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Abstract

In a reputation-based trust-management system, agents main-
tain information about the past behaviour of other agents. This
information is used to guide future trust-based decisions about
interaction. However, while trust management is a component
in security decision-making, few existing reputation-based trust-
management systems aim to provide any formal security-guarantees.
We describe a mathematical framework for a class of simple reputation-
based systems. In these systems, decisions about interaction are
taken based on policies that are exact requirements on agents’ past
histories. We present a basic declarative language, based on pure-
past linear temporal logic, intended for writing simple policies.
While the basic language is reasonably expressive, we extend it to
encompass more practical policies, including several known from
the literature. A naturally occurring problem becomes how to
efficiently re-evaluate a policy when new behavioural information
is available. Algorithms for the various languages are presented
along with complexity analyses.
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1 Introduction

In global-scale distributed systems, traditional authorization mechanisms
easily become either overly restrictive, or very complex [2]. In part, this
is due to the vast numbers of principals they must encompass, and the
open nature of the systems. In dynamic and reputation-based trust-
management systems, the problems of scale and openness are countered
by taking a less static approach to authorization and, more generally,
decision making. In these systems, principals keep track of the history of
interactions with other principals. The recorded behavioural information
is used to guide future decisions about interaction (see references [14,20,
25,28] on reputation). This dynamic approach is being investigated as a
means of overcoming the above mentioned security problems of global-
scale systems. Yet, in contrast with traditional (cryptographic) security
research, within the area of dynamic trust and reputation, no widely
accepted security-models exist, and, consequently, few systems provide
provable security guarantees.

Many reputation systems have been proposed in the literature, but in
most of these, the recorded behavioural information is heavily abstracted.
For example, in the EigenTrust system [16], behavioural information is
obtained by counting the number of ‘satisfactory’ and ‘unsatisfactory’
interactions with a principal. Besides lacking a precise semantics, this
information has abstracted away any notion of time, and is further re-
duced (by normalization) to a number in the interval [0, 1]. In the Beta
reputation system [13], similar abstractions are performed, obtaining a
numerical value in [−1, 1] (with a statistical interpretation). It is not hard
to find other examples of such information-abstraction in the reputation-
system literature [14], and the only non-example we are aware of is the
framework of Shmatikov and Talcott [28] which we discuss further in the
concluding section.

While there are certainly advantages to abstract representations of
behavioural information (e.g., numerical values are often easily compa-
rable, and require little space to store), clearly, information is lost in the
abstraction process. For example, in EigenTrust, value 0 may represent
both “no previous interaction” and “many unsatisfactory previous inter-
actions” [16]. Consequently, one cannot verify exact properties of past
behaviour given only the reputation information.

In this paper, the concept of ‘reputation system’ is to be understood
very broadly, simply meaning any system in which principals record and
use information about past behaviour of principals, when assessing the
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risk of future interaction. We present a formal framework for a class of
simple reputation systems in which, as opposed to most “traditional” sys-
tems, behavioural information is represented in a very concrete form. The
advantage of our concrete representation is that sufficient information is
present to check precise properties of past behaviour. In our framework,
such requirements on past behaviour are specified in a declarative policy-
language, and the basis for making decisions regarding future interaction,
becomes the verification of a behavioural history with respect to a policy.
This enables us define reputation systems that provide a form of provable
“security” guarantees, intuitively, of the following form.

“If principal p gains access to resource r at time t, then the
past behaviour of p up until time t satisfies requirement ψr.”

To get the flavour of such requirements, we preview an example policy
from a declarative language formalized in the following sections. Edjlali
et al. [8] consider a notion of history-based access control in which un-
known programs, in the form of mobile code, are dynamically classified
into equivalence classes of programs, according to their behaviour (e.g.
“browser-like” or “shell-like”). This dynamic classification falls within the
scope of our very broad understanding of reputation systems. The fol-
lowing is an example of a policy written in our language, which specifies
a property similar to that of Edjlali et al., used to classify “browser-like”
applications:

ψbrowser ≡ ¬F−1(modify) ∧
¬F−1(create-subprocess) ∧

G−1 (∀x. [open(x) → F−1(create(x))])

Informally, the atoms modify, create-subprocess, open(x) and create(x)
are events which are observable by monitoring an entity’s behaviour. The
latter two are parameterized events, and the quantification “∀x” ranges
over the possible parameters of these. Operator F−1 means ‘at some point
in the past,’ G−1 means ‘always in the past,’ and constructs ∧ and ¬ are,
respectively, conjunction and negation. Thus, clauses ¬F−1(modify) and
¬F−1(create-subprocess) respectively require that the application has
never modified a file, and has never created a sub-process. The quantified
clause G−1 (∀x. [open(x) → F−1(create(x))]) requires that whenever the
application opens a file, it must previously have created that file. For ex-
ample, if the application has opened the local system-file ”/etc/passwd”
(i.e. a file which it has not created) then it cannot access the network (a
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right associated with the “browser-like” class). If, instead, the applica-
tion has previously only read files it has created, then it will be allowed
network access.

1.1 Technical Contributions and Outline

We present a formal model of the behavioural information that prin-
cipals obtain in our class of reputation systems. This model is based
on previous work using event structures for modelling observations [22],
but our treatment of behavioural information departs from the previ-
ous work in that we perform (almost) no information abstraction. The
event-structure model is presented in Section 2.

We describe our formal declarative language for interaction policies.
In the framework of event structures, behavioural information is modelled
as sequences of sets of events. Such linear structures can be thought
of as (finite) models of linear temporal logic (LTL) [23]. Indeed, our
basic policy language is based on a (pure-past) variant of LTL. We give
the formal syntax and semantics of our language, and provide several
examples illustrating its naturality and expressiveness. We are able to
encode several existing approaches to history-based access control, e.g.
the Chinese Wall security policy [3] and a restricted version of so-called
‘one-out-of-k’ access control [8]. The formal description of our language,
as well as the examples and encodings, is presented in Section 3.

We proceed by showing how one can effectively check whether an in-
teraction history satisfies a policy. An interesting new problem is how
to efficiently (dynamically) re-evaluate policies when interaction histories
change as new information becomes available. It turns out that this prob-
lem, which can be described as dynamic model-checking, can be solved
very efficiently using an algorithm adapted from that of Havelund and
Roşu, based on the technique of dynamic programming, used for runtime
verification [12]. We present also an alternative algorithm using finite au-
tomata to obtain a lower dynamic complexity by doing a pre-computation
on the policy. Interestingly, although one is verifying properties of an en-
tire interaction history, one needs not store this complete history in order
to verify a policy: old interaction can be efficiently summarized relative
to the policy. Descriptions of both algorithms, and analysis of their time-
and space-requirements is given in Section 4.

Finally, we illustrate how our simple policy language can be extended
to encompass policies that are more realistic and practical (e.g., for
history-based access control [1, 8, 10, 30], and within the traditional do-
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main of reputation systems: peer-to-peer- and online feedback-systems
[16,25]). More specifically, we present two extensions. The first is quan-
tification (as is used in the example policy in the introductory section).
We extend the basic language, allowing parameterized events and quan-
tification over the parameters. The second extension covers the two
aspects of information sharing, and quantitative properties. We intro-
duce constructs that allow principals to state properties, not only of
their personally-observed behaviour, but also of the behaviour observed
by others (in the terminology of Mui et al. [20], the first is direct and
encounter driven, and the latter, indirect and propagated). Such in-
formation sharing is characteristic of most existing reputation systems.
Another common characteristic is focus on conveying quantitative infor-
mation. In contrast, standard temporal logic is qualitative: it deals with
concepts such as before, after, always and eventually. We show that we
can extend our language to include a range of quantitative aspects, in-
tuitively, operators like ‘almost always,’ ‘more than N ,’ etc. Section 5
illustrates these two extensions, and briefly discusses policy-checking for
the extended languages.

Related and future work is discussed in the concluding section.

2 Observations as Events

Agents in a distributed system obtain information by observing events
which are typically generated by the reception or sending of messages.
The structure of these message exchanges are given in the form of pro-
tocols known to both parties before interaction begins. By behavioural
observations, we mean observations that the parties can make about spe-
cific runs of such protocols. These include information about the contents
of messages, diversion from protocols, failure to receive a message within
a certain time-frame, etc.

Our goal in this section, is to give precise meaning to the notion of be-
havioural observations. Note that, in the setting of large-scale distributed
environments, often, a particular agent will (concurrently) be involved in
several instances of protocols; each instance generating events that are
logically connected. One way to model the observation of events is us-
ing a process algebra with “state”, recording input/output reactions, as
is done in the calculus for trust management, ctm [6]. Here we are not
interested in modelling interaction protocols in such detail, but merely
assume some system responsible for generating events.
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We will use the event-structure framework of Nielsen and Krukow [22]
as our model of behavioural information. The framework is suitable
for our purpose as it provides a generic model for observations that is
independent of any specific programming language. In the framework,
the information that an agent has about the behaviour of another agent p,
is information about a number of (possibly active) protocol-runs with p,
represented as a sequence of sets of events, x1x2 · · ·xn, where event-set xi
represents information about the ith initiated protocol-instance. Note, in
frameworks for history-based access control (e.g., [1, 8, 10]), histories are
always sequences of single events. Our approach generalizes this to allow
sequences of (finite) sets of events; a generalization useful for modelling
information about protocol runs in distributed systems.

We present the event-structure framework as an abstract interface
providing two operations, new and update, which respectively records
the initiation of a new protocol run, and updates the information recorded
about an older run (i.e. updates an event-set xi). A specific implemen-
tation then uses this interface to notify our framework about events.

2.1 The Event-Structure Framework

In order to illustrate the event-structure framework [22], we use an exam-
ple complementing its formal definitions. We will use a scenario inspired
by the eBay online auction-house [7], but deliberately over simplified to
illustrate the framework.

On the eBay website, a seller starts an auction by announcing, via
the website, the item to be auctioned. Once the auction has started
the highest bid is always visible, and bidders can place bids. A typical
auction runs for 7 days, after which the bidder with the highest bid wins
the auction. Once the auction has ended, the typical protocol is the
following. The buyer (winning bidder) sends payment of the amount of
the winning bid. When payment has been received, the seller confirms
the reception of payment, and ships the auctioned item. Optionally, both
buyer and seller may leave feedback on the eBay site, expressing their
opinion about the transaction. Feedback consist of a choice between
ratings ‘positive’, ‘neutral’ and ‘negative’, and, optionally, a comment.

We will model behavioural information in the eBay scenario from the
buyers point of view. We focus on the interaction following a winning
bid, i.e. the protocol described above. After winning the auction, buyer
(B) has the option to send payment, or ignore the auction (possibly risk-
ing to upset the seller). If B chooses to send payment, he may observe
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confirmation of payment, and later the reception of the auctioned item.
However, it may also be the case that B doesn’t observe the confirmation
within a certain time-frame (the likely scenario being that the seller is
a fraud). At any time during this process, each party may choose to
leave feedback about the other, expressing their degree of satisfaction
with the transaction. In the following, we will model an abstraction of
this scenario where we focus on the following events: buyer pays for auc-
tion, buyer ignores auction, buyer receives confirmation, buyer receives
no confirmation within a fixed time-limit, and seller leaves positive, neu-
tral or negative feedback (note that we do not model the buyer leaving
feedback).

