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Abstract

We present the first measurement-based analysis of the information propa-
gated by a partial evaluator. Our analysis is based on measuring implementa-
tions of string-matching algorithms, based on the observation that the sequence
of character comparisons accurately reflects maintained information. Notably,
we can easily prove matchers to be different and we show that they display
more variety and finesse than previously believed. As a consequence, we are
able to pinpoint differences and inaccuracies in many results previously consid-
ered equivalent.

Our analysis includes a framework that lets us obtain string matchers –
notably the family of Boyer-Moore algorithms – in a systematic formalism-
independent way from a few information-propagation primitives. By leveraging
the existing research in string matching, we show that the landscape of infor-
mation propagation is non-trivial in the sense that small changes in informa-
tion propagation may dramatically change the properties of the resulting string
matchers. We thus expect that this work will prove useful as a test and feed-
back mechanism for information propagation in the development of advanced
program transformations, such as GPC or Supercompilation.

∗Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.
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1 Introduction

1.1 Partial evaluation and the Knuth-Morris-Pratt algorithm

Pattern matching in strings has been a traditional catalyst for developments in par-
tial evaluation since Futamura in 1987 challenged existing partial evaluators. To
illustrate the power of Generalized Partial Computation, notably the propagation of
run-time (dynamic) information as compile-time (static) predicates, he generated the
search phase of the ingenious Knuth-Morris-Pratt algorithm from a naive, inefficient
algorithm [19]. This example quickly became a prime test of strength for partial
evaluators.

String-matching frameworks The success of the Knuth-Morris-Pratt example
soon inspired a line of work that focused on string matching. In this line of work,
parameterized string matchers were constructed, whose instantiations could be spe-
cialized into several string matchers. The conjecture was that both the Knuth-
Morris-Pratt algorithm and the equally ingenious Boyer-Moore algorithm could be
derived naturally from a common framework, with a simple left-to-right traversal
of the pattern giving rise to the Knuth-Morris-Pratt algorithm and the correspond-
ing right-to-left traversal giving rise to the Boyer-Moore algorithm. This “duality”
conjecture quickly became folklore [13].

Information propagation and the KMP-test The Knuth-Morris-Pratt exam-
ple was also used to compare advanced program transformations (including Super-
compilation and GPC), thereby coining the term “KMP-test” [41]. A transformation
is said to pass the KMP-test if it can generate a linear-time program from a naive –
so-called quadratic-time – string matcher. The point was that certain differences in
the information propagated by each algorithm was distinguished by the test. Hence,
techniques that were known to propagate positive information about the text (from
outcomes of successful character comparisons) were found to pass; techniques that
did not, were found to fail.

1.2 Motivation

Under the usual emphasis on improving efficiency (specified by time complexity), an
established practice is to distinguish string matchers by traversal-order and search-
phase time complexity only. Consequently, only three classes of string matchers are
usually considered, although the frameworks attempt to draw finer distinctions:

(1) Naive O(mn) matchers (“Brute-Force-like”)
(2) Left-to-right O(f(m) + n) matchers (“Knuth-Morris-Pratt-like”)
(3) Right-to-left O(f(m) + n) matchers (“Boyer-Moore-like”)

Unfortunately, this convenient but coarse view invites trouble: the classes are not
homogeneous with respect to information propagation. Not only does each class
include an infinite number of matchers using different amounts of propagated in-
formation [2], but also matchers with other quite different theoretical and practical
properties. Furthermore, Knuth-Morris-Pratt-like algorithms have been generated
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from Brute-Force-like ones by techniques phrased in a variety of formalisms and
languages, additionally blurring a direct comparison of methods.

One of the merits of the KMP-test was, however, precisely to use a formalism-
independent property of string matchers (namely time complexity) as a basis for
comparison. Unfortunately, it still leaves us with the heterogeneous classes: know-
ing only that a transformation passes the test does not tell us much about what
information it propagates – only that it must propagate something. Consequently,
the flurry of successful results are still just as difficult to compare, undermining
the benefits of a standard example. In particular, the consequences of propagating
so-called negative information are not well understood.

1.3 Overview of this work

The purpose of this work is to better understand information propagation of advanced
transformation techniques and its consequences. Our approach is to unify ideas from
the KMP-test [41], string matching frameworks [6, 7, 36], and recent analyses [1, 2,
15, 24]. In this overview, we will gloss over some of the technical contributions.

1.3.1 A measure for information propagation

The fundamental question is how to distinguish between string matchers. Inspired
by recent analyses, our answer is a domain-specific measure, namely the sequence of
text character comparisons during matching. Note that such comparisons are both
what advanced program transformations attempt to optimize away by propagating
information and a key concern in string matching. As an additional benefit here,
the measure conveniently factors out representation issues and how information is
actually propagated. When we wish to emphasize these omissions, we will talk about
the propagation of characteristic information. In contrast to time complexity, the
sequence of comparisons is observable, that is, we can use test examples to prove
that two string matchers are different, as illustrated below.

In this article, string matchers find the first occurrence of a pattern string in a
text string. Consider a naive left-to-right (“Brute-Force”) algorithm’s search for the
pattern p=abaa in the text t=abbabacabaa. The first round of comparisons are:

a b b a b a c a b a a
=

b a a
0 1 2 3

a

109876543210

t
=1 =2 3

p

These three comparisons ended in a mismatch, so the algorithm simply tries succes-
sive alignments until an occurrence is found or the text is exhausted:
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a b b a b a c a b a a
=

a b a a
=

a b a a
=

a b a a
=

a b a a
=

a b a a
=

a b a a

a b a a

109876543210

t
4

5

==6 7 =8 9

10

=11 12

13

=14 =15 =16 =17

The first occurrence is found using 17 comparisons between the pattern and the text.
The outcomes of the comparisons can be listed as follows:

p[0]=t[0], p[1]=t[1], p[2]6=t[2], p[0]6=t[1], p[0]6=t[2], p[0]=t[3],
p[1]=t[4], p[2]=t[5], p[3]6=t[6], p[0]6=t[4], p[0]=t[5], p[1]6=t[6],

p[0]6=t[6], p[0]=t[7], p[1]=t[8], p[2]=t[9], p[3]=t[10].

The equalities represent positive information, and the inequalities negative.
In this context, advanced transformations propagate text information and decide

the outcome of certain comparisons between the pattern and the text at transfor-
mation time, using comparisons between the pattern itself. For positive information
p[i]=t[j], we can substitute later occurrences of t[j] with p[i]; then comparisons
before involving t[j] can be now be performed using the pattern only. For negative
information p[i]6=t[j], using that if also p[i]=p[i’] then p[i’]6=t[j], we can
decide applicable later occurrences of p[i’]6=t[j] by p[i]=p[i’].

Consider the above example, when we propagate positive information. The com-
parisons become (underlining decided ones):

p[0]=t[0], p[1]=t[1], p[2]6=t[2], p[0]6=p[1], p[0]6=t[2], p[0]=t[3],
p[1]=t[4], p[2]=t[5], p[3]6=t[6], p[0]6=p[1], p[0]=p[2], p[1]6=t[6],

p[0]6=t[6], p[0]=t[7], p[1]=t[8], p[2]=t[9], p[3]=t[10].

If we additionally propagate negative information, we decide even more:

p[0]=t[0], p[1]=t[1], p[2]6=t[2], p[0]6=p[1], p[0]=p[2], p[0]=t[3],
p[1]=t[4], p[2]=t[5], p[3]6=t[6], p[0]6=p[1], p[0]=p[2], p[1]6=t[6],

p[0]=p[3], p[0]=t[7], p[1]=t[8], p[2]=t[9], p[3]=t[10].

Performing the underlined comparisons at transformation time (or, equivalently, in
a preprocessing phase) is the key to efficiency: we can now tabulate each sequence
of underlined comparisons indexed by the pattern index of the preceding mismatch,
performing them once and for all.

Doing so leads to two distinct Knuth-Morris-Pratt-like string matchers.

It will now be instructive to consider the real Knuth-Morris-Pratt algorithm [32] (see
Appendix A). It performs the following comparisons on the example (underlining
comparisons performed in the preprocessing phase):
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p[1]6=p[0], p[1]6=p[0], p[2]=p[0], p[2]=p[0], p[3]6=p[1], p[0]=t[0],
p[1]=t[1], p[2]6=t[2], p[0]=t[3], p[1]=t[4], p[2]=t[5], p[3]6=t[6],
p[1]6=t[6], p[0]6=t[6], p[0]=t[7], p[1]=t[8], p[2]=t[9], p[3]=t[10].

