
BRICS
Basic Research in Computer Science

A Simple Proof of a Folklore Theorem
about Delimited Control

Dariusz Biernacki
Olivier Danvy

BRICS Report Series RS-05-25

ISSN 0909-0878 August 2005

B
R

IC
S

R
S

-05-25
B

iernacki&
D

anvy:
A

S
im

ple
P

roofofa
F

olklore
T

heorem
aboutD

elim
ited

C
ontrol

Copyright c© 2005, Dariusz Biernacki & Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/05/25/

A Simple Proof of a Folklore Theorem

about Delimited Control ∗

Dariusz Biernacki and Olivier Danvy

BRICS†

Department of Computer Science
University of Aarhus‡

August 2, 2005

Abstract

We formalize and prove the folklore theorem that the static delimited-control
operators shift and reset can be simulated in terms of the dynamic delimited-
control operators control and prompt. The proof is based on small-step oper-
ational semantics.

Keywords

Delimited continuations, abstract machines.

∗To appear in the Journal of Functional Programming as a Theoretical Pearl.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
Email: {dabi,danvy}@brics.dk

i

Contents

1 Introduction 1

2 The formalization 1
2.1 A definitional abstract machine for shift and reset 1
2.2 A definitional abstract machine for control and prompt 3
2.3 Static vs. dynamic delimited continuations 3

3 The folklore theorem and its formal proof 6
3.1 An auxiliary abstract machine for control and prompt 6
3.2 A family of relations . 7
3.3 The formal proof . 8

4 Conclusion 10

List of Figures

1 A definitional abstract machine for shift and reset 2
2 A definitional abstract machine for control and prompt 4

ii

1 Introduction

In the recent upsurge of interest in delimited continuations [1, 5, 9, 12, 15] it appears
to be taken for granted that dynamic delimited continuations can simulate static
delimited continuations by delimiting the context of their resumption. And indeed
this property has been mentioned early in the literature about delimited continua-
tions [4, Section 5]. We are, however, not aware of any proof of this folklore theorem,
and our goal here is to provide such a proof. To this end, we present two abstract
machines—one for static delimited continuations as provided by the control opera-
tors shift and reset [4] and inducing a partial evaluation function eval sr, and one for
dynamic delimited continuations as provided by the control operators control and
prompt [8] and inducing a partial evaluation function evalcp—and one compositional
mapping [[·]] from programs using shift and reset to programs using control and
prompt. We then prove that the following diagram commutes:

Expsr

eval sr //

[[·]]
��

ValsrOO

'v

���
�
�
�
�

Expcp eval cp
// Valcp

where the value equivalence 'v, for ground values, is defined as equality.

2 The formalization

Figures 1 and 2 display two abstract machines, one for the λ-calculus extended with
shift and reset, and one for the λ-calculus extended with control and prompt. These
two machines only differ in the application of captured contexts (which represent
delimited continuations in the course of executing source programs).

For simplicity, in the source syntax, we distinguish between λ-bound variables (x)
and shift- or control-bound variables (k). We use the same meta-variables (e, n,
i, x , k , v, ρ, C1 and C2) ranging over the components of the two abstract machines
whenever it does not lead to ambiguity. Programs are closed terms.

2.1 A definitional abstract machine for shift and reset

In our earlier work [2], we derived a definitional abstract machine for shift and
reset by defunctionalizing the continuation and meta-continuation of Danvy and
Filinski’s definitional evaluator [4]. This definitional abstract machine is displayed
in Figure 1; it is a straightforward extension of Felleisen et al.’s CEK machine [7]
with a meta-context. The source language is the untyped λ-calculus extended with
integers, the successor function, shift (noted S), and reset (noted 〈〈〈·〉〉〉). The machine
is an extension of the CEK machine because when given a program that does not use
shift and reset, it operates in lock step with the CEK machine. When delimiting

1

• Terms and identifiers: e ::= pnq | i | λx .e | e0 e1 | succ e | 〈〈〈e〉〉〉 | Sk .e
i ::= x | k

• Values (integers, closures, and captured contexts): v ::= n | [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{i 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1) | SUCC (C1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒sr 〈e, ρmt , END, nil〉eval
〈pnq, ρ, C1, C2〉eval ⇒sr 〈C1, n, C2〉cont1