The basis of the event-structure framework is the fact that the obser-
vations about protocol runs, such as an eBay transaction, have structure.
Observations may be in conflict in the sense that one observation may
exclude the occurrence of others, e.g. if the seller leaves positive feedback
about the transaction, he can not leave negative or neutral feedback. An
observation may depend on another in the sense that the first may only
occur if the second has already occurred, e.g. the buyer cannot receive a
confirmation of received payment if he has not made a payment. Finally,
if two observations are neither in conflict nor dependent, they are said to
be independent, and both may occur (in any order), e.g. feedback-events
and receiving confirmation are independent. Note that ‘independent’ just
means that the events are not in conflict nor dependent (e.g., it does not
mean that the events are independent in any statistical sense). These re-
lations between observations are directly reflected in the definition of an
event structure. (For a general account of event structures, traditionally
used in semantics of concurrent languages, consult the handbook chapter
of Winskel and Nielsen [32]).

Definition 2.1 (Event Structure). An event structure is a triple
ES = (E,≤,#) consisting of a set E, and two binary relations on E:
≤ and #. The elements e ∈ E are called events, and the relation #,
called the conflict relation, is symmetric and irreflexive. The relation ≤
is called the (causal) dependency relation, and partially orders E. The
dependency relation satisfies the following axiom, for any e ∈ E:

the set dee (def)
= {e′ ∈ E | e′ ≤ e} is finite.

The conflict- and dependency-relations satisfy the following“transitivity”
axiom for any e, e′, e′′ ∈ E(

e # e′ and e′ ≤ e′′
)

implies e # e′′
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Two events are independent if they are not in either of the two relations.

We use event structures to model the possible observations of a single
agent in a protocol, e.g. the event structure in Figure 1 models the events
observable by the buyer in our eBay scenario.

The two relations on event structures imply that not all subsets of
events can be observed in a protocol run. The following definition for-
malizes exactly what sets of observations are observable.

Definition 2.2 (Configuration). Let ES = (E,≤,#) be an event struc-
ture. We say that a subset of events x ⊆ E is a configuration iff it is
conflict free (C.F.), and causally closed (C.C.). That is, it satisfies the
following two properties, for any d, d′ ∈ x and e ∈ E

(C.F.) dr# d′; and (C.C.) e ≤ d⇒ e ∈ x
Notation 2.1. CES denotes the set of configurations of ES, and C0

ES ⊆
CES the set of finite configurations. A configuration is said to be maximal
if it is maximal in the partial order (CES,⊆). Also, if e ∈ E and x ∈ CES,
we write e # x, meaning that ∃e′ ∈ x.e # e′. Finally, for x, x′ ∈ CES, e ∈
E, define a relation → by x

e→ x′ iff e 6∈ x and x′ = x ∪ {e}. If y ⊆ E
and x ∈ CES, e ∈ E we write x 6 e→ y to mean that either y 6∈ CES or it is
not the case that x

e→ y.

A finite configuration models information regarding a single interac-
tion, i.e. a single run of a protocol. A maximal configuration represents
complete information about a single interaction. In our eBay example,
sets ∅, {pay, positive} and {pay, confirm, positive} are examples of
configurations (the last configuration being maximal), whereas

{pay, confirm, positive, negative}
and {confirm} are non-examples.

In general, the information that one agent possesses about another
will consist of information about several protocol runs; the information
about each individual run being represented by a configuration in the
corresponding event structure. The concept of a local interaction history
models this.

Definition 2.3 (Local Interaction History). Let ES be an event
structure, and define a local interaction history in ES to be a sequence of
finite configurations, h = x1x2 · · ·xn ∈ C0

ES
∗
. The individual components

xi in the history h will be called sessions.
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confirm /o/o/o time-out

pay /o/o/o/o/o/o/o/o/o
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??~~~~~~~~
ignore

positive
2r 2r 1q 1q 1q 0p 0p 0p /o /o /o .n .n .n -m -m -m ,l ,l

/o/o/o neutral /o negative

Figure 1: An event structure modelling the buyer’s observations in the
eBay scenario. (Immediate) Conflict is represented by ∼, and dependency
by →.

In our eBay example, a local interaction history could be the following:

{pay, confirm, pos}{pay, confirm, neu}{pay}

Here pos and neu are abbreviations for the events positive and neutral.
The example history represents that the buyer has won three auctions
with the particular seller, e.g. in the third session the buyer has (so-far)
observed only event pay.

We assume that the actual system responsible for notification of
events will use the following interface to the model.

Definition 2.4 (Interface). Define an operation new : C0
ES

∗ → C0
ES

∗

by new(h) = h∅. Define also a partial operation update : C0
ES

∗ × E ×
N → C0

ES
∗

as follows. For any h = x1x2 · · ·xi · · ·xn ∈ C0
ES

∗
, e ∈ E,

i ∈ N, update(h, e, i) is undefined if i 6∈ {1, 2, . . . , n} or xi
e

6→ xi ∪ {e}.
Otherwise

update(h, e, i) = x1x2 · · · (xi ∪ {e}) · · ·xn
Remarks. Note, that while the order of sessions is recorded (a local

history is a sequence), in contrast, the order of (independent) events
within a single session is not. For example, in our eBay scenario we have

update(update({pay}, neutral, 1), confirm, 1) =
update(update({pay}, confirm, 1), neutral, 1)

Hence independence of events is a choice of abstraction one may make
when designing an event-structure model (because one is not interested in
the particular order of events, or because the exact recording of the order
of events is not feasible). However, note that this is not a limitation of
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event structures: in a scenario where this order of events is relevant (and
observable), one can always use a “serialized” event structure in which
this order of occurrences is recorded. A serialization of events consists
of splitting the events in question into different events depending on the
order of occurrence, e.g., supposing in the example one wants to record
the order of pay and pos, one replaces these events with events pay-

before-pos,pos-before-pay, pay-after-pos and pos-after-pay with
the obvious causal- and conflict-relations.

When applying our logic (described in the next section) to express
policies for history-based access control (HBAC), we often use a special
type of event structure in which the conflict relation is the maximal ir-
reflexive relation on a set E of events. The reason is that histories in
many frameworks for HBAC, are sequences of single events for a set E.
When the conflict relation is maximal on E, the configurations of the
corresponding event structure are exactly singleton event-sets, hence we
obtain a useful specialization of our model, compatible with the tradition
of HBAC. Note, the generalization from single events to configuration of
an event structure makes the framework suitable for modelling interac-
tion contexts in which the outcome of an interaction may not be known
immediately after the interaction protocol has ended, e.g. in the eBay ex-
ample, the buyer may observe its feedback at some point after the trans-
action has ended (and others might have started). A typical interaction
history will have the form x1 · · ·xMxM+1 · · ·xM+K , consisting of a prefix
(xi)

M
i=1 of maximal sessions, followed by a suffix of possibly non-maximal

sessions. The prefix of maximal sessions represent complete information
about (typically old) protocol-runs, whereas the non-maximal sessions in
the suffix, represent newer, ongoing protocol-runs for which the outcomes
are not yet known.

3 A Language for Policies

The reason for recording behavioural information is that it can be used
to guide future decisions about interaction. We are interested in binary
decisions, e.g., access-control and deciding whether to interact or not. In
our proposed system, such decisions will be made according to interaction
policies that specify exact requirements on local interaction histories. For
example, in the eBay scenario from last section, the bidder may adopt
a policy stating: “only bid on auctions run by a seller which has never
failed to send goods for won auctions in the past.”
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In this section, we propose a declarative language which is suitable for
specifying interaction policies. In fact, we shall use a pure-past variant
of linear-time temporal logic, a logic introduced by Pnueli for reasoning
about parallel programs [23]. Pure-past temporal logic turns out to be a
natural and expressive language for stating properties of past behaviour.
Furthermore, linear-temporal-logic models are linear Kripke-structures,
which resemble our local interaction histories. We define a satisfaction
relation |=, between such histories and policies, where judgement h |= ψ
means that the history h satisfies the requirements of policy ψ.

3.1 Formal Description

We describe the syntax and semantics of our variant of temporal logic.

3.1.1 Syntax.

The syntax of the logic is parametric in an event structureES = (E,≤,#).
There are constant symbols e, e′, ei, . . . for each e ∈ E. The syntax of
our language, which we denote L(ES), is given by the following BNF.
Meta-variable op ranges over {∧,∨}.

ψ ::= e | 3e | ψ0 op ψ1 | ¬ψ | X−1ψ | ψ0 S ψ1

The constructs e and 3e are both atomic propositions. In particular, 3e
is not the application of the usual modal operator 3 (with the“temporal”
semantics) to formula e. Informally, the formula e is true in a session if
the event e has been observed in that session, whereas 3e, pronounced
“e is possible”, is true if event e may still occur as a future observation
in that session. The operators X−1 (‘last time’) and S (‘since’) are the
usual past time operators, i.e. X−1ψ is true if ψ holds in the previous
session, and ψ0 S ψ1 is true if ψ1 holds of some session in the past, and
ψ0 holds of every session since then.

3.1.2 Semantics.

A structure for L(ES), where ES = (E,≤,#) is an event structure, is
a non-empty local interaction history in ES, h ∈ C0

ES
+
. The semantics

is mostly standard, but will be presented in a non-standard (inductive)
way. This facilitates the understanding of the algorithms, presented in
the next section, for checking whether a history satisfies the requirements
of a policy. We define the satisfaction relation |= between structures and
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policies, i.e. h |= ψ means that the history h satisfies the requirements
of policy ψ. We will use a variation of the semantics in linear Kripke
structures: satisfaction is defined from the end of the sequence “towards”
the beginning, i.e. h |= ψ iff (h, |h|) |= ψ. We define the semantics of
(h, i) |= ψ inductively in i. Let h = x1x2 · · ·xN ∈ C0

ES
∗

with N > 0.
Define (h, 1) |= ψ by structural induction in ψ.

(h, 1) |= e iff e ∈ x1

(h, 1) |= 3e iff e r# x1

(h, 1) |= ψ0 ∧ ψ1 iff (h, 1) |= ψ0 and (h, 1) |= ψ1

(h, 1) |= ψ0 ∨ ψ1 iff (h, 1) |= ψ0 or (h, 1) |= ψ1

(h, 1) |= ¬ψ iff (h, 1) 6|= ψ
(h, 1) |= X−1ψ iff false

(h, 1) |= ψ0 S ψ1 iff (h, 1) |= ψ1

Assume that 1 < i ≤ N , and (inductively) that (h, i− 1) |= ψ is defined
for all ψ.
Define (h, i) |= ψ by structural induction in ψ:

(h, i) |= e iff e ∈ xi
(h, i) |= 3e iff e r# xi
(h, i) |= ψ0 ∧ ψ1 iff (h, i) |= ψ0 and (h, i) |= ψ1

(h, i) |= ψ0 ∨ ψ1 iff (h, i) |= ψ0 or (h, i) |= ψ1

(h, i) |= ¬ψ iff (h, i) 6|= ψ
(h, i) |= X−1ψ iff (h, i− 1) |= ψ
(h, i) |= ψ0 S ψ1 iff (h, i) |= ψ1 or(

[(h, i− 1) |= ψ0 S ψ1] and
[(h, i) |= ψ0]

)
Note that the inductive semantics is equivalent to the usual semantics,
in particular, our inductive ‘since’ is equivalent to the usual definition:
(h, i) |= ψ0 S ψ1 iff there exists 1 ≤ j ≤ i so that (h, j) |= ψ1 and for all
j′ with j < j′ ≤ i, (h, j′) |= ψ0.