Even ignoring underlined comparisons, this sequence differs from the previous ones.
However, if we restricted the additional propagation of negative information to

just one character (i.e., not propagating p[i]6=t[j] beyond the next occurrence of
p[i’]6=t[j], applicable or not), we obtain:

p[0]=t[0], p[1]=t[1], p[2]6=t[2], p[0]6=p[1], p[0]=p[2], p[0]=t[3],
p[1]=t[4], p[2]=t[5], p[3]6=t[6], p[0]6=p[1], p[0]=p[2], p[1]6=t[6],

p[0]6=t[6], p[0]=t[7], p[1]=t[8], p[2]=t[9], p[3]=t[10].

For every pattern and text, in fact, such a string matcher performs the exact same
sequence of non-underlined comparisons as the Knuth-Morris-Pratt algorithm [2].
We can thus view the Knuth-Morris-Pratt algorithm as one that propagates text
information in this particular way, linking information propagation strategies with
real algorithms.

We notice that picking out the sequence of text indices of the comparisons, which we
will call the trace, gives us a concise way of measuring string matchers (and scales to
bounded static variation [15]). The set of traces is called the behavior of a matcher.
In summary,

Information propagation strategy Trace for the example
none 0 1 2 1 2 3 4 5 6 4 5 6 6 7 8 9 10
positive 0 1 2 2 3 4 5 6 6 6 7 8 9 10
positive and one character of negative 0 1 2 3 4 5 6 6 6 7 8 9 10
positive and negative 0 1 2 3 4 5 6 6 7 8 9 10

In particular, the matchers differ in the number of comparisons.

All in all, we have a concrete way of comparing string matchers and in turn trans-
formation techniques, regardless of underlying formalism (requiring only that the
sequence of text character comparisons is well-defined). It supplements time com-
plexity, allowing a classification of string matchers along two dimensions: “efficiency”
(time complexity) and “information propagation” (behavior).

1.3.2 A framework for information propagation

We are now able to expand the treatment of information propagation, using ideas
from string matching frameworks. We generalize the “information-propagation strate-
gies” to a specification language for characteristic information propagation, dropping
the inconvenient (implicit) dependence on the Brute-Force string matcher. The lan-
guage is given an interpretation and provides concise specifications for a wide variety
of behaviors.

The real payoff is that by measuring the (implicit) information propagation of
real string matching algorithms, we can introduce sound canonical naming of spec-
ifications and behaviors. Consistent naming is a prerequisite for sound comparison
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and exchange of existing ideas that involve Knuth-Morris-Pratt-like matchers. Fur-
thermore, we also have plenty of data points for controlling and guiding exploration
and for analyzing advanced program transformations and frameworks.

1.3.3 An analysis of information propagation

We have now established a sound setting for information propagation (measure and
framework), in which we – with little effort – can analyze string matchers and, in
turn, program transformations, as inspired by the KMP-test.

Notably, we show that neither Supercompilation nor GPC generate the exact
Knuth-Morris-Pratt string matcher by transforming a naive string matcher. In gen-
eral, too much negative information is propagated which in turn increases the sizes
of generated matchers. Although the number of comparisons is reduced, the increase
in size may be a major obstacle for linear-time preprocessing by self-application [1].

The Knuth-Morris-Pratt algorithm has received the lion’s share of attention in pro-
gram transformation, despite the diversity of string matchers. For example, the
Knuth-Morris-Pratt algorithm – despite its optimal time complexity – does not ac-
tually improve over the Brute-Force algorithm in practice (see, e.g., [42, Section
2.1.4]). The Boyer-Moore/bad-character-shift variants on the other hand – notably
Horspool’s asymptotically inefficient algorithm – are considered to be the fastest
string matchers in practice. This work sheds light on the situation, allowing pro-
gram transformations to better tune the quality of outcomes with respect to other
properties than time complexity.

Prerequisites A standard introduction to exact string matching algorithms can
be found in Appendix A. The core results require some understanding of partial
evaluation [13,31]. Familiarity with advanced transformations or frameworks will be
useful, in particular Sørensen et al.’s work [41].

The rest of this article is organized as follows: Section 2 describes the measure –
or behavior– of string matchers; Section 3 describes the string matching framework
used for analysis; and Section 4 analyzes advanced program transformations and
existing frameworks. Note that the analysis itself does not require an understanding
of the details of the framework’s construction. Section 5 concludes.

2 A measure for information propagation

The fundamental concept is the observable measure called the trace. For any string
matcher M , pattern p, and text t, we define the trace of M on p and t – denoted
‖M(p, t)‖tr – as the sequence of indices of text character accesses during successful
matching.1 Traces indirectly measure the propagation of characteristic information.

We consider only string matchers and formalisms where traces are well-defined.
The deterministic, imperative Algol60-like language in which string matching algo-

1The “successful” restriction on the traces simply circumvents the inessential detail that overall
failure is detected in different ways by different matchers: some stop when pattern no longer fits –
others only when a pointer reaches the end of the text. Since we can always just append the pattern
to any text, we do not lose precision.
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rithms are traditionally phrased is one such formalism, and traces are the sequences
of values for k in the executions of text[k] (see Appendix A). For inspection pur-
poses, it is thus straightforward to wrap printfs around each such k.

We define the behavior of a string matcher M as

‖M‖ = λ(p, t). ‖M(p, t)‖tr .

The behavior of a string matcher is a total function that we cannot observe in its
entirety. Hence, we cannot observe that two string matchers are behaviorally equal.
We can, however, observe that two string matchers are behaviorally different, by
comparing traces for concrete examples. Note that behaviors form an equivalence
relation.

It is important to note that the standard properties about text-character comparisons
(their number and the delay) outlined in Appendix A are all subsumed by our notion
of behavior.2 Consequently, any existing analysis, such as the accurate bounds on
the number of comparisons, will automatically apply to any behaviorally-equivalent
string matcher. The distinction between “characteristic information propagation”
(behavior) and “efficiency” (time complexity) is essential, as depicted in Figure 2.
Similar distinctions have been mentioned informally in the literature.

We can thus substantiate “to obtain a string matcher” to mean to generate one
with the same behavior and the same (best) worst-case time complexity. When
discussing information propagation, we leave “characteristic” implicit.

Methodology For practical purposes, we will only speak of behavioral equality rel-
ative to a fixed underlying test suite of examples (i.e., pattern and text pairs), which
currently consists of 170 examples. We use an implementation of the framework to
ensure that all treated matchers’ traces coincide with those of their authoritative im-
plementations [10] for this test suite and that no counter-examples are known. This
assurance is not as weak as it may seem: given any string matcher, we can prove it
different from all but at most one known expressible string matcher, using at most 2
chosen examples (p=abaa and t=abbabacabaa is the prime one – and adequate for
Knuth-Morris-Pratt-like matchers). Minimally, e.g., when analyzing transformations
or frameworks by hand, just the above example often suffices.

3 A framework for information propagation

In this section, we present a new string matching framework that foremost establishes
consistency in the use of names for generated matchers. Here, only the behavior of
string matchers is considered.

3.1 The framework

The framework is a translation, W[[·]] : S → L, from an inductive specification lan-
guage to a trace-compliant functional language. The image of the translation will be

2Note also that text-character comparisons represent the only observable search-phase property.
The notion of behavior is thus a natural choice that supplements (worst-case) time complexity,
although they are not quite orthogonal.
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Figure 1: Classification of string matchers
We classify string matchers along two dimensions: “information propagation” (be-
havior) on the horizontal axis and “efficiency” (best worst-case time complexity) on
the vertical axis. The “f ” in the time complexities should be understood as an
arbitrary function, which factors out time consumption during preprocessing or at
transformation time. String matchers M are boxed, and a program transformation T
from M1 to M2 is understood as T (M1) = λ(p, t). T (M1, p)(t), where T (M1) classify
as M2. Binding-time improvements, in contrast, just map M1 to M2.
A more refined classification might take resource consumption during preprocessing
and at transformational time into account (see, e.g., Ager et al.’s work [1]). Here we
only try to capture what information is propagated, glossing over how.

string matchers that propagate explicitly-represented information by themselves. We
assume a target language with the usual primitives for list and function processing.

The syntax of the specification language is:

S ::= Basic(O, C, I+, I−) | Backtracking(S,S) |
Sequential(S,S) | Parallel(S,S) |
Alternate(S,S) | Skew(S,S) | Fail

O ::= left-to-right | right-to-left | last-left-to-right |
last-first-middle-rest | left-to-right-skip-second |
right-to-left-skip-last | last-only | second-only

C ::= char | table
I+ ::= +all | +pos | +none
I− ::= −all | −neg | −none

Elements of S will be called partial matchers and will in general not specify a correct
string matcher. The specifications that do are called complete and simply have orders
that “span” the whole pattern. It should be intuitively clear that complete matchers
are simply those that trivially guarantee to test all characters in the pattern, before
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declaring a match (a formal proof of correctness is, however, beyond the scope of
this paper, see [7]).

