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Cryptography In the

Bounded Quantum-Storage Model∗

Ivan B. Damg̊ard†‡ Serge Fehr§ Louis Salvail†‡¶

Christian Schaffner†‖

July 2005

Abstract

We initiate the study of two-party cryptographic primitives with uncondi-
tional security, assuming that the adversary’s quantum memory is of bounded
size. We show that oblivious transfer and bit commitment can be implemented
in this model using protocols where honest parties need no quantum memory,
whereas an adversarial player needs quantum memory of size at least n/2 in
order to break the protocol, where n is the number of qubits transmitted. This
is in sharp contrast to the classical bounded-memory model, where we can only
tolerate adversaries with memory of size quadratic in honest players’ memory
size. Our protocols are efficient, non-interactive and can be implemented using
today’s technology. On the technical side, a new entropic uncertainty relation
involving min-entropy is established.

1 Introduction

It is well known that non-trivial 2-party cryptographic primitives cannot be securely
implemented if only error-free communication is available and there is no limitation
assumed on the computing power and memory of the players. Fundamental examples
of such primitives are bit commitment (BC) and oblivious transfer (OT). In BC, a
committer C commits himself to a choice of a bit b by exchanging information with
a verifier V. We want that V does not learn b (we say the commitment is hiding),
yet C can later chose to reveal b in a convincing way, i.e., only the value fixed at
commitment time will be accepted by V (we say the commitment is binding). In
(Rabin) OT, a sender S sends a bit b to a receiver R by executing some protocol in
such a way that R receives b with probability 1

2 and nothing with probability 1
2 , yet

S does not learn what was received.
∗This is the full version of a paper published at FOCS 2005 [7].
†Basic Research in Computer Science (BRICS), funded by the Danish National Research Foun-
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Informally, BC is not possible with unconditional security since hiding means that
when 0 is committed, exactly the same information exchange could have happened
when committing to a 1. Hence, even if 0 was actually committed to, C could always
compute a complete view of the protocol consistent with having committed to 1, and
pretend that this was what he had in mind originally. A similar type of argument
shows that OT is also impossible in this setting.

One might hope that allowing the protocol to make use of quantum communication
would make a difference. Here, information is stored in qubits, i.e., in the state of two-
level quantum mechanical systems, such as the polarization state of a single photon.
It is well known that quantum information behaves in a way that is fundamentally
different from classical information, enabling, for instance, unconditionally secure key
exchange between two honest players. However, in the case of two mutually distrusting
parties, we are not so fortunate: even with quantum communication, unconditionally
secure BC and OT remain impossible [15, 17].

There are, however, several scenarios where these impossibility results do not
apply, namely:

• if the computing power of players is bounded,

• if the communication is noisy,

• if the adversary is under some physical limitation, e.g., the size of the available
memory is bounded.

The first scenario is the basis of many well known solutions based on plausible
but unproven complexity assumptions, such as hardness of factoring or discrete log-
arithms. The second scenario has been used to construct both BC and OT protocols
in various models for the noise [5, 6, 9]. The third scenario is our focus here. In this
model, OT and BC can be done using classical communication assuming, however,
quite restrictive bounds on the adversary’s memory size [2, 10], namely it can be at
most quadratic in the memory size of honest players. Such an assumption is on the
edge of being realistic, it would clearly be more satisfactory to have a larger separa-
tion between the memory size of honest players and that of the adversary. However,
this was shown to be impossible [13].

In this paper, we study for the first time what happens if instead we consider
protocols where quantum communication is used and we place a bound on the ad-
versary’s quantum memory size. There are two reasons why this may be a good idea:
first, if we do not bound the classical memory size, we avoid the impossibility result
of [13]. Second, the adversary’s goal typically is to obtain a certain piece of classi-
cal information, however, converting quantum information to classical by measuring
may irreversibly destroy information, and we may be able to arrange it such that the
adversary cannot afford to loose information this way, while honest players can.