Remarks. There are two main reasons for restricting ourselves to the
pure-past fragment of temporal logic (PPLTL). First of all, while Sistla
and Clarke proved that the model-checking problem for linear temporal
logic with future- and past-operators (LTL) is PSPACE-complete [29],
there are very efficient algorithms for (finite-path) model-checking pure-
past fragments of LTL, and (as we shall see in Section 4) also for the
dynamic policy-checking problem. Secondly, PPLTL is an expressive
language for stating requirements over past behaviour. This claim is

12



justified in two ways. Firstly, we can encode a number of existing ad-hoc
approaches for checking requirements of past behaviour (c.f. Example 3.3
and 3.4 in the next section). Secondly, although one could add future
operators to obtain a seemingly more expressive language, a recent result
of Laroussinie et al. quantifies exactly what is lost by this restriction [19].
Their result states that LTL can be exponentially more succinct than
the pure-future fragment of LTL. It follows from the duality between the
pure-future and pure-past operators, that when restricting to finite linear
Kripke structures, and interpreting h |= ψ as (h, |h|) |= ψ, then our pure-
past fragment can express any LTL formula (up to initial equivalence),
though possibly at the cost of an exponential increase in the size of the
formula.

Note that we have defined the semantics of the logic only for non-
empty structures, h ∈ C0

ES
+
. This means that policies cannot be inter-

preted if there has been no previous interaction. In practice it is up to
each agent to decide if interaction should take place in the case of no
past history. For the remainder of this paper we shall define ε |= ψ iff
∅ |= ψ, that is we (arbitrarily) identify the empty sequence (ε) with the
singleton sequence consisting of only the empty configuration.

Finally, we define standard abbreviations: false ≡ e ∧ ¬e for some
fixed e ∈ E, true ≡ ¬false, ψ0 → ψ1 ≡ ¬ψ0 ∨ ψ1, F−1(ψ) ≡ true S ψ,
G−1(ψ) ≡ ¬F−1(¬ψ). We also define non-standard abbreviation ∼e ≡
¬3e (pronounced ‘conflict e’ or ‘e is impossible’).

3.2 Example Policies

To illustrate the expressiveness of our language, we consider a number of
example policies.

Example 3.1 (eBay). Recall the eBay scenario from Section 2, in which
a buyer has to decide whether to bid on an electronic auction issued by a
seller. We express a policy for decision ‘bid’, stating “only bid on auctions
run by a seller that has never failed to send goods for won auctions in
the past.”

ψbid ≡ ¬F−1(time-out)

Furthermore, the buyer might require that “the seller has never provided
negative feedback in auctions where payment was made.” We can express
this by

ψbid ≡ ¬F−1(time-out) ∧ G−1(negative→ ignore)
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Example 3.2 (Log-in terminal). Consider a scenario where a log-in
server offers the service of letting a user attempt to log into a system
by providing a user-name and a password. To counter certain brute-
force password-attacks, the server wants to use a policy where a client
is only allowed to attempt login if at least 30 seconds have passed since
an occurrence of three consecutive failed logins. That is, if a client sup-
plies a wrong (username, password)-pair three times in a row, then client
must wait at least 30 seconds before being allowed to attempt login again.
Consider the following event structure ES = (E,≤,#). There are three
events E = {fail, success, timeout}, ≤ is the discrete partial order,

and # is the maximal irreflexive relation, #
(def)
= (E ×E) \∆(E), where

∆(E) is the diagonal {(e, e) | e ∈ E}. We express the server’s policy as

ψattempt-login ≡ ¬(
X−1fail ∧ X−1X−1fail ∧
X−1X−1X−1fail

)
We take advantage of the abstractness of the event-structure model by
assuming that the program responsible for generating events will keep
track of time and issue event timeout every 30 seconds if no login has
been attempted. A similar policy to the above can also express the ‘slowing
down hogs’ policy of Edjlali et al. [8] which is used to complicate denial-
of-service attacks by limiting the rate at which a program connects to a
remote site.

Example 3.3 (Chinese Wall). The Chinese Wall policy is an impor-
tant commercial security-policy [3], but has also found applications within
computer science. In particular, Edjlali et al. [8] use an instance of the
Chinese Wall policy to restrict program accesses to database relations.
The Chinese Wall security-policy deals with subjects (e.g. users) and ob-
jects (e.g. resources). The objects are organized into datasets which, in
turn, are organized in so-called conflict-of-interest classes. There is a
hierarchical structure on objects, datasets and classes, so that each object
has a unique dataset which, in turn, has a unique class. In the Chinese-
Wall policy, any subject initially has freedom to access any object. After
accessing an object, the set of future accessible objects is restricted: the
subject can no longer access an object in the same conflict-of-interest
class unless it is in a dataset already accessed. Non-conflicting classes
may still be accessed.

We now show how our logic can encode any instance of the Chinese
Wall policy. Following the model of Brewer et al. [3], we let S denote
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a set of subjects, O a set of objects, and L a labeling function L :
O → C ×D, where C is a set of conflict-of-interest classes and D a set
of datasets. The interpretation is that if L(o) = (co, do) for an object
o ∈ O, then o is in dataset do, and this dataset belongs to the conflict-
of-interest class co. The hierarchical structure on objects, datasets and
classes amounts to requiring that for any o, o′ ∈ O if L(o) = (c, d) and
L(o′) = (c′, d) then c = c′. The following ‘simple security rule’ defines
when access is granted to an object o: “either it has the same dataset
as an object already accessed by that subject, or, the object belongs to
a different conflict-of-interest class.” [3] We can encode this rule in our
logic. Consider an event structure ES = (E,≤,#) where the events are
C ∪D, with (c, c′) ∈ # for c 6= c′ ∈ C, (d, d′) ∈ # for d 6= d′ ∈ D, and
(c, d) ∈ # if (c, d) is not in the image of L (denoted Img(L)). We take
≤ to be discrete. Then a maximal configuration is a set {c, d} so that the
pair (c, d) ∈ Img(L), corresponding to an object access. A history is then
a sequence of object accesses. Now stating the simple security rule as a
policy is easy: to access object o with L(o) = (co, do), the history must
satisfy the following policy:

ψo ≡ F−1do ∨ G−1¬co
In this encoding we have one policy per object o. One may argue that
the policy ψo only captures Chinese Wall for a single object (o), whereas
the “real” Chinese Wall policy is a single policy stating that “ for every
object o, the simple security rule applies.” However, in practical terms
this is inessential. Even if there are infinitely many objects, a system
implementing Chinese Wall one could easily be obtained using our poli-
cies as follows. Say that our proposed security mechanism (intended to
implement “real” Chinese Wall) gets as input the object o and the sub-
ject s for which it has to decide access. Assuming that our mechanism
knows function L, it does the following. If object o has never been queried
before in the run of our system, the mechanism generates “on-the-fly” a
new policy ψo according to the scheme above; it then checks ψo with re-
spect to the current history of s.1 If o has been queried before it simply
checks ψo with respect to the history of s. Since only finitely many objects
can be accessed in any finite run, only finitely many different policies are
generated. Hence, the described mechanism is operationally equivalent to
Chinese Wall.

1This check can be done in time linear in the history of subject s, e.g., using the
array based-algorithm from the next section
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Example 3.4 (Shallow One-Out-of-k). The ‘one-out-of-k’ (OOok)
access-control policy was introduced informally by Edjlali et al. [8]. Set
in the area of access control for mobile code, the OOok scheme dynam-
ically classifies programs into equivalence classes, e.g. “browser-like ap-
plications,” depending on their past behaviour. In the following we show
that, if one takes the set-based formalization of OOok by Fong [10],
we can encode all OOok policies. Since our model is sequence-based,
it is richer than Fong’s shallow histories which are sets. An encoding
of Fong’s OOok-model thus provides a good sanity-check as well as a
declarative means of specifying OOok policies (as opposed to the more
implementation-oriented security automata).

In Fong’s model of OOok, a finite number of application classes are
considered, say, 1, 2, . . . , k. Fong identifies an application class, i, with
a set of allowed actions Ci. To encode OOok policies, we consider an
event structure ES = (E,≤,#) with events E being the set of all access-
controlled actions. Fong allows E to be a countably infinite set, but we
shall restrict to finite sets. As in the last example, we take ≤ to be
discrete, and the conflict relation to be the maximal irreflexive relation,
i.e. a local interaction history in ES is simply a sequence of single events.
Initially, a monitored entity (originally, a piece of mobile code [8]) has
taken no actions, and its history (which is a set in Fong’s formalization)
is ∅. If S is the current history, then action a ∈ E is allowed if there
exists 1 ≤ i ≤ k so that S ∪ {a} ⊆ Ci, and the history is updated to
S ∪ {a}. For each action a ∈ E we define a policy ψa for a, expressing
Fong’s requirement. Assume, without loss of generality, that the sets
Cj that contain a are named 1, 2, . . . , i for some i ≤ k. The following
formula ψaj encodes the requirement that S ∪ {a} ⊆ Cj for a fixed j ≤ i.

ψaj ≡ ¬F−1(
∨

e∈E\Cj

e)

Now we can encode the policy for allowing action a as ψa ≡ ∨i
j=1 ψ

a
j .

4 Dynamic Model Checking

The problem of verifying a policy with respect to a given observed history
is the model-checking problem: given h ∈ C+

ES and ψ, does h |= ψ hold?
However, our intended scenario requires a more dynamic view. Each
entity will make many decisions, and each decision requires a model
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check. Furthermore, since the model h changes as new observations
are made, it is not sufficient simply to cache the answers. This leads
us to consider the following dynamic problem. Devise an implementa-
tion of the following interface, ‘DMC ’. DMC is initially given an event
structure ES = (E,≤,#) and a policy ψ written in the basic pol-
icy language. Interface DMC supports three operations: DMC.new(),
DMC.update(e, i), and DMC.check(). A sequence of non-‘check’ oper-
ations gives rise to a local interaction history h, and we shall call this
the actual history. Internally, an implementation of DMC must main-
tain information about the actual history h, and operations new and
update are those of Section 2, performed on h. At any time, operation
DMC .check() must return the truth of h |= ψ.

In this section, we describe two implementations of interface DMC .
The first has a cheap precomputation, but higher complexity of opera-
tions update and new, whereas the second implementation has a higher
time- and space-complexity for its precomputation, but gains in the long
run with a better complexity of the interface operations. Both imple-
mentations are inspired by the very efficient algorithm of Havelund and
Roşu for model checking past-time LTL [12]. Their idea is essentially
this: because of the recursive semantics, model-checking ψ in (h,m),
i.e. deciding (h,m) |= ψ, can be done easily if one knows (1) the truth
of (h,m − 1) |= ψj for all sub-formulas ψj of ψ, and (2) the truth of
(h,m) |= ψi for all proper sub-formulas ψi of ψ (a sub-formula of ψ is
proper if it is not ψ itself). The truth of the atomic sub-formulas of ψ
in (h,m) can be computed directly from the state hm, where hm is the
mth configuration in sequence h. For example, if ψ3 = X−1ψ4 ∧ e, then
(h,m) |= ψ3 iff (h,m− 1) |= ψ4, and e ∈ hm. This information needed to
decide (h,m) |= ψ can be stored efficiently as two boolean arrays Blast

and Bcur, indexed by the sub-formulas of ψ, so that Blast[j] is true iff
(h,m − 1) |= ψj , and Bcur[i] is true iff (h,m) |= ψi. Given array Blast

and the current state hm, one then constructs array Bcur starting from
the atomic formulas (which have the largest indices), and working in a
‘bottom-up’ manner towards index 0, for which entry Bcur[0] represents
(h,m) |= ψ. We shall generalize this idea of Havelund and Roşu to obtain
an algorithm for the dynamic problem.