We need some auxiliary notions. Foremost, each Basic node needs a separate
representation of propagated text information (positive and negative) – usually called
a cache, so we use a cache tree to store these and their relative alignments:

T ::= Single((Σ + Σ list) list) | Aligned(T ,T ) |
Non-aligned(T ,T ,N) | None

Each partial matcher induces a similarly-shaped cache tree, along with two auxiliary
functions (where B = {tt, ff} is the set of truth values):

init T [[s]] : N → T
match M[[s]] : N× T → B× N× T

shift S[[s]] : N× T → T

Informally, T [[·]] creates a cache tree; M[[·]] performs a matching attempt at a given
text alignment, updating the cache tree appropriately; and S[[·]] re-aligns the cache
tree after a mismatch.

The framework induces a simple bounded search. For any complete specification s,
we define

W[[s]] = search(0,T [[s]](m))

where

search(k, t) =

case (k + m < n)

of


tt → case M[[s]](k, t) of

{
(tt, j, t′) → k
(ff, j, t′) → search(k + j,S[[s]](j, t′))

ff → −1

The function search successively calls M[[s]] at each text alignment k, stopping only
when the text is exhausted (returns -1) or when an occurrence of the pattern has
been located in the text (returns k). Note that M[[s]] explicitly returns the number
of text alignments that can be safely skipped, j.

3.1.1 The Basic partial matcher

The Basic partial matcher is the workhorse of the framework and builds directly on
Amtoft et al.’s work [7], but supports finer control of propagated text information.
It has four components:

o : the order in which to examine the text characters;
c : the method of comparison to be used to extract information;
i+ : what information to propagate from each comparison; and
i− : what information to prune after each round of comparisons.

Order: An order produces a list of indices of non-positive entries in the cache. This
(possibly incomplete) list is then used to schedule comparisons, where re-comparison
of characters already known to be identical is avoided. The orders considered are:
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Order Selection of the indices 0 1 2 . . . m-1
left-to-right 0 :: 1 :: 2 :: 3 :: · · · :: m-1
right-to-left m-1:: m-2:: · · · :: 0
last-left-to-right m-1:: 0 :: 1 :: 2 :: 3 :: · · · :: m-2
last-first-middle-rest m-1 :: 0 :: m/2 :: 1 :: 2 :: · · · :: m-2
left-to-right-skip-second 2 :: 3 :: · · · :: m-1::0
right-to-left-skip-last m-2:: m-3:: · · · :: 0
last-only m-1
second-only 1

where m is the length of the cache (and thus also the pattern). We denote the
selection of indices for any order o by o.

We define O[[o]] : (Σ + Σ list) list → N list by

O[[o]](c) = smap (λi. case cad i r(c) of
{

in1(p) → []
in2(n) → [i]

}
) o

where
smap f l = case l of

{
[] → []

i :: l′ → f(i) ++(smap f l′)

Comparison: A comparison determines whether a text character and a pattern
character are equal. Additionally, it produces explicit knowledge about the text
character, which can be either positive (‘is x’) or negative (‘is not x’), where ‘x’ is a
non-text (i.e., static) character. The standard character comparison, char, is indeed
what we expect, where ‘x’ is the character from the pattern.

If the alphabet, Σ, is assumed to be known and finite, we have a much stronger
way of acquiring text knowledge, namely the use of bounded static variation [31].
This kind of comparison will always produce positive information (‘is x’) about a text
character, where ‘x’ is taken from the alphabet. Although bounded static variation
could be implemented simply by a large case-statement over the alphabet, a key
observation is that the constant-time character-key tables – such as the table for the
bad-character-shift heuristic – play the exact same role in real algorithms [15]. For
this reason we call it a table comparison.

We define C[[c]] : Σ× Σ → B× (Σ + Σ) by

C[[char ]](x, y) = case (x = y) of
{

tt → (tt, in1(x))
ff → (ff, in2(x))

C[[table ]](x, y) = case y of




a1 → ((x = a1), in1(a1))
...

a|Σ| → ((x = a|Σ|), in1(a|Σ|))

assuming Σ = {a1, . . . , a|Σ|} in the latter clause.
Propagator: A propagator determines what collected positive and/or negative in-
formation to place in the cache. We use an empty list of negative information to
represent “no information”. We first define i+ : (Σ + Σ) → (Σ + Σ) by

+all(i) = i +none(i) = in2([]) +pos(i) = case i of
{

in1(x) → i
in2(x) → in2([])
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We then define I+[[i+]] : (Σ + Σ list) list× (Σ + Σ)× N → (Σ + Σ list) list by

I+[[i+]](c, i, k) = upd c (i+(i)) k

where upd updates the kth entry of the cache c with information (i+(i)):

upd (e :: c′) i k =

case (k = 0)

of


tt → case (e, i) of

{
(in2(l), in1(p)) → i :: c′

(in2(l), in2(l′)) → in2(l ++l′) :: c′

ff → e :: (upd c′ i (k − 1))

Pruner: A pruner determines what collected positive and/or negative information to
erase from the cache after a mismatch. We first define i− : (Σ+Σ list) → (Σ+Σ list)
by

−all(i) = in2([]) −none(i) = i −neg(i) = case i of
{

in1(x) → i
in2(xs) → in2([])

We then define I−[[i−]] : (Σ + Σ list) list → (Σ + Σ list) list by

I−[[i−]](c) = map (λi.i−(i)) c

Propagators and pruners thus act as filters and control the quantity of propagated
and maintained information; comparisons control the quality.

We now define

M[[Basic(o, c, i+, i−)]](k,Single(c′)) = loop(O[[o]](c′), c′)

where

loop(l, c′) = case l of




j :: l′ →




let (b, i) = C[[c]](pattern[j], text[k + j])
c′′ = I+[[i+]](c′, i, j)

in case b of
{

tt → loop(l′, c′′)
ff → (ff, calc(c′′),Single(I−[[i−]](c′′)))

[] → (tt, calc(c′),Single(I−[[i−]](c′)))

M[[Basic(o, c, i+, i−)]] decides whether or not pattern[j] = text[k + j] for all j ∈ o,
while maintaining exploitable information about the text. It works as follows, given
an offset into the text k and a cache of (assumed to be correct) information about
the text starting from k:

1. the order O[[o]](c′) produces a list l of indices (relative to k) of text charac-
ters that we have not yet gathered sufficient information about to determine
whether or not pattern[j] = text[k + j] for all j ∈ o;

2. loop then process the elements j of this list.

(a) First, pattern[j] and text[k + j] are compared, and any information prop-
agated by I+[[i+]] is inserted in the cache.

(b) If the comparison succeeds, we continue processing the list.

12



(c) If the comparison fails, then the current j is a witness that pattern[j′] =
text[k + j′] for all j′ ∈ o does not hold.
However, we might also already be able to decide that the condition cannot
hold for some of the subsequent k′ > k, by exploiting the information in
the cache c′′; calc(c′′) does so and returns the largest h > 0 such that for
all k + h′, where h > h′ > 0, we have a witness in the cache that proves
that k + h′ does not satisfy the condition.
After exploiting the information of the cache, we prune it by I−[[i−]].

3. If the list is or becomes empty, pattern[j] = text[k + j] for all j ∈ o holds.
Again we prune the cache, and, for scalability, we also return calc(c′′).

Note that text character accesses (namely text[k+ j]) are performed in this loop;
given a pattern and text, their trace is the sequence of ‘k + j’ values.

We also have:

T [[Basic(o, c, i+, i−)]](m) = Single(

m times︷ ︸︸ ︷
in2([]) :: · · · :: in2([]))

S[[Basic(o, c, i+, i−)]](j,Single(c′)) = Single(cd j r(c′) ++(in2([]) :: · · · :: in2([]))︸ ︷︷ ︸
j times

)

As examples of Basic matchers, the specifications of the Brute-Force and Knuth-
Morris-Pratt algorithms are

Brute-Force Basic(left-to-right, char, +none, −none)
Knuth-Morris-Pratt Basic(left-to-right, char, +all, −neg)

whose information propagation is illustrated in Figures 3.1.1 and 3.1.1.
Note that the four parameters for Basic matchers are not completely orthogonal,

so there may be more than one way to specify such matchers. Their virtue is, however,
that they concisely capture many matchers’ information propagation.

3.1.2 Composite partial matchers

A basic design idea is that simpler partial matchers – in particular Basic partial
matchers – can directly specify heuristics, such as the bad-character-shift heuristic.
We call the non-Basic partial matchers for combinators.