〈i, ρ, C1, C2〉eval ⇒sr 〈C1, ρ(i), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒sr 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒sr 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval
〈succ e, ρ, C1, C2〉eval ⇒sr 〈e, ρ, SUCC (C1), C2〉eval

〈〈〈〈e〉〉〉, ρ, C1, C2〉eval ⇒sr 〈e, ρ, END, C1 :: C2〉eval
〈Sk .e, ρ, C1, C2〉eval ⇒sr 〈e, ρ{k 7→ C1}, END, C2〉eval

〈END, v, C2〉cont1 ⇒sr 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒sr 〈e, ρ, FUN (v, C1), C2〉eval
〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒sr 〈e, ρ{x 7→ v}, C1, C2〉eval

〈FUN (C′
1, C1), v, C2〉cont1 ⇒sr 〈C′

1, v, C1 :: C2〉cont1

〈SUCC (C1), n, C2〉cont1 ⇒sr 〈C1, n + 1, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒sr 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒sr v

Figure 1: A definitional abstract machine for shift and reset

control with reset, the machine pushes the current context on the current meta-
context, and proceeds with an empty context. When abstracting control with shift,
the machine captures the current context and proceeds with an empty context. When
applying a captured context, the machine pushes the current context on the current
meta-context, and proceeds with the captured context.

Definition 1. The partial evaluation function eval sr mapping programs to values is
defined as follows: eval sr (e) = v if and only if 〈e, ρmt , END, nil〉eval ⇒+

sr 〈nil, v〉cont2 .

2

We could define the function eval sr in terms of the initial and final transition, but
they play only an administrative role, i.e., to load an input term to the machine and
to unload the computed value from the machine.

2.2 A definitional abstract machine for control and prompt

In our earlier work [2], we also showed how to modify the abstract machine for shift

and reset to obtain a definitional abstract machine for control and prompt [6, 8].
This abstract machine is displayed in Figure 2. The source language is the λ-calculus
extended with integers, the successor function, control (noted F) and prompt (noted
#). The machine is an extension of the CEK machine because when given a program
that does not use control and prompt, it operates in lock step with the CEK machine.
When delimiting control with prompt, the machine pushes the current context on the
current meta-context, and proceeds with an empty context. When abstracting control
with control, the machine captures the current context and proceeds with an empty
context. When applying a captured context, the machine concatenates the captured
context to the current context and proceeds with the resulting context.

Definition 2. The partial evaluation function eval cp mapping programs to values is
defined as follows: eval cp (e) = v if and only if 〈e, ρmt , END, nil〉eval ⇒+

cp 〈nil, v〉cont2 .

2.3 Static vs. dynamic delimited continuations

In Figure 1, shift and reset are said to be static because the application of a delimited
continuation (represented as a captured context) does not depend on the current
context. It is implemented by pushing the current context on the stack of contexts
and installing the captured context as the new current context, as shown by the
following transition:

〈FUN (C′
1, C1), v, C2〉cont1 ⇒sr 〈C′

1, v, C1 :: C2〉cont1

A subsequent shift operation will therefore capture the remainder of the reinstated
context, statically.

In Figure 2, control and prompt are said to be dynamic because the application
of a delimited continuation (also represented as a captured context) depends on the
current context. It is implemented by concatenating the captured context to the
current context, as shown by the following transition:

〈FUN (C′
1, C1), v, C2〉cont1 ⇒cp 〈C′

1 ? C1, v, C2〉cont1

A subsequent control operation will therefore capture the remainder of the reinstated
context together with the then-current context, dynamically.

The two abstract machines differ only in this single transition. Because of this
single transition, programs using shift and reset are compatible with the traditional
notion of continuation-passing style [2, 4, 14] whereas programs using control and
prompt give rise to a more complex notion of continuation-passing style that threads
a dynamic state [3, 5, 15]. This difference in the semantics of shift and control also
induces distinct computational behaviors, as illustrated in the following example.