It turns out that this is indeed possible: we present protocols for both BC and OT
in which n qubits are transmitted, where honest players need no quantum memory,
but where the adversary must store at least n/2 qubits to break the protocol. We
emphasize that no bounds are assumed on the adversary’s computing power, nor on
his classical memory. This is clearly much more promising than the classical case,
not only from a theoretical point of view, but also in practice: while sending qubits
and measuring them immediately as they arrive is well within reach of current tech-
nology, storing even a single qubit for more than fraction of a second is a formidable
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technological challenge. Furthermore, we show that our protocols also work in a non-
ideal setting where we allow the quantum source to be imperfect and the quantum
communication to be noisy.

Our protocols are non-interactive, only one party sends information when doing
OT, commitment or opening. Furthermore, the commitment protocol has the inter-
esting property that the only message is sent to the committer, i.e., it is possible
to commit while only receiving information. Such a scheme clearly does not exist
without a bound on the committer’s memory, even under computational assumptions
and using quantum communication: a corrupt committer could always store (possi-
bly quantumly) all the information sent, until opening time, and only then follow the
honest committer’s algorithm to figure out what should be sent to convincingly open
a 0 or a 1. Note that in the classical bounded-storage model, it is known how to do
time-stamping that is non-interactive in our sense: a player can time-stamp a docu-
ment while only receiving information [18]. However, no reasonable BC or protocol
that time-stamps a bit exist in this model. It is straightforward to see that any such
protocol can be broken by an adversary with classical memory of size twice that of
an honest player, while our protocol requires no memory for the honest players and
remains secure against any adversary not able to store more than half the size of the
quantum transmission.

We also note that it has been shown earlier that BC is possible using quantum
communication, assuming a different type of physical limitation, namely a bound on
the size of coherent measurement that can be implemented [20]. This limitation is
incomparable to ours: it does not limit the total size of the memory, instead it limits
the number of bits that can be simultaneously operated on to produce a classical
result. Our adversary has a limit on the total memory size, but can measure all
of it coherently. The protocol from [20] is interactive, and requires a bound on the
maximal measurement size that is sublinear in n.

On the technical side, we use the quantum privacy amplification result by Renner
and König [19] together with a proof technique by Shor and Preskill [21] where we
purify the actions of honest players. This makes no difference from the adversary’s
point of view, but makes proofs go through more easily. We combine this with a
new technical result that may be seen as a new type of uncertainty relation involving
min-entropy (Theorem 3.7 and Corollary 3.8).

2 Preliminaries

2.1 Notation and Quantum Stuff

For a set I = {i1, i2, . . . , i`} ⊆ {1, . . . , n} and a n-bit string x ∈ {0, 1}n, we define
x|I := xi1xi2 · · ·xi`

. For x ∈ {0, 1}n, we write Bδn(x) for the set of all n-bit strings at
Hamming distance at most δn from x. Note that the number of elements in Bδn(x)
is the same for all x, we denote it by Bδn := |Bδn(x)|. For x, y ∈ {0, 1}n, x ·y ∈ {0, 1}
denotes the (standard) in-product of x and y. For a probability distribution Q over
n-bit strings and a set L ⊆ {0, 1}n, we abbreviate the (overall) probability of L with
Q(L) :=

∑
x∈LQ(x). All logarithms in this paper are to base two. We denote by h(p)

the binary entropy function h(p) := −(
p · log p+ (1 − p) · log (1 − p)

)
. We denote by

negl(n) any function of n smaller than any polynomial provided n is sufficiently large.
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The pair {|0〉, |1〉} denotes the computational or rectilinear or “+” basis for the
2-dimensional complex Hilbert space C2. The diagonal or “×” basis is defined as
{|0〉×, |1〉×} where |0〉× = 1√

2
(|0〉+|1〉) and |1〉× = 1√

2
(|0〉−|1〉). Measuring a qubit in

the + -basis (resp. ×-basis) means applying the measurement described by projectors
|0〉〈0| and |1〉〈1| (resp. projectors |0〉×〈0|× and |1〉×〈1|×). When the context requires
it, we write |0〉+ and |1〉+ instead of |0〉 respectively |1〉; and for any x ∈ {0, 1}n

and r ∈ {+,×}, we write |x〉r =
⊗n

i=1 |xi〉r. If we want to choose the + or ×-basis
according to the bit b ∈ {0, 1}, we write {+,×}[b].