Backtracking, Sequential, and Parallel are particularly simple binary
combinators. Here, M[[·(s1, s2)]] uses just the boolean outcome of M[[s1]] to decide
whether or not to use M[[s2]]. We define:

M[[Backtracking(s1 , s2)]](k,Aligned(t1,t2)) =

case M[[s1]](k, t1) of




(tt, j1, t
′
1) → (tt, j1,Aligned(t′1,t2))

(ff, j1, t
′
1) →

{
let (b2, j2, t

′
2) = M[[s2]](k, t2)

in (ff,max(j1, j2),Aligned(t′1,t
′
2))

M[[Sequential(s1, s2)]](k,Aligned(t1,t2)) =

case M[[s1]](k, t1) of


(tt, j1, t

′
1) →

{
let (b2, j2, t

′
2) = M[[s2]](k, t2)

in (b2,max(j1, j2),Aligned(t′1,t′2))
(ff, j1, t

′
1) → (ff, j1,Aligned(t′1,t2))
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C3 = shift(C2,3)

order(C0) = 0 1 2 3
match(0,C0) =

C1 = propagate all into C0

calc(C1) = 3

C2 = prune neg from C1

(ff, 3,C2)

match(3,C3) = (ff,2,−)

match(5,−) = (ff,1,−)

match(6,−) = (ff,1,−)

match(7,−) = (tt,−,−)

Figure 2: The Knuth-Morris-Pratt algorithm
We illustrate how the Knuth-Morris-Pratt algorithm propagates information by
searching for the pattern string abaa in the text string abbabacabaa. The figure
shows the contents of the cache during matching (shown as dashed boxes with a
white ‘window’). A letter in the cache, like “a” , represents propagated positive in-
formation about the text; a negated letter, like “¬a”, represents negative information.
An “X” represents that the algorithm knows that the text cannot contain the pattern
at this position – this information is implicitly propagated by the primitives.
The first round of comparisons, match(0,C0), is shown in detail; the cache marked
with C1, which is used by calc(·), is the essential one, since it contains the exact
information exploited. The other rounds are abbreviated with only the essential
caches included. The final cache is purely cosmetic.

M[[Parallel(s1, s2)]](k,Aligned(t1,t2)) =




let (b1, j1, t
′
1) = M[[s1]](k, t1)

(b2, j2, t
′
2) = M[[s2]](k, t2)

in (b1 ∧ b2,max(j1, j2),Aligned(t′1,t
′
2))

Also, for B ∈ {Backtracking,Sequential,Parallel},

T [[B(s1, s2)]](m) = Aligned(T [[s1]](m),T [[s2]](m))
S[[B(s1, s2)]](j,Aligned(t1,t2)) = Aligned(S[[s1]](j, t1),S[[s2]](j, t2))

As an example of a Backtracking matcher, consider Horspool’s simplification [28]
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match(0,C0) =

C1 = propagate none into C0

calc(C1) = 1

C2 = prune none from C1

(ff, 1,C2)

match(1,C3) = (ff,1,−)

match(2,−) = (ff,1,−)

match(3,−) = (ff,1,−)

match(4,−) = (ff,1,−)

match(5,−) = (ff,1,−)

match(6,−) = (ff,1,−)

match(7,−) = (tt,−,−)

Figure 3: The Brute-Force algorithm
We illustrate how the Brute-Force algorithm propagates information by searching for
the pattern string abaa in the text string abbabacabaa. Here, nothing is propagated
and the returned offset is always the trivially safe offset 1.

of the Boyer-Moore algorithm

Horspool
Backtracking
— Basic(last-left-to-right, char, +none, −none)
— Basic(last-only, table, +all, −all)

whose information propagation is illustrated in Figure 3.1.2; the latter Basic partial
matcher specifies the bad-character-shift heuristic.
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comparison loop:
order(C0) = 3 0 1 2

C1 = propagate none into C0

calc(C1) = 1

C2 = prune none from C1

first match(0,C0) =

second match(0,D0) =

calc(D1) = 1

D2 = prune all from D1

D1 = propagate all into D0

(tt, 1,D2)

(ff, 1,C2)

(ff, 1,Aligned(C2,D2))

match(0,Aligned(C0,D0)) =

match(1,Aligned(C3,D3)) = (ff,2,−) 

match(3,−) = (ff,4,−)

match(7,−) = (tt,−,−)

Figure 4: Horspool’s algorithm
We illustrate how Horspool’s algorithm propagates information by searching for the
pattern string abaa in the text string abbabacabaa. In the abbreviated rounds, the
content of the always empty cache is omitted. The bracketed comparisons indicate
table comparisons, which here demonstrate the behavior of the bad-character-shift
heuristic. Note in particular comparison 9, which is followed by a situation that
allows the bad-character-shift heuristic to return an optimal safe shift.

So far, all caches have been aligned. However, several algorithms with advanced
backtracking require misaligned caches to properly account for their information
propagation.

The Alternate combinator is a refinement of Backtracking and allows two
partial matchers to be used alternately, where the second matcher is shifted before
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used:

M[[Alternate(s1, s2)]](k,Aligned(t1,t2)) =
case M[[s1]](k, t1)

of




(tt, j1, t
′
1) → (tt, j1,Aligned(t′1,t2))

(ff, j1, t
′
1) →




let (b2, j2, t
′
2) = M[[s2]](k + j1,S[[s2]](j1, t2))

in case b2 of
{

tt → (ff, j1,Non-aligned(t′1,t
′
2,j1))

ff → (ff, j1 + j2,Non-aligned(t′1,t′2,j1))

T [[Alternate(s1, s2)]](m) = Aligned(T [[s1]](m),T [[s2]](m))
S[[Alternate(s1, s2)]](j, t) =
case t

of
{

Aligned(t1,t2) → Aligned(S[[s1]](j, t1),S[[s2]](j, t2))
Non-aligned(t1,t2,a) → Aligned(S[[s1]](j, t1),S[[s2]](j-a, t2))

An example of an Alternate matcher is Sunday’s Quick Search algorithm

Quick Search
Alternate
— Basic(left-to-right, char, +none, −none)
— Basic(last-only, table, +all, −all)

whose information propagation is illustrated in Figure 3.1.2.

The Skew combinator is somewhat particular to the Boyer-Moore algorithm, which
uses it as an optimization. It is a refinement of Backtracking, where the second
partial matcher is right-aligned to the mismatch position of the first. For simplicity,
we require that the first partial matcher is Basic and that the second prunes every-
thing. First, we modify the auxiliary ‘loop’ function used by M[[Basic(·, ·, ·, ·)]] to
return the mismatch position as well:

loop′(c, i+, i−, k, l, c′) =

case l of




j :: l′ →




let (b, i) = C[[c]](pattern[j], text[k + j])
c′′ = I+[[i+]](c′, i, j)

in case b of
{

tt → loop′(c, i+, i−, k, l′, c′′)
ff → (ff, calc(c′′),Single(I−[[i−]](c′′)), j)

[] → (tt, calc(c′),Single(I−[[i−]](c′)),−1)

We then define

M[[Skew(Basic(o, c, i+, i−),s2)]](k,Aligned(Single(c′),t2)) =
case (loop′(c, i+, i−, k,O[[o]](m), c′))

of




(tt, j1, t
′
1, p) → (tt, j1,Aligned(t′1,t2))

(ff, j1, t
′
1, p) →

{
let (b2, j2, t

′
2) = M[[s2]](k −m + p + 1, t2)

in (ff,max(j1, j2 −m + p + 1),Aligned(t′1,t
′
2))

T [[Skew(s1, s2)]](m) = Aligned(T [[s1]](m),T [[s2]](m))
S[[Skew(s1, s2)]](j,Aligned(t1,t2)) = Aligned(S[[s1]](j, t1),S[[s2]](j, t2))

The prime example of a Skew matcher is of course the Boyer-Moore algorithm,
whose specification is
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match(3,Aligned(C3,D4)) = (ff,1,−)

match(4,−) = (ff,3,−)

match(7,−) = (tt,−,−)

Figure 5: The Quick Search algorithm
We illustrate how the Quick Search algorithm propagates information by searching
for the pattern string abaa in the text string abbabacabaa. Note how the Alternate
combinator is used to access the character just past the pattern.

Boyer-Moore
Skew
— Basic(right-to-left, char, +all, −all)
— Basic(last-only, table, +all, −all)

and whose information propagation is illustrated in Figure 3.1.2.
Finally, we will find it useful to have a trace-wise neutral partial matcher Fail,
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Figure 6: The Boyer-Moore algorithm
We illustrate how the Boyer-Moore algorithm propagates information by searching
for the pattern string abaa in the text string abbabacabaa. As is clear from the first
round of comparisons, the Skew combinator opens the door for potentially unsound
situations. Note also the use of non-trivial disjoint information.

which just fails immediately:

M[[Fail]](k,None) = (ff, 1,None)
T [[Fail]](m) = None S[[Fail]](j,None) = None

Still, the behavior of many advanced matchers depends on properties of the pattern
or external knowledge. For instance, the Maximal Shift uses an order that depends on
the pattern and the Optimal Mismatch uses an order that depends on the character
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frequencies in typical English text [43]. Specifying such matchers would require the
framework to be extended with suitable combinators.