3

• Terms and identifiers: e ::= pnq | i | λx .e | e0 e1 | succ e | #e | Fk .e
i ::= x | k

• Values (integers, closures, and captured contexts): v ::= n | [x , e, ρ] | C1

• Environments: ρ ::= ρmt | ρ{i 7→ v}
• Contexts: C1 ::= END | ARG ((e, ρ), C1) | FUN (v, C1) | SUCC (C1)

• Concatenation of contexts:

END ? C′
1

def= C′
1

(ARG ((e, ρ), C1)) ? C′
1

def= ARG ((e, ρ), C1 ? C′
1)

(FUN (v, C1)) ? C′
1

def= FUN (v, C1 ? C′
1)

(SUCC (C1)) ? C′
1

def= SUCC (C1 ? C′
1)

• Meta-contexts: C2 ::= nil | C1 :: C2

• Initial transition, transition rules, and final transition:

e ⇒cp 〈e, ρmt , END, nil〉eval
〈pnq, ρ, C1, C2〉eval ⇒cp 〈C1, n, C2〉cont1

〈i, ρ, C1, C2〉eval ⇒cp 〈C1, ρ(i), C2〉cont1

〈λx .e, ρ, C1, C2〉eval ⇒cp 〈C1, [x , e, ρ], C2〉cont1

〈e0 e1, ρ, C1, C2〉eval ⇒cp 〈e0, ρ, ARG ((e1, ρ), C1), C2〉eval
〈succ e, ρ, C1, C2〉eval ⇒cp 〈e, ρ, SUCC (C1), C2〉eval

〈#e, ρ, C1, C2〉eval ⇒cp 〈e, ρ, END, C1 :: C2〉eval
〈Fk .e, ρ, C1, C2〉eval ⇒cp 〈e, ρ{k 7→ C1}, END, C2〉eval

〈END, v, C2〉cont1 ⇒cp 〈C2, v〉cont2

〈ARG ((e, ρ), C1), v, C2〉cont1 ⇒cp 〈e, ρ, FUN (v, C1), C2〉eval
〈FUN ([x , e, ρ], C1), v, C2〉cont1 ⇒cp 〈e, ρ{x 7→ v}, C1, C2〉eval

〈FUN (C′
1, C1), v, C2〉cont1 ⇒cp 〈C′

1 ? C1, v, C2〉cont1

〈SUCC (C1), n, C2〉cont1 ⇒cp 〈C1, n + 1, C2〉cont1

〈C1 :: C2, v〉cont2 ⇒cp 〈C1, v, C2〉cont1

〈nil, v〉cont2 ⇒cp v

Figure 2: A definitional abstract machine for control and prompt

4

Copying vs. reversing a list: Using call-with-current-delimited- continuation

(instead of shift or control) and delimit-continuation (instead of reset or prompt),
let us consider the following function that traverses a given list and returns another
list [2, Sec. 4.5]; this function is written in the syntax of Scheme [11]:

(define traverse

(lambda (xs)

(letrec ([visit

(lambda (xs)

(if (null? xs)

’()

(visit (call-with-current-delimited-continuation

(lambda (k)

(cons (car xs) (k (cdr xs))))))))])

(delimit-continuation

(lambda ()

(visit xs))))))

• The function copies its input list if shift and reset are used instead of call-with-
current-delimited-continuation and delimit-continuation. The reason why is
that reinstating a shift-abstracted context keeps it distinct from the current
context. Here, shift successively abstracts a delimited context that solely con-
sists of the call to visit. Intuitively, this delimited context reads as follows:

(lambda (v)

(delimit-continuation

(lambda ()

(visit v))))

• The function reverses its input list if control and prompt are used instead
of call-with-current-delimited-continuation and delimit-continuation. The
reason why is that reinstating a control-abstracted context grafts it to the cur-
rent context. Here, control successively abstracts a context that consists of
the call to visit followed by the construction of a reversed prefix of the input
list. Intuitively, when the input list is (1 2 3), the successive contexts read as
follows:

(lambda (v) (visit v))

(lambda (v) (cons 1 (visit v))

(lambda (v) (cons 2 (cons 1 (visit v))))

Programming folklore. To obtain the effect of shift and reset using control

and prompt, one should replace every occurrence of a shift-bound variable k by its η-
expanded and delimited version λx .#(k x). (As a βv-optimization, every application
of k to a trivial expression e (typically a value) can be replaced by #(k e).)

And indeed, replacing

(cons (car xs) (k (cdr xs)))

by

5

(cons (car xs) (delimit-continuation

(lambda ()

(k (cdr xs)))))

in the definition of traverse above makes it copy its input list, no matter whether
shift and reset or control and prompt are used.

We formalize the replacement above with the following compositional translation
from the language with shift and reset to the language with control and prompt.