2.2 Quantum Probability Theory

As basis for the security definitions and proofs of our protocols, we are using the
formalism introduced in [19], which we briefly summarize here. A random state ρ is a
random variable, with distribution Pρ, whose range is the set of density operators of
a fixed Hilbert space. The view of an observer (which is ignorant of the value of ρ) is
given by the quantum system described by the density operator [ρ] :=

∑
ρ Pρ(ρ)ρ. In

general, for any event E , we define [ρ|E ] :=
∑

ρ Pρ|E(ρ)ρ. If ρ is dependent on some
classical random variable X , with joint distribution PXρ, we also write ρx instead
of [ρ|X = x]. Note that ρx is a density operator (for any fixed x) whereas ρX is
again a random state. The overall quantum system is then given by [{X} ⊗ ρ] =∑

x PX(x) {x} ⊗ ρx, where {x} := |x〉〈x| is the state representation of x and {X} the
corresponding random state. Obviously, [{X} ⊗ ρ] = [{X}] ⊗ [ρ] if and only if ρX

is independent of X , where the latter in particular implies that no information on X
can be learned by observing only ρ. Furthermore, if [{X} ⊗ ρ] and [{X}]⊗ [ρ] are
ε-close in terms of their trace distance δ(ρ, σ) = 1

2 tr(|ρ − σ|), then the real system
[{X} ⊗ ρ] “behaves” as the ideal system [{X}] ⊗ [ρ] except with probability ε [19]
in that for any evolution of the system no observer can distinguish the real from the
ideal one with advantage greater than ε/2 (or ε, depending on the exact definition of
advantage). By slight abuse of notation, we usually simply write X instead of {X}.
Henceforth, we use unif to denote a random variable with range {0, 1}, uniformly
distributed and independent of anything else.

When reviewing the privacy amplification theorem from [19], we briefly address the
generalization of the classical Rényi entropy Hα(X) of order α of a random variable
X to the Rényi entropy Sα(ρ) of order α of a density operator ρ. Otherwise, though,
we are only using the classical Rényi entropy of order ∞, commonly known as the
min-entropy H∞(X) = − logmaxx PX(x).

2.3 Privacy Amplification

In this paper, we only use privacy amplification with one-bit output. A class Hn

of hashing functions from {0, 1}n to {0, 1} is called two-universal if for any pair
x, y ∈ {0, 1}n with x 6= y

∣∣{f ∈ Hn : f(x) = f(y)}∣∣ ≤ |Hn|
2
.

Several two-universal classes of hashing functions are such that evaluating and picking
a function uniformly and at random in Hn can be done efficiently [3, 22].
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Theorem 2.1 ([19]). Let X be distributed over {0, 1}n, and let ρ be a random state
of q qubits1. Let F be the random variable corresponding to the random choice (with
uniform distribution and independent from X and ρ) of a member of a two-universal
class of hashing functions Hn. Then

δ([F (X)⊗ F ⊗ ρ], [unif]⊗ [F ⊗ ρ]) ≤ 1
2
2−

1
2 (S2([{X}⊗ρ])−S0([ρ])−1)

≤ 1
2
2−

1
2 (H∞(X)−q−1). (1)

The first inequality is the original theorem from [19], and (1) follows by observing that
S2([{X} ⊗ ρ]) ≥ H2(X) ≥ H∞(X). In this paper, we only use this weaker version of
the theorem.

Note that if the rightmost term of (1) is negligible, i.e. say smaller than 2−εn, then
this situation is 2−εn-close to the ideal situation where F (X) is perfectly uniform and
independent of ρ and F . In particular, the situations F (X) = 0 and F (X) = 1 are
statistically indistinguishable given ρ and F [14].

The following lemma is a direct consequence of Theorem 2.1. In Section 4, this
lemma will be useful for proving the binding condition of our commitment scheme.
Recall that for X ∈ {0, 1}n, Bδn(X) denotes the set of all n-bit strings at Hamming
distance at most δn from X and Bδn := |Bδn(X)| is the number of such strings.

Lemma 2.2. Let X be distributed over {0, 1}n, let ρ be a random state of q qubits
and let X̂ be a guess for X given ρ. Then, for all δ < 1

2 it holds that

Pr
[
X̂ ∈ Bδn(X)

] ≤ 2−
1
2 (H∞(X)−q−1)+log(Bδn).