3.2 A taxonomy of information propagation

The new framework provides us with concise specifications of string matchers, allow-
ing us to group and identify string matchers according to how information is prop-
agated (cf. other taxonomies [30, 46]). A benefit of using an explicit representation
of text information is that often it is easy to estimate the size of the corresponding
(efficient) tabulated/specialized matchers, namely the number of exploited cache tree
instances. An upper such bound is called a “cache bound” in the following.

3.2.1 The Basic matchers

The simplest matcher is the Brute-Force algorithm, which propagates no information
(see also Figure 3.1.1). Its specification is

Brute-Force Basic(left-to-right, char, +none, −none)

To exhibit the behavioral differences between the various matchers, we will search
for the pattern abaa in the text abbabacabaa (non-progress is underlined; bracketed
numbers indicate table comparisons). Notice the often fine connection between the
cache bound and actual number of caches in the previous Figures.

Name Trace Cache bound
Brute-Force 0 1 2 1 2 3 4 5 6 4 5 6 6 7 8 9 10 1

The Knuth-Morris-Pratt group The Morris-Pratt and Knuth-Morris-Pratt al-
gorithms gain their efficiency from maintaining positive information. This use has
been called the “KMP method”, and such matchers differ in the exploitation of neg-
ative information (i.e., the unsuccessful comparison outcomes):

(noname#1) Basic(left-to-right, char, +all, −none)
Knuth-Morris-Pratt Basic(left-to-right, char, +all, −neg)
Morris-Pratt Basic(left-to-right, char, +pos, −none)

These differences show up in the trace:

Name Trace Cache bound
(noname#1) 0 1 2 3 4 5 6 6 7 8 9 10 min(|pattern|2, |pattern| · |Σ|)
Knuth-Morris-Pratt 0 1 2 3 4 5 6 6 6 7 8 9 10 |pattern|
Morris-Pratt 0 1 2 2 3 4 5 6 6 6 7 8 9 10 |pattern|

Compared to the Knuth-Morris-Pratt example in Figure 3.1.1, the Morris-Pratt al-
gorithm must perform an extra comparison before comparison 4, because it does
not remember that the 3rd text character is not an “a”. Similarly, the (noname#1)
algorithm will skip comparison 9, because it will continue to remember the outcome
of comparison 7. Note that these three matchers are the ones from the introduction.

20



The unnamed (noname#1) matcher has previously been considered in partial
evaluation circles [2,7,24]. It stores extra information that can only be exploited on
repeated mismatches, and it is conjectured that it only uses twice the space of the
Knuth-Morris-Pratt algorithm [2]. However, using only that much space requires it
to use a more complicated data structure, namely an array of lists. For comparison
with the original Knuth-Morris-Pratt algorithm, Figure 7 shows the (noname#1)
matcher phrased as a traditional algorithm.

The Boyer-Moore/good-suffix heuristic group Boyer and Moore’s good-suffix
heuristic is in fact a linear-time string matcher on its own [9,32]. It is also the most
popular Boyer-Moore variant in the program generation community [7, 16, 26]. The
linearity relies here on the use of one character of negative information (cf. the
original, quadratic version [9, page 771]):

Good Suffix Basic(right-to-left, char, +all, −all)
Original GS Basic(right-to-left, char, +pos, −all)

Their traces on the example are:

Name Trace Cache bound
Good Suffix 3 2 4 6 8 10 9 8 7 |pattern|
Original GS 3 2 4 5 4 6 7 6 8 9 8 10 9 8 7 |pattern|

The Automaton group Finally, we consider the Automaton and other matchers
that rely solely on table comparisons. Since no negative information is ever gen-
erated, such matchers probe each text character at most once as long as positive
information is not pruned. The deterministic finite automaton is the prime example,
but right-to-left “automata” have also been considered as variants of the Boyer-Moore
algorithm [9,32, 35]:

Automaton Basic(left-to-right, table, +all, −none)
Optimal BM Basic(right-to-left, table, +all, −none)
Partsch-Stomp Basic(right-to-left, table, +all, −all)

These matchers trade time for space, although an accurate bound for the Optimal
BM algorithm is not known:

Name Trace Cache bound
Automaton [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] |Σ| · |pattern|
Optimal BM [3] [2] [4] [6] [10] [9] [8] [7] |Σ| · 2|pattern|

Partsch-Stomp [3] [2] [4] [6] [10] [9] [8] [7] |Σ| · |pattern|
The running example does not distinguish the Optimal BM algorithm from the
Partsch-Stomp algorithm, but they are easily distinguished by the pattern aa and
the text baa, say:

Name Trace
Optimal BM [1] [0] [2]
Partsch-Stomp [1] [0] [2] [1]
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1 datatype entry = {index, next}
2
3 i = -1; j = 0;
4 t[0] = new entry(index = -1);
5
6 while(j < |pattern|-1){
7 head = t[i];
8 while(i >= 0 && pattern[i]!= pattern[j]){
9 i = head->index;

10 head = head->next;
11 }
12 i=i+1; j=j+1;
13
14 head = t[i];
15 chain = t[j] = new entry(index = i);
16
17 k = i;
18 while(k!=-1){
19 if(pattern[k]==pattern[j])
20 chain->index = head->index;
21 else {
22 chain->next = new entry(index = head->index);
23 chain = chain->next;
24 }
25 k = head->index;
26 head = head->next;
27 }
28 }
29
30 j = k = 0;
31 while(j < |pattern| && k < |text|){
32 head = t[j];
33 while(j >= 0 && text[k]!= pattern[j]){
34 j = head->index;
35 head = head->next;
36 }
37 k=k+1; j=j+1;
38 }
39
40 if(j==|pattern|) return k-j; else return -1;

Figure 7: Pseudo-code for the (noname#1) matcher
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3.2.2 Composite matchers

The composite matchers form a potentially vast group, which turns out to be focused
on advanced methods of backtracking.

The Boyer-Moore group Boyer and Moore pioneered a sophisticated yet very
practical matcher that not only was linear in the worst case, but actually sub-linear
in the best case. It consists of a bad-character-shift and a good-suffix heuristic, whose
proper cooperation is captured by the Skew combinator:

Boyer-Moore
Skew
— Basic(right-to-left, char, +all, −all)
— Basic(last-only, table, +all, −all)

Original BM
Skew
— Basic(right-to-left, char, +pos, −all)
— Basic(last-only, table, +all, −all)

The heuristics are often considered on their own. For very small alphabets the good-
suffix heuristic seems to dominate the performance of the Boyer-Moore algorithm,
while in practice, for larger alphabets such as ASCII, Horspool showed that the bad-
character-shift heuristic dominates the performance [28]. Note that for the example
the effective alphabet size is only three, and so it is not surprising that the Boyer-
Moore algorithm and the Good Suffix algorithm here behave similarly.

Name Trace Cache bound
Boyer-Moore 3 2 [2] 4 [4] 6 [6] 10 9 8 7 |Σ|+ |pattern|
Original BM 3 2 [2] 4 [4] 6 [6] 10 9 8 7 |Σ|+ |pattern|

Again, the running example does not distinguish the two versions; consider instead
the pattern cababa and the text xxxxaababacababa [9]:

Name Trace
Boyer-Moore 5 4 [4] 9 8 7 6 5 4 [4] 15 14 13 12 11 10
Original BM 5 4 [4] 7 6 5 4 [4] 9 8 7 6 5 4 [4] 15 14 13 12 11 10

The Boyer-Moore/bad-character-shift heuristic group The pure bad-charac-
ter-shift heuristic is illustrated by Horspool’s algorithm (see Figure 3.1.2). Only
very recently have this heuristic been obtained by partial evaluation, using non-
trivial binding-time improvements [15]. This heuristic is captured by the use of a
table comparison at the last position. The group comprises three parallel blood lines
depending on which character positions are used [28, 40, 43]:

Horspool: Uses the last character position of the pattern.
Sunday: Uses the character position just past the pattern.
Smith: Uses the best of the above.

Since all matchers rely solely on the bad-character-shift heuristic to skip positions,
the matchers within each blood line differ only in the order in which they perform
character comparisons. Although Horspool, Sunday, and Smith’s algorithms are
really any-order, we here use the orders of the particular versions they each presented.
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Note that being any-order implies that each algorithm is dual to (a variant of) itself.
The Raita algorithm [37] is an instance of the Horspool algorithm. We have:

Horspool
Backtracking
— Basic(last-left-to-right, char, +none, −none)
— Basic(last-only, table, +all, −all)

Raita
Backtracking
— Basic(last-first-middle-rest, char, +none, −none)
— Basic(last-only, table, +all, −all)

Quick Search
Alternate
— Basic(left-to-right, char, +none, −none)
— Basic(last-only, table, +all, −all)

Smith

Backtracking
— Basic(left-to-right, char, +none, −none)
— Parallel

— Basic(last-only, table, +all, −all)
— Alternate

— Fail
— Basic(last-only, table, +all, −all)

Since the bad-character-shift heuristic is very sensitive to individual characters in the
text, the matchers do not compare as well as the Knuth-Morris-Pratt group.