We need some preliminary terminology. Initially, the actual interac-
tion history h is empty, but after some time, as observations are made,
the history can be written h = x1 · x2 · · ·xM · yM+1 · · ·yM+K , consist-
ing of a longest prefix x1 · · ·xM of maximal configurations, followed by
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a suffix of K possibly non-maximal configurations yM+1 · · · yM+K, called
the active sessions (since we consider the longest prefix, yM+1 must be
non-maximal). A maximal configuration represents complete informa-
tion about a protocol-run, and has the property that it will never change
in the future, i.e. cannot be changed by operation update. This prop-
erty will be essential to our dynamic algorithms as it implies that the
maximal prefix needs not be stored to check h |= ψ dynamically.

In the following, the number M will always refer to the size of the
maximal prefix, and K to the size of the suffix.

4.1 An Array-based Implementation of DMC

We describe an implementation of the DMC interface based on a data
structure DS maintaining the active sessions and a collection of boolean
arrays. Understanding the data structure is understanding the invariant
it maintains, and we will describe this in the following. We provide, in the
appendix, (a fragment of) a Java implementation of the data structure,
and the interested reader can consult this appendix for details regarding
the description below.

The data structure DS has a vector, accessed by variable DS .h, stor-
ing configurations of ES, which we denote DS .h = (y1, y2, . . . , yK). Part
of the invariant is that DS .h stores only the suffix of active configura-
tions, i.e. the actual history h can be written h = x1 · x2 · · ·xM · (DS .h),
where the xi are all maximal.

Initialization. The data structure is initialized with (a representa-
tion of) an event structure ES = (E,≤,#) and a policy ψ. We assume
that the representation of the configurations of ES, x ∈ CES, is so that
the membership e ∈ x, conflict e # x, singleton union x∪ {e} and maxi-
mality (i.e. is x ∈ CES maximal?) can be computed in constant time. Ini-
tialization starts by enumerating the sub-formulas of ψ, denoted Sub(ψ),
such that the following property holds. Let there be n + 1 sub-formulas
of ψ, and let ψ0 = ψ. The sub-formula enumeration ψ0, ψ1, ψ2, . . . , ψn
satisfies that if ψi is a proper sub-formula of ψj then i > j.

Invariance. As mentioned, part of the invariant is that DS .h stores
exactly the active configurations of the actual history h. In particular,
this means that DS .h1 is non-maximal, since otherwise there was a larger
longest prefix of h.2 In addition to DS .h, the data structure maintains a

2We do not consider, here, the case where DS .h is empty. For these details, consult
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boolean array DS .Bj for each entry yj in the vector DS .h. The boolean
arrays are indexed by the sub-formulas of ψ (more precisely, by the inte-
gers 0, 1, . . . , n, corresponding to the sub-formula enumeration). The fol-
lowing invariant will be maintained: DS .Bk[j] is true iff (h,M+k) |= ψj ,
that is, if-and-only-if the actual history h = x1 · · ·xM · DS .h is a model
of sub-formula ψj at time M +k. Additionally, once the longest prefix of
maximal configurations becomes non-empty, we allocate a special array
B0, which maintains a “summary” of the entire maximal prefix of h with
respect to ψ, meaning that it will satisfy the invariant: B0[j] is true iff
(h,M) |= ψj .

Operations. The invariants above imply that the model-checking
problem h |= ψ can be computed simply by looking at entry 0 of array
DS .BK , i.e. DS .BK [0] is true iff (h,M +K) |= ψ0 iff h |= ψ. This means
that operation DS .check() can be implemented in constant time O(1).
Operation DS .new is also easy: the vector DS .h is extended by adding
a new entry consisting of the empty configuration. We must also allocate
a new boolean array DS .BK+1, which is initialized using the recursive
semantics, consulting the array DS .BK , and the current state ∅. This
can be done in linear time in the number of sub-formulas of ψ, O(|ψ|).

The final and most interesting operation, is DS .update(e, i). It is
assumed as a pre-condition, that 1 ≤ i ≤ K, and that e is not in conflict
with DS .hi. First we must add event e to configuration DS .hi, i.e. DS .hi
becomes DS .hi ∪ {e}. This is simple, but it may break the invariant. In
particular, arrays DS .Bk (for k ≥ i) may no longer satisfy (h,M + k) |=
ψj ⇐⇒ DS .Bk[j] = true. Note, however, that for any 0 ≤ k < i, the
array DS .Bk still maintains its invariant. This is due to the fact that
all (sub) formulas are pure-past, and so their truth in h at time k does
not depend on configurations later than k. In particular, since i ≥ 1, the
special array DS .B0 always maintains its invariant. This means that we
can always assume that DS .Bi−1[j] is true iff (h,M + i− 1) |= ψj .

3 This
information can be used to correctly fill-in array i, in time linear in |ψ|,
using the recursive semantics. In turn, this can be used to update array
i + 1, and so forth until we have correctly updated array K, and the
invariants are restored. Finally, in the case that i = 1 and the updated
session DS .h1 has become maximal, the updated actual history h now

the appendix.
3In the special case where DS .B0 has not yet been allocated (i.e. when the longest

prefix of maximal configurations is empty), one can construct a correct array DS .B1

in time O(|ψ|) using the base case of the recursive semantics. Details are provided in
the appendix, and, here, we do not consider this special case further.

19



has a larger longest prefix of maximal configurations. We must now
find the largest k ≤ K so that for all 1 ≤ k′ ≤ k, DS .hk′ is maximal.
All arrays DS .Bk′ and configurations DS .hk′ for k′ < k may then be
deallocated (configuration DS .hk may also be deallocated), and the new
“summarizing” array DS .B0 becomes DS .Bk. We summarize the result
of this section as a theorem.

Theorem 4.1 (Array-based DMC ). The array-based data structure
(DS) implements the DMC interface correctly. More specifically, assume
that DS is initialized with a policy ψ and an event structure ES, then ini-
tialization of DS is O(|ψ|). At any time during execution, the complexity
of the interface operations is:

• DMC .check() is O(1).

• DMC .new() is O(|ψ|).
• DMC .update(e, i) is O((K − i + 1) · |ψ|) where K is the current

number of active configurations in h (h is the current actual his-
tory).

Furthermore, if the configurations of ES are represented with event-set
bit-vectors, the space complexity of DS is
O(K · (|ψ|+ |E|)).

4.2 Using Finite Automata

In this section, we describe an alternative implementation of the DMC
interface. The implementation uses a finite automaton to improve the dy-
namic complexity of the algorithm at the cost of a one-time computation,
constructing the automaton.

We consider the problem of model-checking ψ in a history h = x1x2 · · ·xM+K

as the string-acceptance problem for an automaton, Aψ, reading symbols
from an alphabet consisting of the finite configurations of ES. The lan-
guage {h ∈ C∗ES | h |= ψ} turns out to be regular for all ψ in our policy
language.

The states of the automaton Aψ will be boolean arrays of size |ψ|,
i.e. indexed by the sub-formulas of ψ. Thinking slightly more abstractly
about the Havelund-Roşu algorithm, filling the array Bcur using Blast and
the current configuration x ∈ CES can be seen as an automaton transition
from state Blast to state Bcur performed when reading symbol x. We need
some preliminary notation.
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Let us identify a boolean array B indexed by the sub-formulas of ψ
with a set s ∈ 2Sub(ψ), i.e. B[j] = true iff ψj ∈ s. The recursive semantics
for a fixed formula ψ, can be seen as an algorithm, denoted RecSem
(corresponding to class RecSem.java of the appendix), taking as input the
array Blast ∈ 2Sub(ψ) and the current configuration x ∈ CES, and giving
as output Bcur ∈ 2Sub(ψ). Furthermore, the base-case of the recursive
semantics can be seen as an algorithm taking only a configuration as input
and giving a subset s ∈ 2Sub(ψ) as output. The input-output behaviour
of the recursive-semantics algorithm is exactly the transition function of
our automaton.

Definition 4.1 (Automaton Aψ). Let ψ be a formula in the pure-
past policy language L(ES), where ES is an event structure. Define a
deterministic finite automaton Aψ = (S,Σ, s0, F, δψ), where S = 2Sub(ψ)∪
{s0} is the set of states, s0 6∈ 2Sub(ψ) being a special initial state, and Σ =
CES is the alphabet. The final states F consist of the set {s ∈ S | ψ ∈ s},
and if ε |= ψ then the initial state is also final, i.e. s0 ∈ F iff ∅ |= ψ. The
transition function restricted to the non-initial states, δψ : 2ψ×CES → 2ψ,
is given by the recursive semantics, i.e. δψ(s, x) = RecSem(s, x) for all
s ∈ 2Sub(ψ), x ∈ Σ. The transition function on the initial state, δψ(s0, ),
is given by the base-case of the recursive semantics.

Since we have identified the empty structure ε ∈ C∗ES with the single-
ton sequence ∅, we take the initial state to be a final state if-and-only-if
∅ |= ψ. The additional accepting states are those that contain formula
ψ.

Let δ̂ψ denote the canonical extension of function δψ to strings h ∈
C∗ES.
Lemma 4.1 (Automaton Invariant). Let h ∈ C+

ES be any non-empty

history, and ψj be any sub-formula of ψ. Then δ̂ψ(s0, h) 6= s0 and fur-

thermore, ψj ∈ δ̂ψ(s0, h) if-and-only-if h |= ψj.

Proof. Simple induction in h.

Theorem 4.2. L(Aψ) = {h ∈ C∗ES | h |= ψ}
Proof. Immediate from Lemma 4.1 and the definition of s0 and F .

In the abstract setting of automaton Aψ, we can now give a very
simple and concise description of an alternative data structure DS ′ for
implementing the interface for dynamic model checking, DMC . The
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basic idea is to pre-construct the automaton during initialization, and
basically replacing the dynamic filling of the arrays DS .Bj of DS with
automaton-transitions.

Initialization. Just as with DS , the data structure DS ′ is initialized
with an event structure ES and formula ψ. Initialization now simply con-
sists of constructing the automaton Aψ. More specifically, we construct
the transition-matrix of δψ so that δψ(s, x) can be computed in time O(1)
by a matrix-lookup.4 DS ′ maintains a variable DS ′.ssumm of type S (the
automaton states) which is initialized to s0. In addition to ssumm, DS ′

will store a vector of pairs DS ′.h = [(y1, s1), (y2, s2), . . . , (yK , sK)], where
the yi’s are configurations representing active sessions, and the si’s are
corresponding automaton-states where si is the state that Aψ is in after
reading yi. Initially this vector is empty.

Invariance. Let h = x1x2 · · ·xM · yM+1 · · ·yM+K be the actual inter-
action history, i.e. (xi)

M
i=1 is the longest prefix of maximal configurations.

The data-structure invariant of DS ′ is that, if DS ′.h = [(y1, s1), (y2, s2), . . . , (yK, sK)]
then (y1, . . . , yK) are the active configurations of h, and si is the state of
the automaton after reading the string x1x2 · · ·xM ·y1 · · · yi, when started
in state s0. The invariant regarding the special variable DS ′.ssumm is sim-
ply that DS ′.ssumm = δ̂ψ(s0, x1x2 · · ·xM), i.e. DS ′.ssumm “summarizes” the
history up to timeM with respect to formula ψ. Notice that the invariant
is satisfied after initialization.