Definition 3. The translation [[·]] is defined as follows:

[[pnq]] = pnq
[[x]] = x
[[k]] = λx .#(k x), where x is fresh

[[λx .e]] = λx .[[e]]
[[e0 e1]] = [[e0]] [[e1]]

[[〈〈〈e〉〉〉]] = #[[e]]
[[Sk .e]] = Fk .[[e]]

In the next section, we prove that for any program e, eval sr (e) and eval cp ([[e]])
are equivalent (in the sense of Definition 5 below) and, in particular, equal for ground
values.

3 The folklore theorem and its formal proof

We first define an auxiliary abstract machine for control and prompt that imple-
ments the application of an η-expanded and delimited continuation in one step. By
construction, this auxiliary abstract machine is equivalent to the definitional one of
Figure 2. We then show that the auxiliary machine operates in lock step with the
definitional abstract machine of Figure 1. To this end, we define a family of rela-
tions between the abstract machine for shift and reset and the auxiliary abstract
machine. The folklore theorem follows.

3.1 An auxiliary abstract machine for control and prompt

Definition 4. The auxiliary abstract machine for control and prompt is defined as
follows:

(1) All the components, including configurations δ, of the auxiliary abstract machine
are identical to the components of the definitional abstract machine of Figure 2.

(2) The transitions of the auxiliary abstract machine, denoted δ ⇒aux δ′, are de-
fined as follows:

• if δ = 〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1

then δ′ = 〈C′
1, v, C1 :: C2〉cont1 , where C′

1 = ρ(k);

• otherwise, δ′ is the configuration such that δ ⇒cp δ′, if it exists.

(3) The partial evaluation function evalaux is defined in the usual way: evalaux (e) =
v if and only if 〈e, ρmt , END, nil〉eval ⇒+

aux 〈nil, v〉cont2 .

6

The following lemma shows that the definitional abstract machine for control and
prompt simulates the single step of the auxiliary abstract machine in several steps.

Lemma 1. For all v, C1, C′
1 and C2,

〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1 ⇒+
cp 〈C′

1, v, C1 :: C2〉cont1 , where C′
1 = ρ(k).

Proof. From the definition of the abstract machine for control and prompt in Figure 2:

〈FUN ([x , #(k x), ρ], C1), v, C2〉cont1 ⇒cp

〈#(k x), ρ{x 7→ v}, C1, C2〉eval ⇒cp

〈k x , ρ{x 7→ v}, END, C1 :: C2〉eval ⇒cp

〈k , ρ{x 7→ v}, ARG ((x , ρ{x 7→ v}), END), C1 :: C2〉eval ⇒cp

〈ARG ((x , ρ{x 7→ v}), END), C′
1, C1 :: C2〉cont1 ⇒cp

〈x , ρ{x 7→ v}, FUN (C′
1, END), C1 :: C2〉eval ⇒cp

〈FUN (C′
1, END), v, C1 :: C2〉cont1 ⇒cp

〈C′
1, v, C1 :: C2〉cont1

Proposition 1. For any program e and for any value v, evalcp (e) = v if and only
if evalaux (e) = v.

Proof. Follows directly from Definition 4 and Lemma 1.

3.2 A family of relations

We now define a family of relations between the abstract machine for shift and reset

and the auxiliary abstract machine for control and prompt. To distinguish between
the two machines, as a diacritical convention [13], we annotate the components of
the machine for shift and reset with a hat.

Definition 5. The relations between the components of the abstract machine for
shift and reset and the auxiliary abstract machine for control and prompt are defined
as follows:

(1) Terms: ê 'e e iff [[ê]] = e

(2) Values:

(a) n̂ 'v n iff n̂ = n

(b) [x̂ , ê, ρ̂] 'v [x , e, ρ] iff x̂ = x , ê 'e e and ρ̂ 'env ρ

(c) Ĉ1 'v [x , #(k x), ρ] iff Ĉ1 'c ρ(k)

(3) Environments:

(a) ρ̂mt 'env ρmt

(b) ρ̂{x 7→ v̂} 'env ρ{x 7→ v} iff v̂ 'v v and ρ̂ \ {x} 'env ρ \ {x}, where ρ\{i}
denotes the restriction of ρ to its domain excluding i

(c) ρ̂{k 7→ Ĉ1} 'env ρ{k 7→ C1} iff Ĉ1 'c C1 and ρ̂ \ {k} 'env ρ \ {k}

7

(4) Contexts:

(a) ÊND 'c END

(b) ÂRG ((ê, ρ̂), Ĉ1) 'c ARG ((e, ρ), C1) iff ê 'e e, ρ̂ 'env ρ, and Ĉ1 'c C1

(c) F̂UN (v̂, Ĉ1) 'c FUN (v, C1) iff v̂ 'v v and Ĉ1 'c C1

(d) ŜUCC (Ĉ1) 'c SUCC (C1) iff Ĉ1 'c C1

(5) Meta-contexts:

(a) n̂il 'mc nil

(b) Ĉ1 :: Ĉ2 'mc C1 :: C2 iff Ĉ1 'c C1 and Ĉ2 'mc C2

(6) Configurations:

(a) 〈ê, ρ̂, Ĉ1, Ĉ2〉deval
' 〈e, ρ, C1, C2〉eval iff

ê 'e e, ρ̂ 'env ρ, Ĉ1 'c C1, and Ĉ2 'mc C2

(b) 〈Ĉ1, v̂, Ĉ2〉ĉont1
' 〈C1, v, C2〉cont1 iff

Ĉ1 'c C1, v̂ 'v v, and Ĉ2 'mc C2

(c) 〈Ĉ2, v̂〉ĉont2
' 〈C2, v〉cont2 iff

Ĉ2 'mc C2 and v̂ 'v v

The relations are intended to capture the equivalence of the abstract machine for
shift and reset and the auxiliary abstract machine for control and prompt when run
on a term ê and on its translation [[ê]], respectively. Most of the cases are homomor-
phic on the structure of a component. The critical cases are: (1)—a formalization
of the programming folklore formulated in Section 2.3, and (2)(c)—a formalization
of the fact that a control-abstracted continuation is applied by concatenating its
representation to the current context whereas when a shift-abstracted continuation
is applied, its representation is kept separate from the current context.

3.3 The formal proof

We first show that indeed, running the abstract machine for shift and reset on a
program ê and running the auxiliary abstract machine for control and prompt on
a program [[ê]] yield results that are equivalent in the sense of the above relations.
Then by Proposition 1, we obtain the equivalence result of the abstract machine for
shift and reset and the definitional abstract machine for control and prompt, as
summarized in the following diagram:

Expsr

eval sr //

[[·]]
��

ValsrOO

'v

���
�
�
�
�

Expcp

eval cp
//

evalaux //
Valcp

8

More precisely, we show that the abstract machine for shift and reset and the
auxiliary abstract machine for control and prompt operate in lock-step with respect
to the relations. To this end we need to prove the following lemmas.

Lemma 2. For all configurations δ̂, δ, δ̂′ and δ′, if δ̂ ' δ then

δ̂ ⇒sr δ̂′ if and only if δ ⇒aux δ′ and δ̂′ ' δ′.

Proof. By case inspection of δ̂ ' δ. All cases follow directly from the definition of
the relation ' and the definitions of the abstract machines. We present two crucial
cases:

Case: δ̂ = 〈k , ρ̂, Ĉ1, Ĉ2〉deval
and δ = 〈λx .#(k x), ρ, C1, C2〉eval .

From the definition of the abstract machine for shift and reset, δ̂ ⇒sr δ̂′,
where δ̂′ = 〈Ĉ1, ρ̂(k), Ĉ2〉ĉont1

.
From the definition of the auxiliary abstract machine for control and prompt,
δ ⇒aux δ′, where δ′ = 〈C1, [x , #(k x), ρ], C2〉cont1 .
By assumption, ρ̂(k) 'c ρ(k), Ĉ1 'c C1 and Ĉ2 'mc C2. Hence, δ̂′ ' δ′.

Case: δ̂ = 〈F̂UN (Ĉ1

′
, Ĉ1), v̂, Ĉ2〉deval

and δ = 〈FUN ([x , #(k x), ρ], C1), v, C2〉eval .
From the definition of the abstract machine for shift and reset, δ̂ ⇒sr δ̂′,
where δ̂′ = 〈Ĉ1

′
, v̂, Ĉ1 :: Ĉ2〉ĉont1

.
From the definition of the auxiliary abstract machine for control and prompt,
δ ⇒aux δ′, where δ′ = 〈C′

1, v, C1 :: C2〉cont1 , and C′
1 = ρ(k).