Name Trace Cache bound
Horspool 3 0 1 2 [3] 4 [4] 6 [6] 10 7 8 9 |Σ|
Raita 3 0 2 [3] 4 [4] 6 [6] 10 7 9 8 |Σ|
Quick-search 0 1 2 [4] 3 4 5 6 [7] 4 [8] 7 8 9 10 |Σ|
Smith 0 1 2 [3] [4] 3 4 5 6 [6] [7] 7 8 9 10 2 · |Σ|

The Not-So-Naive matcher As a footnote, it is interesting to notice the Not-So-
Naive matcher, which is a constant-space Brute-Force-refinement that can even be
slightly sub-linear [10]. It simply remembers the outcome of the second comparison,
which in turn allows it to sometimes skip a position. Its specification is

Not-So-Naive
Sequential
— Basic(second-only, char, +all, −all)
— Basic(left-to-right-skip-second, char, +none, −none)

and its trace on the example is only 1 2 3 4 5 6 6 7 8 9 10 7. This matcher
induces a flora of constant-space variants that remember any finite number of com-
parison outcomes; one might be considered a “Poor man’s Good Suffix”:

(noname#2)
Sequential
— Basic(last-only, char, +all, −all)
— Basic(right-to-left-skip-last, char, +none, −none)

Its trace on the example is 3 2 4 6 8 10 9 8 7.

3.3 Summary

In this section, we have developed a framework (that is, a specification language
and interpretation) for characteristic information propagation. Verified using the
measure of Section 2, the framework provides concise specifications for a wide variety

24



of behaviors. It builds on existing frameworks and as such enjoys the same benefits [6,
7, 36] (see also Section 4.2). The technical novelties of our framework are: (1) the
flexible concept of a partial matcher; (2) the use of multiple (and non-aligned) caches;
and (3) to distinguish between char and table comparisons.

By measuring real string matchers [10], we further obtain concise specifications
of these, many of which have never been obtained before. A key point is that we
can move freely between the “information propagation”-oriented specification and its
behaviorally-equivalent efficient implementation. This connection has allowed us to
present an information-propagation-based taxonomy of string matchers. Notably, we
have obtained the practically efficient Boyer-Moore/bad-character-shift heuristic in
a systematic and reusable way.

Measuring real string matchers also allows us to introduce sound canonical nam-
ing of specifications and behaviors, and furthermore gives us plenty of data points
for controlling exploration.

4 An analysis of information propagation

In the program-generation community, the Knuth-Morris-Pratt algorithm in partic-
ular has been reconstructed many times, since Futamura in 1987 proposed it as a
challenging problem for partial evaluators [1,5,6,8,12,16,17,19,21,22,25,27,33,36,39,
41, 44]. From an information-propagation perspective, often either the Morris-Pratt
algorithm, the (noname#1) algorithm, or the Automaton has been reconstructed
instead, but as a catalyst for advancements in partial evaluation such imprecision
is harmless. The imprecision does, however, prohibit direct comparison of methods
and approaches.

Only lately did Ager, Danvy, and the author prove formally what exactly gives
rise to the Knuth-Morris-Pratt algorithm [2].

4.1 Advanced program transformations

We now analyze characteristic information propagation of advanced program trans-
formations. Foremost, we phrase the KMP-test in terms of information propagation
(behavior) rather than efficiency (time complexity):

KMP(T ) ⇔ ∃M. ‖M‖ = ‖Brute-Force‖ ∧ ‖T (M)‖ = ‖Knuth-Morris-Pratt‖

Similarly, we have a Morris-Pratt-test and a (noname#1)-test. The use of charac-
teristic information is here convenient, since we thereby factor out representation
issues (such as propagating p 6= nil vs. m 6= 0) and how information is propagated
(substitution vs. environments vs. predicates).

We restrict the analysis to transformations that pass the original KMP-test.

4.1.1 Positive supercompilation

Positive supercompilation is a variant of supercompilation that propagates positive
information only and uses folding without generalization [41]. The benefits of the
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simplification are that the propagation of information can be defined as term substi-
tution due to the absence of negative information and that it is still powerful enough
to pass the original KMP-test.

As for information propagation, positive supercompilation passes the Morris-
Pratt-test.

4.1.2 S-Graph supercompilation

Another variant of supercompilation, due to Glück and Klimov, propagates both
positive and negative information (so-called restrictions) using environments [22].
For passing the original KMP-test, a simple folding strategy similar to the above
suffices, where only identical configurations are folded.

As for information propagation, S-Graph supercompilation passes the (noname#1)-
test.

4.1.3 Turchin’s supercompilation

Supercompilation, as described by Turchin [45], is a certain type of program trans-
formation that works by first observing, analyzing, and modeling the execution of a
source program and then returning an equivalent, optimized program. Phrased in the
functional language Refal, it has been reported to pass the original KMP-test [23].
An implementation of both Refal and the supercompiler scp4 are available [38].

In this context, a problematic feature of Refal is its very general pattern matching
capabilities (a comparison must be defined as pattern matching in Refal), because
the pattern matching algorithm is non-deterministic and does not readily give rise to
a well-defined trace. Under the assumption that pattern matching is non-redundant
(see Section 4.3.2) and by experimenting with the implementation, we discovered
that scp4 passes either the Morris-Pratt-test or the (noname#1)-test, depending on
how comparisons are encoded in the source program.

In Refal, strings are sequences of symbols and the pattern matching encoding
of character comparisons really encodes two “standard” comparisons: “is the text
string non-empty?” and, if so, “is the first symbol equal to the appropriate one in
the pattern?”. Apparently, negative information is not propagated (in the sense of
exploited) if the two “else” branches of the encoded character comparison are merged,
that is, if (t = A :: t′∧A 6= X) is in disjunction with the non-characteristic (t = nil).

4.1.4 Generalized partial computation

Generalized Partial Computation is a program transformation method that utilizes
partial evaluation, theorem proving, and the propagation of predicates [19]. As
such, GPC is capable of generating the whole Knuth-Morris-Pratt-family, if the right
fold/unfold choices are made.

Here, its (semi-)automatic instances are more interesting [18, 20]. We consider a
tail-recursive Brute-Force matcher [20, page 73]; by hand, we have followed the semi-
automatic GPC instance on the “tricky” pattern abaa and obtained the (noname#1)
matcher. Hence, as for information propagation, GPC passes the (noname#1)-test.
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4.2 String-matching frameworks

Existing string-matching frameworks have hitherto been difficult to distinguish from
each other, because they have all generated both Knuth-Morris-Pratt-like and Boyer-
Moore-like matchers and all verified the duality folklore. Accounting for propagated
information, however, changes the situation.

4.2.1 The “duality” folklore revisited

We first re-investigate the “duality” folklore, accounting for information propagation.
We list valid dualities containing every variant:

left-to-right Specification right-to-left
Brute-Force Basic(-, char, +none, −none) (noname#3)
(noname#1) Basic(-, char, +all, −none) (noname#4)
Knuth-Morris-Pratt Basic(-, char, +all, −neg) (noname#5)
Morris-Pratt Basic(-, char, +pos, −none) (noname#6)
(noname#7) Basic(-, char, +all, −all) Good Suffix
(noname#8) Basic(-, char, +pos, −all) Original GS
Automaton Basic(-, table, +all, −none) Optimal BM
(noname#9) Basic(-, table, +all, −all) Partsch-Stomp

(noname#10)
Skew
— Basic(-, char, +all, −all)
— Basic(last-only, table, +all, −all)

Boyer-Moore

(noname#11)
Skew
— Basic(-, char, +pos, −all)
— Basic(last-only, table, +all, −all)

Original BM

Note that we still need to exhibit a counter-example to show that certain matchers
are not dual (since specifications are not necessarily unique); a trivial comparison of
the traces of the running example reveals that there is no precise duality connecting
the Knuth-Morris-Pratt group with either of the Boyer-Moore variants. We must
thus reject the duality conjecture when accounting for information propagation.

However, some of the underlying intuition does hold:

1. We do have a precise duality between the Automaton and the Optimal BM al-
gorithm; this duality is thus the only known precise duality between algorithms
from the literature. These matchers are however knowledge-wise simpler than
the Knuth-Morris-Pratt and Boyer-Moore matchers.

2. We observe that if we enforce that right-to-left matchers always prune every-
thing, the following weak dualities emerge:

left-to-right Specification right-to-left; −all
(noname#1) Basic(-, char, +all, (−none)) Good Suffix
Knuth-Morris-Pratt Basic(-, char, +all, (−neg)) Good Suffix
Morris-Pratt Basic(-, char, +pos, (−none)) Original GS
Automaton Basic(-, table, +all, (−none)) Partsch-Stomp
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The Knuth-Morris-Pratt group is weakly dual to the Boyer-Moore/good-suffix
heuristic group (where the repetition of the Good Suffix is an artifact of our
choice of pruning primitives).