Operations. All operations are now very simple. Let DS ′.h =
[(y1, s1), (y2, s2), . . . , (yK , sK)]. Then operation
DMC .check() returns true iff sK ∈ F . By the invariant and Lemma 4.1
this is equivalent to h |= ψ.5 For operation DMC .new(), extend DS ′.h
with the pair (∅, δψ(sK , ∅)). Finally, for operation DMC .update(e, i),
add e to configuration yi of DS ′.h, then update the table DS ′.h by
starting the automaton in state si−1 (or ssumm if i = 1), and setting
si := δψ(si−1, yi), and then si+1 := δψ(si, yi+1), and so on until the entire
table DS ′.h satisfies the invariant. If i = 1 and y1 ∪ {e} is maximal, we
must, as in DS , recompute the largest longest prefix, and we may deal-
locate the corresponding part of the table DS ′.h (taking care to update
DS ′.ssumm appropriately).

Since δψ can be evaluated in time O(1), we get the following theorem.

4We choose a transition-matrix representation of δψ for simplicity. In practice, any
representation allowing efficient computations of δψ(s, x) could be used.

5In the case where DS ′.h is empty, DS ′.ssumm ∈ F is returned. We consider this
case no further.
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Theorem 4.3 (Automata-based DMC ). The automata-based data
structure (DS ′) implements the DMC interface correctly. More specifi-
cally, assume that DS ′ is initialized with a policy ψ and an event structure
ES = (E,≤,#), then initialization of DS ′ is O(2|ψ| · |CES| · |ψ|). At any
time during execution, the complexity of the interface operations is:

• DMC .check() is O(1).

• DMC .new() is O(1).

• DMC .update(e, i) is O(K− i+1) where K is the current number
of active configurations in h (h is the current actual history).

Furthermore, if the configurations of ES are represented with event-set
bit-vectors, the space complexity of DS ′ is O(K · |E|+ 2|ψ| · |CES|).

4.3 Remarks

The array- and automata-based implementations are very similar. The
automata-based implementation simply precomputes a matrix of transi-
tions B

x→ B′ instead of recomputing from scratch the array B′ from B
and x, every time it is needed. This reduces the complexity of operations
DMC .update(e, i) and DMC .new() by a factor of |ψ|. The cost of this
is in terms of storage and time for pre-computation, where, in the worst
case, the transition matrix is exponential in ψ (of size 2|ψ| × |CES|). One
important advantage with the automata-based implementation (besides
being conceptually simpler) is that we can apply the standard technique
for constructing the minimal finite automaton equivalent to Aψ. We con-
jecture that, in practice, this minimization will give significant time and
space reductions. Note that minimization can be run several times, and
not just during initialization. In particular, one could run minimization
each time state ssumm is updated in order to obtain optimizations, e.g.
removing states that are unreachable in the future.

5 Language Extensions

In this section, we consider two extensions of the basic policy language
to include more realistic and practical policies. The first is parameters
and quantification. For example, consider the OOok policy for classify-
ing “browser-like” applications (Section 3). We could use a clause like
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G−1(open-f→ F−1create-f) for two events open-f and create-f, rep-
resenting respectively the opening and creation of a file with name f .
However, this only encodes the requirement that for a fixed f , file f
must be created before it is opened. Ideally, one would want to encode
that for any file, this property holds, i.e., a formula similar to

G−1
(∀x. [open(x) → F−1(create(x))

])
where x is a variable, and the universal quantification ranges over all pos-
sible file-names. The first language extension allows this sort of quantifi-
cation, and considers an accompanying notion of parameterized events.

The second language extension covers two aspects: quantitative prop-
erties and referencing. Pure-past temporal logic is very useful for spec-
ifying qualitative properties. For instance, in the eBay example, “the
seller has never provided negative feedback in auctions where payment
was made,” is directly expressible as G−1(negative → ignore). How-
ever, sometimes such qualitative properties are too strict to be useful in
practice. For example, in the policy above, a single erroneous negative
feedback provided by the seller will lead to the property being irrevocably
unsatisfiable. For this reason, our first extension to the usual past-time
temporal-logic is the ability to express also quantitative properties, e.g.
“in at least 98% of the previous interactions, seller has not provided neg-
ative feedback in auctions where payment was made.” The second ex-
tension is the ability, to not only refer to the locally observed behaviour,
but also to require properties of the behaviour observed by others. As a
simple example of this, suppose that b1 and b2 are two branches of the
same network of banks. When a client c wants to obtain a loan in b1,
the policy of b1 might require not only that c’s history in b1 satisfy some
appropriate criteria, but also that c has always payed his mortgage on
time in his previous loans with b2. Thus we allow local policies, like that
of b1, to refer to the global behaviour of an entity.

5.1 Quantification

We introduce a notion of parameterized event structure, and proceed
with an extension of the basic policy language to include quantification
over parameters. A parameterized event structure is like an ordinary
event structure, but where events occur with certain parameters (e.g.
open(”/etc/passwd”) or open(”./tmp.txt”)).
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5.1.1 Parameterized Event Structures

We define parameterized event structures and an appropriate notion of
configuration.

Definition 5.1 (Parameterized Event Structure). A parameterized
event structure is a tuple ρES = (E,≤,#,P, ρ) where (E,≤,#) is an
(ordinary) event structure, component P, called the parameters, is a set
of countable parameter sets, P = {Pe | e ∈ E}, and ρ : E → P is a
function, called the parameter-set assignment.

Definition 5.2 (Configuration). Let ρES = (E,≤,#,P, ρ) be a pa-
rameterized event structure. A configuration of ρES is a partial func-
tion x : E → ⋃

e∈E ρ(e) satisfying the following two properties. Let
dom(x) ⊆ E be the set of events on which x is defined. Then

dom(x) ∈ CES
∀e ∈ dom(x).x(e) ∈ ρ(e)

When x is a configuration, and e ∈ dom(x), then we say that e has
occurred in x. Further, when x(e) = p ∈ ρ(e), we say that e has occurred
with parameter p in x. So a configuration is a set of event occurrences,
each occurred event having exactly one parameter.

Notation 5.1. We write CρES for the set of configurations of ρES,
and C0

ρES for the set of finite configurations of ρES (a configuration x is
finite of dom(x) is finite). If x, y are two partial functions x : A → B
and y : C → D we write (x/y) (pronounced x over y) for the partial
function (x/y) : A∪B → C ∪D given by dom(x/y) = dom(x)∪dom(y),
and for all e ∈ dom(x/y) we have (x/y)(e) = x(e) if e ∈ dom(x) and
otherwise (x/y)(e) = y(e). Finally we write ∅ for the totally undefined
configuration (when the meaning is clear from the context).

Here we are not interested in the theory of parameterized event struc-
tures, but mention only that they can be explained in terms of ordinary
event structures by expanding a parameterized event e of type ρ(e) in
to a set of conflicting events {(e, p) | p ∈ ρ(e)}. However, the parame-
ters give a convenient way of saying that the same event can occur with
different parameters (in different runs).

Definition 5.3 (Histories). A local (interaction) history h in a pa-
rameterized event structure ρES is a finite sequence h ∈ C0

ρES
∗
.
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Definition 5.4 (Extended Interface). Overload operation new :
C0
ρES

∗ → C0
ρES

∗
by new(h) = h∅. Overload also partial operation update :

C0
ρES

∗×E×(
⋃
e∈E ρ(e))×N → C0

ρES
∗
as follows. For any h = x1x2 · · ·xi · · ·xn ∈

C0
ρES

∗
, e ∈ E, p ∈ ⋃

e∈E ρ(e), and i ∈ N, update(h, e, p, i) is undefined if

i 6∈ {1, 2, . . . , n}, dom(xi) 6 e→ dom(xi) ∪ {e} or p 6∈ ρ(e). Otherwise

update(h, e, p, i) = x1x2 · · · ((e 7→ p)/xi) · · ·xn
Throughout the following sections, we let ρES = (E,≤,#,P, ρ) be a

parameterized event structure, where P = {Pi | i ∈ N}.

5.1.2 Quantified Policies

We extend the basic language from Section 3 to parameterized event
structures, allowing quantification over parameters.

Syntax. Let Var denote a countable set of variables (ranged over by

x, y, . . .). Let the meta-variables v, u range over Val
(def )
= Var ∪ ⋃∞

i=1 Pi,
and metavariable p range over

⋃∞
i=1 Pi.

The quantified policy language is given by the following BNF. Again
op ranges over {∧,∨}.

ψ ::= e(v) | 3e(v) | ψ0 op ψ1 | ¬ψ |
X−1ψ | ψ0 S ψ1 | ∀x : Pi.ψ | ∃x : Pi.ψ

We need some terminology.

• Write fv(ψ) for the set of free variables in ψ (defined in the usual
way).

• A policy of the quantified language is a closed formula.

• Let ψ be any formula. Say that a variable x has type Pi in ψ if it
occurs in a sub-formula e(x) of ψ and ρ(e) = Pi.

We impose the following static well-formedness requirement on formulas
ψ. All free variables have unique type, and, if x is a bound variable of
type Pi in ψ, then x is bound by a quantifier of the correct type (e.g., by
∀x : Pi.ψ). Further, for each occurrence of e(p), p is of the correct type:
p ∈ ρ(e).

Semantics. A (generalized) substitution is a function σ : Val →⋃∞
i=1 Pi so that σ is the identity on each of the parameter sets Pi. Let
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h = x1 · · ·xn ∈ C0
ρES

∗
be a non-empty history, and 1 ≤ i ≤ n. We define

a satisfaction relation (h, i) |=σ ψ by structural induction on ψ.

(h, i) |=σ e(v) iff e ∈ dom(xi) and xi(e) = σ(v)
(h, i) |=σ 3e(v) iff e r# dom(xi) and

(e ∈ dom(xi) ⇒ xi(e) = σ(v))
(h, i) |=σ ψ0 ∧ ψ1 iff (h, i) |=σ ψ0 and (h, i) |=σ ψ1

(h, i) |=σ ψ0 ∨ ψ1 iff (h, i) |=σ ψ0 or (h, i) |=σ ψ1

(h, i) |=σ ¬ψ iff (h, i) 6|=σ ψ
(h, i) |=σ X−1ψ iff i > 1 and (h, i− 1) |=σ ψ
(h, i) |=σ ψ0 S ψ1 iff ∃j ≤ i.

(
(h, j) |=σ ψ1

)
and

[∀j < j′ ≤ i.(h, j ′) |=σ ψ0]
)

(h, i) |=σ ∀x : Pj .ψ iff ∀p ∈ Pj.(h, i) |=((x 7→p)/σ) ψ
(h, i) |=σ ∃x : Pj .ψ iff ∃p ∈ Pj.(h, i) |=((x 7→p)/σ) ψ

Example 5.1 (True OOok). Recall the ‘one-out-of-k’ policy (Example
3.4). Edjlali et al. give, among others, the following example of an OOok
policy classifying “browser-like”applications: “allow a program to connect
to a remote site if and only if it has neither tried to open a local file that it
has not created, nor tried to modify a file it has created, nor tried to create
a sub-process.” Since this example implicitly quantifies over all possible
files (for any file f , if the application tries to open f then it must have
previously have created f), it cannot be expressed directly in our basic
language. Note also that this policy cannot be expressed in Fong’s set-
based model [10]. This follows since the above policy essentially depends
on the order in which events occur (i.e. create before open).

Now consider a parameterized event structure with two conflicting
events: create and open, each of type String (representing file-names).
Consider the following quantified policy:

G−1(∀x : String .(open(x) → F−1create(x)))

This faithfully expresses the idea of Edjlali et al. that the application “can
only open files it has previously created.”