By assumption, Ĉ1

′ 'c C′
1, v̂ 'v v, Ĉ1 'c C1 and Ĉ2 'mc C2. Hence, δ̂′ ' δ′.

Lemma 3. For all configurations δ̂, δ, δ̂′ and δ′, and for any n ≥ 1, if δ̂ ' δ then

δ̂ ⇒n
sr δ̂′ if and only if δ ⇒n

aux δ′ and δ̂′ ' δ′.

Proof. By induction on n, using Lemma 2.

We are now in position to prove the formal statement of the equivalence between
the two abstract machines:

Proposition 2. For any program ê, either both eval sr (ê) and evalaux ([[ê]]) are un-
defined or there exist values v̂ and v, such that eval sr (ê) = v̂, evalaux ([[ê]]) = v, and
v̂ 'v v.

Proof. Since the initial configurations 〈ê, ρ̂mt , ÊND, n̂il〉deval
and 〈[[ê]], ρmt , END, nil〉eval

are in the relation ', then by Lemma 3 both abstract machines reach their final con-
figurations 〈n̂il, v̂〉ĉont2

and 〈nil, v〉cont2 after the same number of transitions and with
v̂ 'v v, or both diverge.

Theorem 1. For any program ê, either both eval sr (ê) and evalcp ([[ê]]) are undefined
or there exist values v̂ and v, such that eval sr (ê) = v̂, evalcp ([[ê]]) = v, and v̂ 'v v.

Proof. Follows directly from Proposition 1 and Proposition 2.

9

Corollary 1 (Folklore). For any program ê, and for any integer n, eval sr (ê) = n
if and only if evalcp ([[ê]]) = n.

Extending the source language with more syntactic constructs (other ground val-
ues and primitive operations, conditional expressions, recursive definitions, etc.) is
straightforward. It is equally simple to extend the proof.

Our simple proof is based on the original (operational) specification of static
and dynamic delimited continuations. An alternative proof could be based, e.g., on
equational reasoning [6, 10].

4 Conclusion

We have formalized and proved that the dynamic delimited-control operators control
and prompt can simulate the static delimited-control operators shift and reset by
delimiting the context of the resumption of captured continuations. Several converse
simulations have been presented recently [3, 12, 15]. These converse simulations are
considerably more involved than the present one, and have not been formalized and
proved yet.

Acknowledgments: We are grateful to Mads Sig Ager, Ma lgorzata Biernacka,
Julia Lawall, Kevin Millikin, and Kristian Støvring for their comments. Special
thanks to the anonymous reviewers for an insightful e-mail exchange. This work is
partially supported by the ESPRIT Working Group APPSEM II (http://www.appsem.
org) and by the Danish Natural Science Research Council, Grant no. 21-03-0545.

References

[1] Zena M. Ariola, Hugo Herbelin, and Amr Sabry. A type-theoretic foundation of
continuations and prompts. In Kathleen Fisher, editor, Proceedings of the 2004
ACM SIGPLAN International Conference on Functional Programming, pages
40–53, Snowbird, Utah, September 2004. ACM Press.

[2] Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy. An operational
foundation for delimited continuations in the CPS hierarchy. Research Re-
port BRICS RS-05-24, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, August 2005. To appear in Logical Methods in
Computer Science. A preliminary version was presented at the Fourth ACM
SIGPLAN Workshop on Continuations (CW 2004).

[3] Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A dynamic continuation-
passing style for dynamic delimited continuations. Research Report BRICS RS-
05-16, DAIMI, Department of Computer Science, University of Aarhus, Aarhus,
Denmark, May 2005.

[4] Olivier Danvy and Andrzej Filinski. Abstracting control. In Mitchell Wand,
editor, Proceedings of the 1990 ACM Conference on Lisp and Functional Pro-
gramming, pages 151–160, Nice, France, June 1990. ACM Press.

10

[5] R. Kent Dybvig, Simon Peyton-Jones, and Amr Sabry. A monadic framework for
subcontinuations. Technical Report 615, Computer Science Department, Indiana
University, Bloomington, Indiana, June 2005.

[6] Matthias Felleisen. The theory and practice of first-class prompts. In Jeanne
Ferrante and Peter Mager, editors, Proceedings of the Fifteenth Annual ACM
Symposium on Principles of Programming Languages, pages 180–190, San Diego,
California, January 1988. ACM Press.