However, the implied promise of the conjecture, namely that by duality one could
get two efficient matchers for the price of one, seems doubtful.

4.2.2 Amtoft et al.’s framework

Our closest related framework is by Amtoft, Consel, Danvy, and Malmkjær [7, 14].
The framework explicitly represents text knowledge in a single cache, which may
contain both positive and negative information; such knowledge is acquired by char-
acter comparisons. Upon a mismatch, negative information is always acquired and
kept until a match occurs; then entries of the cache may be cleared according to
one of several strategies (e.g., clear all negative entries). However, clearing the cache
also after each mismatch is mentioned as a possible improvement. Their work also
includes a correctness proof (based on equational reasoning) ensuring that they only
generate correct string matchers.

The main aim of their work is to show that Knuth-Morris-Pratt-like and Boyer-
Moore-like matchers can be obtained from a common matcher by varying the traver-
sal order. They mention the following left-to-right matchers

Morris-Pratt Basic(left-to-right, char, +pos, −none)
Knuth-Morris-Pratt Basic(left-to-right, char, +all, −neg)
(noname#1) Basic(left-to-right, char, +all, −none)

and the following right-to-left matchers

Horspool
Backtracking
— Basic(last-left-to-right, char, +none, −none)
— Basic(last-only, table, +all, −all)

Boyer-Moore
Skew
— Basic(right-to-left, char, +all, −all)
— Basic(last-only, table, +all, −all)

Partsch-Stomp Basic(right-to-left, table, +all, −all)
Optimal BM Basic(right-to-left, table, +all, −none)

They informally conjecture that the behavior of these matchers appears to be ob-
tained, with the exception of the Boyer-Moore, which “exploits the two tables in a
rather unsystematic way” [7, page 347].

Under our definition of behavior, the conjecture does not fully hold. This is
mainly because: (1) always acquiring and keeping negative information between
matches turns out to be too inflexible to obtain any matcher from the literature,
since no such matcher keeps more than one character of negative information; and
(2) our definition insists that table lookups must not be “simulated” by character
comparisons in the same sense that the recognition process of the Automaton is
“simulated” by the Morris-Pratt. They thus obtain groups of Knuth-Morris-Pratt-
like and Good Suffix-like matchers with additional uses of negative information (not
all expressible in our framework as is). The precise duality present in their work is
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(noname#1) Basic(-, char, +all, −none) (noname#4)

along with similar but inexpressible dualities. Their improved framework, in contrast,
would be equivalent to the Basic(-, char, -, -) subset of ours (modulo the formulation
of pruning primitives).

4.2.3 Amtoft’s framework

Amtoft’s PhD thesis [6, Chapter 7] contains an earlier framework. In the setting
of multi-level transition systems, string matchers are specified as transition rules
that explicitly represent text knowledge in a single cache. The cache may contain
both positive and negative information; such knowledge is acquired by character
comparisons (i.e., rules where the triggering conditions are paired such that each state
has only two possible successor states dependent on a single character comparison).
The partial evaluator is an abstract machine that has the ability to generate rules
where each state may have any number of successor states.

The main aim is also here to show that that Knuth-Morris-Pratt and Boyer-
Moore algorithms can be obtained from a common parameterized matcher and to
formalize that the Knuth-Morris-Pratt algorithm is dual to the Optimal BM algo-
rithm. The various matchers are obtained through different traversal orders (called
search strategies), which may at any point contain an operation that clears the cache.
The following matchers are mentioned:

Knuth-Morris-Pratt Basic(left-to-right, char, +all, −neg)

Horspool
Backtracking
— Basic(last-left-to-right, char, +none, −none)
— Basic(last-only, table, +all, −all)

Boyer-Moore
Skew
— Basic(right-to-left, char, +all, −all)
— Basic(last-only, table, +all, −all)

Partsch-Stomp Basic(right-to-left, table, +all, −all)
Optimal BM Basic(right-to-left, table, +all, −none)

– where the latter four are called the “naive”, “original”, “standard”, and “optimal”
Boyer-Moore algorithm, respectively. Amtoft does not attempt to obtain the “naive”
and “original” versions of the Boyer-Moore algorithm; they are considered to “exploit
their information in a rather unsystematic way” [6, page 175]. He conjectures that
the remaining three matchers are obtained and that the aim is accomplished.

Under our definition of behavior, the conjecture does not quite hold. This
is mainly because: (1) the Automaton from Aho, Hopcroft, and Ullman’s clas-
sic book [4, Algorithm 9.3] is not distinguished from the Knuth-Morris-Pratt al-
gorithm [6, page 161]; and (2) the trace depends on whether an implementation of
the framework evaluates the conditions of inapplicable rules or not.

Assuming that inapplicable conditions are never evaluated, the following match-
ers appear to be obtained:

Automaton Basic(left-to-right, table, +all, −none)
Partsch-Stomp Basic(right-to-left, table, +all, −all)
Optimal BM Basic(right-to-left, table, +all, −none)
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The precise duality found is accordingly

Automaton Basic(-, table, +all, −none) Optimal BM

Amtoft thus appears to be the first to obtain the Automaton group and the first to
find the only known duality between algorithms from the literature.

4.2.4 Queinnec and Geffroy’s framework

The first published framework is due to Queinnec and Geffroy [36]. The framework
explicitly represents text knowledge in a single cache (called a description), which
may contain both positive and negative information; such knowledge is acquired by
character comparisons and never forgotten (clearing the cache is however mentioned
as future work). Beyond more advanced examples using various combinators, they
mention two matchers:

Knuth-Morris-Pratt Basic(left-to-right, char, +all, −neg)

Boyer-Moore
Skew
— Basic(right-to-left, char, +all, −all)
— Basic(last-only, table, +all, −all)

They conjecture that these matchers are instances of the framework, dependent only
on the traversal order.

Under our definition of behavior, the conjecture does not hold. The reasons are
the same as for Amtoft et al.’s framework. Additionally, the Boyer-Moore’s use of
disjoint information seems to be difficult – if not impossible – to capture with a single
cache. The matchers obtained and the precise duality thus seems to be

(noname#1) Basic(-, char, +all, −none) (noname#4)

As a footnote, our analysis also explains why – in contrast to the Boyer-Moore
algorithm – Queinnec and Geffroy for the (noname#4) matcher report that “the
generated code tends to be unpredictably voluminous”. The reason being that the
space usage for the (noname#4) varies greatly, whereas the usual implementation of
the Boyer-Moore algorithm always uses |Σ|+ |pattern| memory cells.

4.3 Assessment

Due to the standardization of the Knuth-Morris-Pratt example, our analysis sheds
new light on existing work. Notably, it allows us to accurately quantify differences
in information propagation of transformations and frameworks that were previously
considered to be equivalent. The analysis has two corollaries.

4.3.1 Self-application and efficient preprocessing

The preprocessing phase of string matching algorithms is often quite efficient; in
contrast, the transformation required to specialize a naive matcher is usually not
geared towards efficiency [1].
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In the context of GPC, in particular, self-application has been mentioned as a
way to eliminate the overhead introduced by the transformation itself (here, mainly
theorem proving) [16, 23]. This idea has been conjectured to give rise to linear-time
preprocessing, thus obtaining the full Knuth-Morris-Pratt algorithm. However, by
the analysis, if GPC really generates the (noname#1) matcher instead, linear-time
preprocessing is perhaps impossible without laziness, since the (noname#1) matcher
may not have linear size [24]. (If it does have linear size as conjectured [2], then
proving this non-trivial conjecture must be done first.) This example suggests that,
for self-application at least, tight control with propagated information is likely to be
important.

Recently, however, the propagation of information has been restricted by certain
special conditional expressions and been used to obtain Boyer-Moore-like and Knuth-
Morris-Pratt-like matchers [16], in the traversal-order/search-phase-time-complexity
sense. Although such special expressions allow GPC to obtain more string matchers,
they are no longer obtained fully automatically by transforming naive matchers.

4.3.2 Influence of underlying formalism

In some cases, the reported results have been influenced by the choice of underlying
formalism.

In particular, reported results tend to exclusively use either char or table comparisons
(e.g., unrestricted transition systems can a priori only be interpreted as the latter).
The treatments of Boyer-Moore-like string matchers have suffered most, since this
family of string matchers gain their practical worth from skillfully combining these
two types of comparisons.