5.1.3 Model Checking the Quantified Language

We can extend the array-based algorithm to handle the quantified lan-
guage. The key idea is the following. Instead of having boolean arrays
Bk[j], we associate with each sub-formula ψj of a formula ψ, a constraint
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Ck[j] on the free variables of ψj . The invariant will be that the sub-
formula ψj is true for a substitution σ at time (h, k) if-and-only-if σ “sat-
isfies” the constraint Ck[j], i.e., Ck[j] represents the set of substitutions
σ so (h, k) |=σ ψj .

Constraints. Fix a quantified formula ψ and a history h = x1x2 · · ·xn ∈
C0
ρES

∗
. We assume for simplicity that all m variables of ψ, say vars(ψ) =

{y1, y2, . . . , ym}, have the same type P (this restriction is inessential).
Let Ph ⊂ P denote the set of distinct parameter occurrences in h (i.e.,
Ph = {q ∈ P | ∃e ∈ E∃i ≤ |h|.e ∈ dom(xi) and xi(e) = q}). For a finite
set V of variables, let ΣV denote the set of substitutions for the variables
V , i.e., ΣV = V → P . Let us define an equivalence ≡Ph

on substitutions
ΣV , by

σ ≡Ph
σ′ iff ∀x ∈ V.

{
σ(x) = σ′(x) if σ(x) ∈ Ph
σ′(x) 6∈ Ph if σ(x) 6∈ Ph

Let ΣPh
V = ΣV /≡Ph

be the set of equivalence classes for ≡Ph
. Let ? 6∈

P be arbitrary but fixed. Note that an equivalence class [σ] can be
uniquely represented as a function s : V → Ph ∪ {?}, i.e., by s(x) = σ(x)
if σ(x) ∈ Ph and s(x) = ? otherwise. This is clearly independent of
the class representative σ. For the rest of this paper we shall identify
ΣPh
V with V → Ph ∪ {?}. The following lemma establishes that with

respect to model checking, substitutions are only distinguished up to
≡Ph

-equivalence.

Lemma 5.1. For all quantified formulas ψ, all histories h, and all sub-
stitutions σ, σ′ ∈ Σfv(ψ)

if σ ≡Ph
σ′ then h |=σ ψ ⇐⇒ h |=σ′

ψ

Proof. Let h = x1 · · ·xn be fixed, and recall Ph = {q ∈ P | ∃e ∈ E∃i ≤
|h|.e ∈ dom(xi) and xi(e) = q}. Let σ ≡Ph

σ′. Our proof is by structural
induction in ψ. For the base case we need only consider the atomic
formulas of form e(x) or 3e(x) (if ψ doesnt have a free variable then
its truth is independent of the substitution). If σ(x) ∈ Ph then since
σ ≡Ph

σ′, we have σ′(x) = σ(x) and the result is obvious. If σ(x) 6∈ Ph
then since σ ≡Ph

σ′, we also have σ′(x) 6∈ Ph. Hence h 6|=σ e(x) and
h 6|=σ′

e(x). If e is in conflict with xn or e ∈ xn then h 6|=σ 3e(x) and
h 6|=σ′

3e(x), otherwise h |=σ 3e(x) and h |=σ′
3e(x).

For the inductive step, all cases follow trivially from the inductive
hypothesis. For example, for ψ = ∀x : Pj .ψ then since h |=σ ψ ⇐⇒
h |=σ′

ψ, clearly h |=σ ∀x : Pj.ψ iff for all p ∈ Pj .h |=(x 7→p)/σ ψj iff
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p ∈ Pj .h |=(x 7→p)/σ′
ψj (because for any fixed p ∈ Pj we have (x 7→

p)/σ ≡Ph
(x 7→ p)/σ′).

A function c : ΣPh
V → {>,⊥} is called a (V -) constraint (in h). A

substitution σ ∈ ΣV satisfies constraint c if c([σ]) = >. In this case we
write σ |= c. We write ConstraintV for the set of V -constraints (in some
fixed history h which is clear from the context), and if c : ΣPh

V → {>,⊥}
is a constraint, then vars(c)

(def)
= V . Notice that when fv(ψ) = ∅ then

Σfv(ψ) ' 1 (i.e., a singleton set), hence a constraint is simply a boolean.
In this sense, constraints generalize booleans.

In the array-based algorithm, sub-formula ψj will be associated with
a ψj-constraint Ck[j] in h, i.e., on the free variables of ψj (where Ck
will correspond to time k in a history h). Notice that replacing the
boolean arrays Bk[j] with constraint arrays Ck[j] can be seen as a proper
generalization of the array-based algorithm. We generalize the (main)
invariant of the algorithm from

h, k |= ψj ⇐⇒ Bk[j] = true

to
∀σ ∈ Σfv(ψj ).

[
h, k |=σ ψj ⇐⇒ σ |= Ck[j]

]
Notice that for closed ψj , the invariants are equivalent. It is also im-
portant to notice that constraints can be viewed as functions taking as
input an m’ary vector of (Ph ∪ {?})-values (where m is the number of
variables) and giving a boolean value as output. Hence constraints are
finite objects. Notice also that since constraints are boolean valued, it
makes sense to consider logical operators on constraints, e.g., the con-
junction (c∧ c′)([σ]) = c([σ])∧ c′([σ]) of two constraints c and c′ (even if
they are not on the same variables).6 For a variable x and a parameter
p ∈ Ph we will use notation x ∈ {p} to denote the constraint given by
(x ∈ {p})([σ]) = > ⇐⇒ σ(x) = p. Further > and ⊥ denote respectively
the two constant constraints.

Constructing constraints. Let h = x1 · · ·xn be a history and
1 < k ≤ n. Define a translation J·Kkh from the quantified language to
constraints, associating with each formula in the quantified language ψ,
a constraint JψKkh on the free variables of ψ. The function J·Kkh is defined
relative to index k and history h, and we assume (inductively) that when

6If A ⊆ B then an A-constraint can be seen as a B-constraint by imposing no
additional requirements on the extra variables.

29



defining JψKkh, we have access to Jψ′Kkh for all proper sub-formulas ψ′ of
ψ, and also Jψ′Kk−1

h for all sub-formulas ψ′ of ψ. In the model-checking
algorithm, the constraint JψjK

k
h will correspond to entry j in array Ck.

Recall that the invariant we aim to maintain is the following.

∀σ ∈ Σfv(ψj ).
[
h, k |=σ ψj ⇐⇒ σ |= Ck[j]

]
We define function J·Kkh as follows.

Je(v)Kkh =




x ∈ {p} if v = x and e ∈ dom(xk) and

xk(e) = p

> if v = p and e ∈ dom(xk) and

xk(e) = p

⊥ otherwise

J3e(v)Kkh =




x ∈ {p} if v = x and e ∈ dom(xk) and

xk(e) = p

> if (v = p and e ∈ dom(xk) and

xk(e) = p) or if

e 6∈ dom(xk) and e r# dom(xk)

⊥ otherwise

We proceed inductively in ψ.

Jψ0opψ1K
k
h = Jψ0K

k
hopJψ1K

k
h

J¬ψKkh = ¬JψKkh
JX−1ψKkh = JψKk−1

h

Jψ0 S ψ1K
k
h = Jψ1K

k
h ∨ (Jψ0 S ψ1K

k−1
h ∧ Jψ0K

k
h)

J∀x : P.ψKkh = elimx(JψKkh)
J∃x : P.ψKkh = elim ′

x(JψKkh)

All the clauses are straightforward except for ∀x : P.ψ and ∃x : P.ψ,
which are handled by auxiliary functions elimx and elim ′

x. We define
these functions now. Consider first ∀x : P.ψ. Assuming we have access
to c = JψKkh so that σ |= c ⇐⇒ (h, k) |=σ ψ, we must produce a new
constraint c′ of type Constraint fv(ψ)\{x}, so that

σ |= c′ ⇐⇒ [∀p ∈ P.((x 7→ p)/σ) |= c
]

(for all σ)

The function elimx does this; it transforms a constraint c into a con-
straint c′ = elimx(c) with vars(c′) = vars(c) \ {x}, satisfying the above
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equivalence. Since Ph is finite we can build c′ as one large conjunction:
for all σ ∈ Σfv(ψ)\{x}

c′([σ]) = (
∧
q∈Ph

c([(x 7→ q)/σ])) ∧ c((x 7→ ?)/[σ])

Notice that we obtain the function elim ′
x for existential quantification by

taking a disjunction instead of a conjunction.
Array-based Model Checking. In the light of function J·K there

is a straightforward extension of data-structure DS into a similar data-
structure DS∀ for array-based dynamic model-checking of the quantified
language. Structure DS∀ will maintain a history DS∀.h = x1x2 · · ·xn,
and a collection of n + 1 constraint-arrays DS ∀.Ck[j] (for 0 ≤ k ≤ n),
each array indexed by the sub-formulas of ψ. The constraint in Ck[j] will
be Ck[j] = JψjK

h
k for k > 0 (C0 is the special summary constraint). The

invariant implies that for any closed ψ,

(h, n) |= ψ ⇐⇒ |= DS∀.Cn[0]

(we write |= c, and say that c is valid, if c = >). Hence operation check
is a validity check, which is easy since vars(DS∀.Cn[0]) = ∅ when ψ is
closed. Operation new is essentially as in DS (with the generalization
from booleans to constraints).

For operation update(e, p, i) there are two cases. In the first case
p ∈ Ph, and update works as usual (again generalizing to constraints). In
the case where p 6∈ Ph, we update history h to h′ appropriately, and thus
obtain a new, larger Ph′ = Ph ∪ {p}. Notice that constraints in h can
be easily extended to constraints in h′: if c : ΣPh

V → {>,⊥} then we can
think of c as a constraint in h′ by the following. For all σ ∈ ΣV , let [σ]h′

be the ≡Ph′ -equivalence class for σ, and let [σ]h be the ≡Ph
-equivalence

class for σ, then
c([σ]P ′

h
) = c([σ]Ph

)

This means that we can use the logical operators on constraints c in
the history h and constraints c′ in the history h′, by first extending c
to a constraint in h′, and then performing the logical operation. Hence
update(e, p, i) can be implemented as usual, except that we may need
to dynamically extend some constraints in h to constraints in h′.

Complexity. The above paragraphs show that dynamic model-
checking for the quantified language is decidable in spite of the fact that
we allow quantification over infinite parameter sets. This is essentially
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due to the fact that in any history, only a finite portion of the parameters
can actually occur. However, we do have the following hardness result.

Proposition 5.1 (PSPACE Hardness). Even for single element mod-
els, the model-checking problem for the quantified policy language is
PSPACE hard.

Proof. Fix a parameterized event structure ES. A quantified model-
checking (QMC) instance (for ES) consists of a history h = x1 · · ·xn
and a closed formula ψ of the quantified language (over ES). Say that
a QMC instance (h, ψ) is in QMC if h |= ψ. A single element model is a
model, h ∈ C0

ρES
∗
, with h = x, where x ∈ C0

ρES.
The quantified boolean formula (QBF) problem is the problem of

deciding the truth of quantified formulas of the form

Q1x1Q2x2 · · ·Qnxn.φ(x1, . . . , xn)

where each Qi is a quantifier (∀ or ∃), and φ is a quantifier-free boolean
formula (i.e., a propositional formula) with fv(φ) ⊆ {x1, . . . , xn}. The
QBF problem is known to be PSPACE complete [31]. Given a QBF
f = Q1x1Q2x2 · · ·Qnxn.φ, construct an MC-instance as follows. Use a
parameterized event structure with a single event ? having two possible
parameters ⊥ and >. Let h = [? 7→ >] be a single element history.
Construct formula ψ as ψ ≡ Q1x1Q2x2 · · ·Qnxn.ψ

′, where x1, . . . , xn are
the variables of f , and ψ′ is φ with each variable xj replaced by ?(xj).
Then f is satisfiable if-and-only-if (h, |h|) |= ψ.

