
matching algorithm by partial evaluation of a binding-time-improved program with
respect to a pattern and an alphabet. Our stepping stone has been the recognition
of the bad-character-shift heuristic as an efficient application of bounded static
variation.

From a string-matching point of view, we have shown that the search phase of
the Boyer-Moore string matching algorithm can be obtained using partial-evaluation
concepts. From a partial-evaluation point of view, we have shown that bounded
static variation—instead of a new concept in partial evaluation—is therefore suffi-
cient to obtain the search phase of the Boyer-Moore string matching algorithm.
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