[7] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD ma-
chine, and the λ-calculus. In Martin Wirsing, editor, Formal Description of Pro-
gramming Concepts III, pages 193–217. Elsevier Science Publishers B.V. (North-
Holland), Amsterdam, 1986.

[8] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba.
Abstract continuations: A mathematical semantics for handling full functional
jumps. In Robert (Corky) Cartwright, editor, Proceedings of the 1988 ACM
Conference on Lisp and Functional Programming, pages 52–62, Snowbird, Utah,
July 1988. ACM Press.

[9] Martin Gasbichler and Michael Sperber. Final shift for call/cc: direct imple-
mentation of shift and reset. In Simon Peyton Jones, editor, Proceedings of the
2002 ACM SIGPLAN International Conference on Functional Programming,
SIGPLAN Notices, Vol. 37, No. 9, pages 271–282, Pittsburgh, Pennsylvania,
September 2002. ACM Press.

[10] Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete axiom-
atization of delimited continuations. In Olin Shivers, editor, Proceedings of the
2003 ACM SIGPLAN International Conference on Functional Programming,
pages 177–188, Uppsala, Sweden, August 2003. ACM Press.

[11] Richard Kelsey, William Clinger, and Jonathan Rees, editors. Revised5 report
on the algorithmic language Scheme. Higher-Order and Symbolic Computation,
11(1):7–105, 1998.

[12] Oleg Kiselyov. How to remove a dynamic prompt: Static and dynamic delimited
continuation operators are equally expressible. Technical Report 611, Computer
Science Department, Indiana University, Bloomington, Indiana, March 2005.

[13] Robert E. Milne and Christopher Strachey. A Theory of Programming Language
Semantics. Chapman and Hall, London, and John Wiley, New York, 1976.

[14] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

[15] Chung-chieh Shan. Shift to control. In Olin Shivers and Oscar Waddell, editors,
Proceedings of the 2004 ACM SIGPLAN Workshop on Scheme and Functional
Programming, Technical report TR600, Computer Science Department, Indiana
University, Snowbird, Utah, September 2004.

11

Recent BRICS Report Series Publications

RS-05-25 Dariusz Biernacki and Olivier Danvy.A Simple Proof of a Folk-
lore Theorem about Delimited Control. August 2005. ii+11 pp.
To appear in Journal of Functional Programming. This version
supersedes BRICS RS-05-10.

RS-05-24 Małgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations in the
CPS Hierarchy. August 2005. iv+43 pp. To appear in the jour-
nal Logical Methods in Computer Science. This version super-
sedes BRICS RS-05-11.

RS-05-23 Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A
Framework for Concrete Reputation-Systems. July 2005. 48 pp.
This is an extended version of a paper to be presented at ACM
CCS’05.

RS-05-22 Małgorzata Biernacka and Olivier Danvy. A Syntactic Corre-
spondence between Context-Sensitive Calculi and Abstract Ma-
chines. July 2005. iv+39 pp.

RS-05-21 Philipp Gerhardy and Ulrich Kohlenbach. General Logical
Metatheorems for Functional Analysis. July 2005. 65 pp.

RS-05-20 Ivan B. Damg̊ard, Serge Fehr, Louis Salvail, and Christian
Schaffner. Cryptography in the Bounded Quantum Storage
Model. July 2005.

RS-05-19 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
qLuttik. Finite Equational Bases in Process Algebra: Results
and Open Questions. June 2005. 28 pp. To appear in the LNCS
series in Jan Willem Klop’s 60th birthday volume.

RS-05-18 Peter Bogetoft, Ivan B. Damg̊ard, Thomas Jakobsen, Kurt
Nielsen, Jakob Pagter, and Tomas Toft. Secure Computing,
Economy, and Trust: A Generic Solution for Secure Auctions
with Real-World Applications. June 2005. 37 pp.

RS-05-17 Ivan B. Damg̊ard, Thomas B. Pedersen, and Louis Salvail.A
Quantum Cipher with Near Optimal Key-Recycling. May 2005.

RS-05-16 Dariusz Biernacki, Olivier Danvy, and Kevin Millikin. A Dy-
namic Continuation-Passing Style for Dynamic Delimited Con-
tinuations. May 2005. ii+24 pp.

RS-05-15 Małgorzata Biernacka and Olivier Danvy.A Concrete Frame-
work for Environment Machines. May 2005. ii+25 pp.