While the general problem is PSPACE hard, we are able to obtain
the following quantitative result which bounds the complexity of our al-
gorithm. Suppose we are to check a formula ψ′ ≡ Q1x1Q2x2 · · ·Qnxn.ψ,
where the Qi are quantifiers and xi variables. We can obtain a bound on
the running time of our proposed algorithm in terms of the number of
quantifiers n. This is of practical relevance since many useful policies have
few quantifiers. Clearly the complexity depends on the representation of
constraints c : ΣPh

V → {>,⊥}. One efficient representation of constraints
is using multiple-valued decision diagrams [15]. With this representation,
constraints c can be efficiently stored in space O((|Ph|+1)n) and the logi-
cal operations can all be computed in linear timeO((|Ph|+1)n). Further a
constraint in h can be extended to a constraint in h′ = update(h, e, p, i)
in linear time O((|Ph′|+ 1)n).
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Theorem 5.1 (Complexity Bound). Let formula ψ ≡ Q1x1Q2x2 · · ·Qnxn.ψ
′

where the Qi are quantifiers, xi variables all of type P , and ψ′ is a
quantifier-free formula from the quantified language with fv(ψ′) ⊆ {x1, . . . , xn}.
Let h ∈ C0

ρES
∗

and |Ph| be the number of parameter occurrences in his-
tory h. The constraint-based algorithm for dynamic model checking has
the following complexity.

• DMC .check() is O(1).

• DMC .new() is O(|ψ| · (|Ph|+ 1)n).

• DMC .update(e, p, i) when p ∈ Ph and K is the current number of
active configurations in h, is
O((K − i+ 1) · |ψ| · (|Ph|+ 1)n)

• DMC .update(e, p, i) when p 6∈ Ph and K is the current number of
active configurations in h, is
O((K − i+ 1) · |ψ| · (|Ph|+ 2)n)

Furthermore, if the configurations of ES are represented with event-set
bit-vectors, the space complexity of DS ′ isO(K · (|E|+ |ψ| · (|Ph|+ 1)n)).

5.2 References and Quantitative Properties

In this section, we briefly illustrate another way to extend the core policy-
language to a more practical one. As mentioned, we consider two aspects:
referencing and quantitative properties. For referencing we introduce a
construct p : ψ, where p is a principal-identity and ψ is a basic policy.
The construct is intended to mean that principal p’s observations (about
a subject) must satisfy past-time ψ. For quantitative properties, we
introduce a counting operator #, used e.g. in formula p : #ψ which
counts the number of p-observed sessions satisfying ψ (we use # to avoid
confusion with the conflict relation, often denoted by #).

To express referencing, we extend the basic syntax to include a new
syntactic category π (for policy). Let Prin be a collection of principal
identities.

π ::= p : ψ | π0 ∧ π1 | ¬π p ∈ Prin

The policy p : ψ means that the observations that p has made should
satisfy ψ. Note that in this extended language, models are no longer
local interaction histories, but, instead, global interaction histories, rep-
resented as a principal-indexed collection of local histories (i.e., functions
of type Prin → C∗ES).
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The quantitative extension is given by extending the category ψ. Let
(Rj)

∞
j=1 be a countable collection of k’ary relation-symbols for each k ∈ N,

representing computable relations JRjK ⊆ N
k.

ψ ::= . . . | Rj(#ψ1,#ψ2, . . . ,#ψk)

The denotation of the construct #ψ is the number of sessions in
the past which satisfy formula ψ, e.g., #negative counts the number
of states in the past satisfying negative. So the denotation of #ψ
is a number, and the semantics of Rj(#ψ1,#ψ2, . . . ,#ψk) is true iff
(n1, n2, . . . , nk) ∈ JRjK, where ni is the denotation of #ψi. Finally, we
extend also category π:

π ::= . . . | Rj(p1 : #ψ1, . . . , pk : #ψk) pi ∈ Prin

The construct Rj(p1 : #ψ1, . . . , pk : #ψk) means that, letting ni denote
the number of sessions observed by principal pi satisfying ψi, then the
relation JRjK on numbers must have (n1, . . . , nk) ∈ JRjK.

We do not provide a formal semantics as the meaning of our constructs
should be intuitively clear, and our purpose is simply to illustrate how
the core language can be extended to encompass more realistic policies.
To further illustrate the constructs, we consider a number of example
policies. In the following examples, p, p1, p2, . . . , pn ∈ Prin are principal
identities.

Example 5.2 (eBay revisited). Consider the eBay scenario again.
The policy of Example 3.1 could be extended with referencing, e.g. prin-
cipal p might use policy:

πbid
p ≡ p : G−1(negative→ ignore) ∧∧

q∈{p,p1,...,pn} q : ¬F−1(time-out)

Intuitively, this policy represents a requirement by principal p: “seller
has never provided negative feedback about me, regarding auctions where
I made payment, and, furthermore, seller has never cheated me or any
of my friends.”

Example 5.3 (P2P File-sharing). This example is inspired by the
example used in the license-based system of Shmatikov and Talcott [28].
Consider a scenario where a P2P file-servent has two resources, dl (down-
load), and ul (upload). Suppose this is modelled by an event structure with
two independent events dl and ul, so that in each session, a peer-client
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either uploads, downloads or both. We express a policy used by server p
for granting download, stating that “the number of uploads should be at
least a third of the number of downloads.”

πclient-dl
p ≡ p : (#dl ≤ 3 ·#ul)

This refers only to the local history with p. Supposing we instead want
to express a more “global” policy on the behaviour, stating that globally,
p has uploaded at least a third of its downloads (e.g. locally this may be
violated).

πclient-dl
p ≡ (p : #dl) + (

∑n
i=1 pi : #dl) ≤

3 · (p : #ul + (
∑n

i=1 pi : #ul))

Example 5.4 (“Probabilistic” policy). Consider an arbitrary event
structure ES = (E,≤,#). We express a policy ensuring that “statisti-
cally, event ev ∈ E occurs with frequency at least 75%.”

πprobab
p ≡ p :

#ev

#ev + #∼ev + 1
≥ 3

4

Here #∼ev counts the number of sessions in which ev has not occurred
and cannot occur in the future.

5.2.1 Implementation remarks.

Dynamic model checking for the extended policy language can done by
extending the array-based algorithm from the previous section. Note
that the value of #ψ can easily be defined in the style of the recursive
semantics. To handle the construct R(#ψ), one maintains a number of
integer variables which denote the values of sub-formula #ψ at each ac-
tive session. The integers are then updated using the recursive semantics
in a way similar to the array-updates in Section 4. We have the following
result, assuming that the relations can be evaluated in constant time,
and that numbers can be stored/manipulated in constant space/time.

Theorem 5.2. Let formula ψ be from the basic language extended
with the quantitative constructs. Let h ∈ C0

ES
∗

be a history. The dy-
namic model checking can be implemented with the following complexity.

• DMC .check() is O(1).
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• DMC .new() is O(|ψ|).
• DMC .update(e, i) is O((K − i + 1) · |ψ|) where K is the current

number of active configurations in h.

Note, that the automata-based algorithm does not easily extend: the
(semantics of the) extended language is no-longer regular, e.g. illustrated
by formula ψp ≡ p : (#dl ≤ #ul).

The construct p : ψ, where p is a principal identity, requires that
p’s interaction history (with the subject in question) satisfies ψ. This is
handled simply by “sending formula ψ” to p. Principal p maintains the
truth of ψ with respect to its interaction history using the algorithms of
last section, and sends the required value to the requesting principal when
needed.7 Another approach is for p to send its entire interaction history so
that the verification can be performed locally, e.g., as is done with method
exportEvents in the license-based framework of Shmatikov and Talcott
[28]. It does not make sense to consider the algorithmic complexity of
referencing. The message complexity of referencing, however, is linear in
the number of principals to be contacted (one query and one reply).

6 Conclusion

We have presented a mathematical framework for what we have named
‘concrete’ reputation-based trust-management-systems. Our approach
differs from most existing systems in that reputation information has an
exact semantics, and is represented in a very concrete form. In our view,
the novelty of our approach is that our instance systems can verifiably
provide a form of exact security guarantees, albeit non-standard, that re-
late a present authorization to a precise property of past behaviour. We
have presented a declarative language for specifying such security proper-
ties, and the applications of our technique extends beyond the traditional
domain of reputations systems in that we can explain, formally, existing
approaches to “history based” access control, e.g., Chinese Wall and poli-
cies for controlling mobile code.

7One might argue that this leads to problems of timing: at what point in time is
ψ then to be evaluated? But such timing-issues are inherent in distributed systems.
Formula p : ψ is a relative temporal specification that is interpreted by the sender
as referring to the current history of p, when p decides to evaluate it. The sender of
ψ thus knows that received valuation (true or false) reflects an evaluation of ψ with
respect to some recent view of p’s history.
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We have given two efficient algorithms for the dynamic model-checking
problem, supporting the feasibility of running implementations of our
framework on devices of limited computational and storage capacity; a
useful property in global computing environments. In particular, it is
noteworthy that principals need not store their entire interaction histo-
ries, but only the so-called active sessions.

The notion of time in our temporal logic is based on when sessions
are started. More precisely, our models are local interaction histories,
h = x1x2 · · ·xn where xi ∈ CES, and the order of the sessions reflects
the order in which the corresponding interaction-protocols are initiated,
i.e. xi refers to the observed events in the ith-initiated session. Different
notions of time could just as well be considered, e.g. if xi precedes xj
in sequence h, then it means that xj was updated more recently than
xi (our algorithms can be straightforwardly be adapted to this notion of
time).

Related Work. Many reputation-based systems have been pro-
posed in the literature (Jøsang et al. [14] provide many references), so we
choose to mention only a few typical examples and closely related sys-
tems. Kamvar et al. present EigenTrust [16], Shmatikov and Talcott pro-
pose a license-based framework [28], and the EU project ‘SECURE’ [4,5]
(which also uses event structures for modelling observations [18,22]) can
be viewed as a reputation-based system, to name a notable few.

The framework of Shmatikov and Talcott is the most closely related
in that they deploy also a very concrete representation of behavioural
information (“evidence” [28]). This representation is not as sophisticated
as in the event-structure framework (e.g., as histories are sets of time-
stamped events there is no concept of a session, i.e., a logically connected
set of events), and their notion of reputation is based on an entity’s past
ability to fulfill so-called licenses. A license is a contract between an
issuer and a licensee. Licenses are more general than interaction poli-
cies since they are mutual contracts between issuer and licensee, which
may permit the licensee to perform certain actions, but may also re-
quire that certain actions are performed. The framework does not have a
domain-specific language for specifying licenses (i.e. for specifying license-
methods permits and violated), and the use of reputation information
is not part of their formal framework (i.e. it is up to each application pro-
grammer to write method useOk for protecting a resource). We do not
see our framework as competing, but, rather, compatible with theirs. We
imagine using a policy language, like ours, as a domain-specific language
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for specifying licenses as well as use-policies. We believe that because of
the simplicity of our declarative policy language and its formal semantics,
this would facilitate verification and other reasoning about instances of
their framework.

Pucella and Weissman use a variant of pure-future linear temporal
logic for reasoning about licenses [24]. They are not interested in the
specific details of licenses, but merely require that licenses can be given a
trace-based semantics; in particular, their logic is illustrated for licenses
that are regular languages. As our basic policies can be seen (semanti-
cally) as regular languages (Theorem 4.2), and policies can be seen as a
type of license, one could imagine using their logic to reason about our
policies.