The advanced pattern-matching capabilities of Refal make it a difficult language to
analyse, since concept of “the sequence of character comparisons” – as well as the non-
redundancy assumption mentioned in Section 4.1.3 – is essentially implementation-
defined. The assumption simply means that we interpret, say,

F1 { ’ab’ e = <F2 e> ;
’a’ e = <F3 e> ;
e = <F4 e> ; }

as equivalent to

F1 { ’a’ e = <F5 e> ; F5 { ’b’ e = <F2 e> ;
e = <F4 e> ; } e = <F3 e> ; }

Although in this case it seems like a decent assumption, it is far less clear what the
behavior of the following valid string matcher, for abaa, say, is:

F1 { e1 ’abaa’ e2 = <sizeof e1> ; }

Furthermore, even under the non-redundancy assumption, the reported program
from Glück and Turchin’s work [23] behaves like a hybrid between the Morris-Pratt
and Knuth-Morris-Pratt algorithms (not expressible in our framework as is).
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5 Conclusion and perspectives

We have presented an investigation of information propagation in partial evaluation.
The core contribution is a practical formalism-independent measure called behav-

ior – namely text character accesses – of the propagation of so-called characteristic
information of string matchers. In this context, we have accurately measured the
amount of non-trivial information propagated by program transformations and re-
vealed the standard Knuth-Morris-Pratt example as several distinct examples with
respect to information propagation.

Furthermore, we have developed a framework (that is, a specification language
and interpretation) for characteristic-information propagation. The framework pro-
vides concise specifications for a wide variety of behaviors. We obtain concise speci-
fications of string matchers from the literature [10], many of which have never been
obtained before. Not only does this connection introduce sound canonical naming
of specifications and behaviors, but a key point is that we can move freely between
the “information propagation”-oriented specification and its behaviorally-equivalent
efficient implementation. Notably, we have obtained the Boyer-Moore/bad-character-
shift heuristic in a systematic and reuseable way.

This work sheds new light on the information-propagation aspect of a variety
of existing work. For example can we see that the intricate Boyer-Moore algorithm
makes good sense from an information-propagation perspective. Although existing
frameworks and transformation techniques in general maintain too much negative in-
formation, the situation is not clear cut, as the Good Suffix vs. Original GS matchers
show. Still, in the case of self-application, tight control with propagated information
is likely to be essential.

This work shows that string matching is still a rich catalyst for experiments in
program transformation. A practical application of the present work may be in
the development of program transformations, where the behavior measure can be
used mechanically to keep information propagation under control. Furthermore, the
framework can be used for controlled exploration.

The large gap between good theoretical properties (notably the Knuth-Morris-
Pratt algorithm) and practical worth (notably the Horspool algorithm) suggests that
aiming for the generation of a Boyer-Moore/ bad-character-shift variant from some
naive matcher would be a promising achievement (i.e., a BM-test). More ambitiously,
it seems worthwhile to investigate how well opportunistic applications of bounded
static variation – as needed to pass the BM-test [15] – scales to other settings.
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A Exact string matching algorithms

We provide a brief introduction to string matching focusing on the Knuth-Morris-
Pratt and Boyer-Moore algorithms and on the properties usually outlined. The
presentation follows standard material [3, 10, 42].

Let a string s be a finite sequence of atomic characters s[i], where i ∈ {0, 1, ..., |s|−
1} and |s| denotes the length of s. String matching algorithms here solve the following
problem: given a pattern string pattern and a text string text, return the least κ
such that for all i ∈ {0, 1, ..., |pattern| − 1}, pattern[i] = text[κ + i], or −1 if no
such κ exists. We use the standard abbreviations m = |pattern| and n = |text|. For
convenience are program fragments always in the scope of pattern and text.

The simplest algorithm is the Brute-Force algorithm, which performs an exhaus-
tive search for m:

1 i=k=0;
2 while(i<m && k<n) /* κ = k-i */
3 if(pattern[i]==text[k]){
4 k=k+1; i=i+1;
5 } else {
6 k=k-i+1; i=0;
7 }
8 if(i==m) return k-i; else return -1;

It will serve to illustrate the sliding window mechanism [10], which is a rationaliza-
tion over how most string matchers are structured (exceptions include e.g., position
trees [4]).
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The main loop (Lines 2-7) is the bounded search for applicable κ (with κ = k−i),
where the invariant is that all κ′ < κ does not satisfy the matching criterion. For each
κ, an attempt is made to verify the criterion; if successful the search is complete and
the current k is the final result (Line 8); if not (Lines 5-6), the search is continued.
If the search is exhausted, no κ satisfying the criterion exists (Line 8).

The Brute-Force algorithm runs in O(mn) but uses no auxiliary space.

The Morris-Pratt algorithm improves on the Brute-Force algorithm after an analysis
of its inefficiency. After a failed attempt, at i, say, we have already verified that
for all i′ ∈ {0, .., i}, pattern[i′] = text[k + i′]. This verfication means that the
subsequent backtracking – namely the comparisons up to accessing text[k + i] again
– are essentially comparing the pattern against itself; precalculation leads to an
Θ(m + n) algorithm performing at most 2n − 1 text character comparisons. It uses
a m-sized “failure” table, which is cleverly constructed in Θ(m) using the same idea:

1 i=0;
2 j=f[0]=-1;
3 while(i<m-1){
4 while(j>-1 && pattern[i]!=pattern[j])
5 j=f[j];
6 i=i+1;
7 j=j+1;
8 f[i]=j;
9 }

Backtracking is now replaced by a lookup:

10 i=k=0;
11 while(i<m && k<n){ /* κ = k-i */
12 while(i>-1 && pattern[i]!=text[k])
13 i=f[i];
14 i=i+1;
15 k=k+1;
16 }
17 if(i==m) return k-i; else return -1;

Note that k is now never decreased. The delay – which is the maximum number of
text character comparisons before k increases – is bounded by m.

The Knuth-Morris-Pratt algorithm [32] improves on the Morris-Pratt algorithm
by additionally exploiting the negative information after a mismatch, namely that
pattern[i] 6= text[k + i]. Simply expanding Line 8 above to

8.1 if(pattern[i]==pattern[j])
8.2 f[i]=f[j];
8.3 else
8.4 f[i]=j;

incorporates this change. The improved failure table is called the “next” table; the
asymptotic time and space usages are unchanged. A property that does distinguish
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these algorithms is the delay, which improves from m to logΦ(m), where Φ is the
golden ratio (Φ = 1+

√
5

2 ).

The Boyer-Moore algorithm [9] pioneered the idea of of trying to verify the matching
criterion from right to left. In contrast to the above left-to-right algorithms, harness-
ing this idea allows it to sometimes avoid accessing every text character making it
sub-linear at best. It uses two heuristics to gain efficiency: the good suffix heuristic
(which is analogous to the “next” table) and the bad-character-shift heuristic (which
aligns the text character that caused the mismatch with its right-most occurrence
in the pattern). Note that the latter heuristic relies on the alphabet Σ being known
(usually Σ = ASCII).

Efficient precalculation of the good-suffix heuristic is non-trivial [32]:

1 for(i=0; i<m; i=i+1)
2 gs[i]=2*m-i-1;
3 j=m-1;
4 k=m;
5 while(j>-1){
6 f[j]=k;
7 while(k<m && pattern[j]!=pattern[k]){
8 gs[k]=min(gs[k],m-j-1);
9 k=f[k];

10 }
11 j=j-1; k=k-1;
12 }
13 for(i=0; i<k+1; i=i+1)
14 gs[i]=min(gs[i],m+k-i);
15 j=f[k];
16 while(k<m){
17 while(k<=j){
18 gs[k]=min(gs[k],j-k+m);
19 k=k+1;
20 }
21 j=f[j];
22 }

Assuming the alphabet is finite, precalculation of the bad-character-shift heuristic is
usually done in Θ(|Σ|) time and space:

23 for(c∈ Σ)
24 bcs[c]=m;
25 for(i=0;i<m-1;i=i+1)
26 bcs[pattern[i]]=m-i-1;

The main loop is simple:

27 k=m-1;
28 while(k<n){
29 i=m-1;
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30 while(i>-1 && pattern[i]==text[k]){
31 k=k-1; i=i-1;
31 }
33 if(i==-1)
34 return k-i;
35 else
36 k=k+max(gs[i],bcs[text[i]]-m+i+1);
37 }
38 return -1;

After precalculations, the Boyer-Moore algorithm runs in O(m+n) and is considered
to be the one of the fastest algorithms in practice. It performs at most 6n text
character comparisons [32].

The Boyer-Moore algorithm has inspired many variants: Horspool’s simplification [28]
is perhaps the best known – it consists essentially just of omitting the good-suffix
heuristic. The resulting algorithm now runs in O(mn), but performs comparably
to the original in practice (see Stephen’s overview [42, Section 2.1.4]). Horspool’s
algorithm is Lines 23-38 with Line 36 replaced by

36’ k=k+m-i+bcs[text[m-1]];

Note that k is now adjusted – not the bcs[·] value.
Similar variants based on the bad-character-shift heuristic exist, e.g., the Quick

Search algorithm [43] (which instead uses the text character at index m for a modified
bad-character-shift heuristic) and Smith’s algorithm [40] (which uses the maximum
of these two bad-character-shift heuristics).
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