Roger and Goubault-Larreq [26] have used linear temporal logic and
associated model-checking algorithms for log auditing. The work is re-
lated although their application is quite different. While their logic is
first-order in the sense of having variables, they have no explicit quantifi-
cation. Our quantified language differs (besides being pure-past instead
of pure-future) in that we allow explicit quantification (over different pa-
rameter types) ∀x : Pi.ψ and ∃x : Pi.ψ, while their language is implicitly
universally quantified.

The notion of security automata, introduced by Schneider [27], is
related to our policy language. A security automaton runs in parallel with
a program, monitoring its execution with respect to a security policy. If
the automata detects that the program is about to violate the policy,
it terminates the program. A policy is given in terms of an automata,
and a (non-declarative) domain-specific language for defining security
automata (SAL) is supported but has been found awkward for policy
specification [9]. One can view the finite automaton in our automata-
based algorithm as a kind of security automaton, declaratively specified
by a temporal-logic formula.

Security automata are also related, in a technical sense [10], to the
notion of history-based access control (HBAC). HBAC has been the sub-
ject of a considerable amount of research (e.g., papers [1,8,10,11,27,30]).
There is a distinction between dynamic HBAC in which programs are
monitored as they execute, and terminated if about to violate policy
[8, 10, 11, 27]; and static HBAC in which some preliminary static analy-
sis of the program (written in a predetermined language) extracts a safe
approximation of the programs’ runtime behaviour, and then (statically)
checks that this approximation will always conform to policy (using, e.g.,
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type systems or model checking) [1, 30]. Clearly, our approach has ap-
plications to dynamic HBAC. It is noteworthy to mention that many
ad-hoc optimizations in dynamic HBAC (e.g., history summaries relative
to a policy in the system of Edjlali [8]) are captured in a general and
optimal way by using the automata-based algorithm, and exploiting the
finite-automata minimization-theorem. Thus in the automata based al-
gorithm, one gets “for free,” optimizations that would otherwise have to
be discovered manually.

Future Work. For simplicity we have considered a simple first order
temporal logic without function or relation symbols. Supposing we have
(interpreted) relation symbols, then the “real” Chinese Wall policy could
be encoded as

ψChinese ≡ ∀x : O∃c : C∃d : D.L(x, c, d) ∧ (F−1d ∨ G−1¬c)

Where L is a relation symbol representing function L : O → C ×D, i.e.,
L(o, c, d) holds iff L(o) = (c, d). In order to check quantified formulas
we are then likely to have to impose restrictions on the relations. We
suspect that formulas ψ with relation symbols have to satisfy the follow-
ing property: ψ(x) is either true for all but finitely many elements x, or
false for all but finitely many elements x. Note this this property holds
when the only “relation” symbols are events. We plan to formalize this
extension in future work.

The PSPACE-hardness of the quantified model-checking problem seems
discouraging at first sight. However, the complexity bound in Theorem
5.1 leaves room for some optimism. It seems that, as long as policies
do not have “too many” quantifiers, the problem is still tractable. Fur-
ther, the bound in Theorem 5.1 is “worst-case”. As is well-known, binary
decision diagrams have previously been used with considerable success
in dealing with problems of exponential worst-case complexity. Future
work includes experimenting with implementations to explore how well
the algorithm performs in “average” case.

Finally, we are planning on implementing the algorithms described in
this paper, in an experimental policy-tool. We conjecture that using the
automata-based algorithm for the basic language will work very well in
practice, in spite of the worst-case exponential-space requirement. The
main reason for our conjecture is automata minimization. For example,
it is not hard to see that many of the example policies in this paper
have very small minimal automata. A concrete implementation would be
helpful to test the hypothesis further. The MONA tool [17, 21]contains
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an advanced package for finite automata, which may prove itself useful
in this respect.

A Implementation-fragment of

the Array-based Algorithm

This appendix provides a fragment of a Java implementation of the array-
based data-structure, DS, implementing interface DMC. We provide an
implementation of two Java classes: ArrayBasedDMC and RecSem. The
ArrayBasedDMC class implements the data structure described in Sec-
tion 4.1, and uses RecSem which implements the recursive semantics.
These classes are probably unintelligible for someone who has not read
Section 4; the idea being to supplement the curious reader interested in
more specific implementation-details.

Caveat. Our two implemented Java classes require additional imple-
mentations of the following classes: Formula, EventFormula, PossibleFormula,
Conjunction, Negation, LastTime and Since, representing an implemen-
tation of the abstract syntax of interaction policies (c.f. Section 3). These
classes should constitute a class-hierarchy, where class Formula is an ab-
stract super-class of the others. Furthermore, implementations of classes
Event,EventStructure,Configurations and Configuration, with the obvi-
ous meaning, is needed. The two classes ArrayBasedDMC and RecSem
have been compiled in an environment providing interfaces for the above
classes, but no actual implementation has been tested.

Recursive Semantics

public class RecSem {
/* Method baseCase implements the base case of the

recursive semantics. The last parameter (cur) is a
target array that will be filled according to the
semantics.
The base-case semantics takes a configuration x
and a formula p, and outputs for each subformula
f i of p whether or not x |= f i
(this value is stored in cur[i], where i is the
index for subformula f i). 10

More elegant software engineering would be to use
the Visitor design-pattern to implement the
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recursive semantics, thus avoiding the clumsy
’instanceof’.

*/
public static void baseCase(Configuration x,Formula p,

boolean[ ] cur) {
int i = p.getEnumerationSize()−1;
Formula f i;
while (i >= 0) { 20

f i = p.getFormulaByIndex(i);
if (f i instanceof LastTime) {//f i = X^{-1}(f)

cur[i] = false;
} else if (f i instanceof Since) {

Since s = ((Since) f i);
Formula f2 = s.getSecond();

//f i = Since f2
cur[i] = cur[p.getIndexOf(f2)];

} else //Case: Event, Possible,
// Negation, Conjunction 30

cur[i] = commonSemantics(x,f i,cur,p);
i−−;

}
}
/* Similarly to method baseCase, this method

implements the inductive case of the recursive
semantics.
Again, the last parameter is a target array that will
be filled according to the recursive semantics.

*/ 40

public static void inductiveCase(boolean[ ] last,
Configuration x,
Formula p,
boolean[ ] cur) {

int i = p.getEnumerationSize()−1;
Formula f i;
while (i >= 0) {

f i = p.getFormulaByIndex(i);
if (f i instanceof LastTime) {

//f i = X^{-1}(f) 50

Formula f = ((LastTime) f i).getInner();
cur[i] = last[p.getIndexOf(f)];

} else if (f i instanceof Since) {
Since s = ((Since) f i);
Formula f1 = s.getFirst();
Formula f2 = s.getSecond();

//f i = f1 Since f2
cur[i] = cur[p.getIndexOf(f2)] | |

(last[i] && cur[p.getIndexOf(f1)]);
} else //Case: Event, Possible . . . 60
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cur[i] = commonSemantics(x,f i,cur,p);
i−−;

}
}
/* Returns the semantics of x |= f i (a boolean)

in the cases which are common of both the baseCase
and the inductiveCase semantics (in order to avoid
code dublication).
Precondition: ! (f i instanceof LastTime | |

f i instanceof Since) 70

*/
private static boolean commonSemantics(Configuration x,

Formula f i, boolean[ ] cur,Formula p) {
if (f i instanceof EventFormula) {

Event e = ((EventFormula) f i).getEvent();
return x.contains(e);

} else if (f i instanceof Possible) {
Event e = ((Possible) f i).getEvent();
return x.isPossible(e);

} else if (f i instanceof Conjunction) { 80

Conjunction c = ((Conjunction) f i);
Formula f1 = c.getFirst();
Formula f2 = c.getSecond();
return cur[p.getIndexOf(f1)]

&& cur[p.getIndexOf(f2)];
} else if (f i instanceof Negation) {

Formula f = ((Negation) f i).getInner();
return ! cur[p.getIndexOf(f)];

} else
throw new RuntimeException("Formula not in " 90

+ "basic language: "
+ f i.toString());

}
}

DMC Interface

public interface DMC {
public boolean check();
public void New();
public void update(Event e,int i);

}
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Array-Based DMC

import java.util.Vector;
public class ArrayBasedDMC implements DMC {

private EventStructure es;
private Formula p; // interaction policy
private int policySize; // |Sub(p)|

private Vector history h; //DS.h
private Vector arrays B; //DS.B
private boolean[ ] B0; //DS.B0 - summarising array

10

private boolean empty longest prefix = true;
//needed to deal with special-case of an empty
//maximal prefix in the actual interaction history

public ArrayBasedDMC(EventStructure es,Formula p) {
p.enumerateSubformulas();
policySize = p.getEnumerationSize();
this.es = es;
history h = new Vector();
arrays B = new Vector(); 20

//initialise B0 to contain values of Ø |= f i
//where f i are the subformulas of p
B0 = new boolean[policySize];
RecSem.baseCase(es.configurations().getEmpty(),p,B0);

}

public boolean check() {
if (arrays B.isEmpty()) return B0[0];
return ((boolean[ ]) arrays B.lastElement())[0]; 30

}

public void New() {
Configuration empty = es.configurations().getEmpty();
boolean[ ] B new = new boolean[policySize];
if (!arrays B.isEmpty()) {

boolean[ ] B last = (boolean[ ])
arrays B.lastElement();

RecSem.inductiveCase(B last,empty,p,B new);
} else if (!empty longest prefix) { 40

RecSem.inductiveCase(B0,empty,p,B new);
} else {

//special case: arrays B.isEmpty() && empty longest prefix
//(can only occur once: at beginning of first session)
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B new = B0;//equivalent to RecSem.baseCase(empty,p,B new)
B0 = null;//not needed until empty longest prefix == false

}
history h.add(empty);
arrays B.add(B new);

} 50

/* Precondition: 1 <= i <= history get.size() and
not ((Configuration) history h.get(i-1)).inConflict(e)

*/
public void update(Event e,int i) {

int vector index = i − 1;
Configuration x = (Configuration)

history h.get(vector index);
x.addEvent(e);
boolean[ ] curB = (boolean[ ])

arrays B.get(vector index); 60

if (vector index == 0) {
if (empty longest prefix) {

RecSem.baseCase(x,p,curB);
} else {//non-empty maximal prefix

RecSem.inductiveCase(B0,x,p,curB);
}

} else {//vector index > 0
RecSem.inductiveCase((boolean[ ])

arrays B.get(vector index−1),
x,p,curB); 70

}
while (++vector index < history h.size()) {

boolean[ ] lastB = curB;
x = (Configuration) history h.get(vector index);
curB = (boolean[ ]) arrays B.get(vector index);
RecSem.inductiveCase(lastB,x,p,curB);

}
if (i == 1 && es.isMaximal(x))

B0 = longestPrefixCleanup();
} 80

/* Deallocates unneeded arrays and configurations.
Returns the new summarising array

*/
//Precondition: called only after a call, update(e,1), where
// es.isMaximal(history h.get(0)) == true
private boolean[ ] longestPrefixCleanup() {

empty longest prefix = false;
//now non-empty maximal prefix exists.

history h.removeElementAt(0); 90

boolean[ ] summary =
(boolean[ ]) arrays B.remove(0);
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while (history h.size() > 0 &&
es.isMaximal((Configuration)

history h.firstElement())) {
history h.removeElementAt(0);
summary = (boolean[ ]) arrays B.remove(0);

}
return summary;

} 100

}
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