In other words, given a quantum memory of q qubits arbitrarily correlated with a
classical random variable X , the probability to find X̂ at Hamming distance at most
δn from X where nh(δ) < 1

2 (H∞(X)− q) is negligible.

Proof: Here is a strategy to try to bias F (X) when given X̂ and F ∈R Hn: Sample
X ′ ∈R Bδn(X̂) and output F (X ′). Note that, using psucc as a short hand for the
probability Pr

[
X̂ ∈ Bδn(X)

]
to be bounded,

Pr
[
F (X ′) = F (X)

]
=
psucc

Bδn
+

(
1− psucc

Bδn

)
1
2

=
1
2

+
psucc

2 · Bδn
,

where the first equality follows from the fact that if X ′ 6= X then, as Hn is two-
universal, Pr [F (X) = F (X ′)] = 1

2 . Since the probability of correctly guessing a binary
F (X) given F and ρ is always upper bounded by 1

2 +δ([F (X)⊗F⊗ρ], [unif]⊗[F⊗ρ]),
in combination with Theorem 2.1 the above results in

1
2

+
psucc

2 ·Bδn
≤ 1

2
+

1
2
2−

1
2 (H∞(X)−q−1)

and the claim follows immediately. �
1Remember that ρ can be correlated with X in an arbitrary way. In particular, we can think of

ρ as an attempt to store the n-bit string X in q qubits.
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3 Rabin Oblivious Transfer

3.1 The Definition

A protocol for Rabin Oblivious Transfer (ROT) between sender Alice and receiver Bob
allows for Alice to send a bit b through an erasure channel to Bob. Each transmission
delivers b or an erasure with probability 1

2 . Intuitively, a protocol for ROT is secure
if

• sender Alice gets no information on whether b was received or not, no matter
what she does, and

• receiver Bob gets no information about b with probability at least 1
2 , no matter

what he does.

In this paper, we are considering quantum protocols for ROT. This means that while
in- and outputs of the honest senders are classical, described by random variables,
the protocol may contain quantum computation and quantum communication, and
the view of a dishonest player is quantum, and is thus described by a random state.

Any such (two-party) protocol is specified by a family {(Sn,Rn)}n>0 of pairs of
interactive quantum circuits (i.e. interacting through a quantum channel). Each pair
is indexed by a security parameter n > 0, where Sn and Rn denote the circuits for
sender Alice and receiver Bob, respectively. In order to simplify the notation, we
often omit the index n, leaving the dependency on it implicit.

For the formal definition of the security requirements of a ROT protocol, let us
fix the following notation. Let B denote the binary random variable describing S’s
input bit b, and let A and B′ denote the binary random variables describing R’s
two output bits, where the meaning is that A indicates whether the bit was received
or not. Furthermore, for a dishonest sender S̃ (respecively R̃) let ρS̃ (ρR̃) denote the
random state describing S̃’s (R̃’s) view of the protocol. Note that for a fixed candidate
protocol for ROT, and for a fixed input distribution PB, depending on whether we
consider two honest S and R, a dishonest S̃ and an honest R, or an honest S and a
dishonest R̃, the corresponding joint distribution PBAB′ , PρS̃AB′ respectively PBρR̃

is
uniquely determined.

Definition 3.1. A two-party (quantum) protocol (S,R) is a (statistically) secure
ROT if the following holds.

Correctness: For honest S and R

Pr [B = B′|A = 1] ≥ 1− negl(n) .

Privacy: For any S̃
δ([A⊗ ρS̃], [unif]⊗ [ρS̃]) ≤ negl(n) .

Obliviousness: For any R̃ there exists an event E with P [E ] ≥ 1
2 −negl(n) such that

δ([B ⊗ ρR̃|E ], [B]⊗ [ρR̃|E ]) ≤ negl(n) .
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If any of the above trace distances equals 0, then the corresponding property is said
to hold perfectly. If one of the properties only holds with respect to a restricted
class S of S̃’s respectively R of R̃’s, then this property is said to hold and the protocol
is said to be secure against S respectively R.

Privacy requires that the joint quantum state is essentially the same as when
A is uniformly distributed and independent of the senders’s view, and obliviousness
requires that there exists some event which occurs with probability at least 1

2 (the
event that the receiver does not receive the bit) and under which the joint quantum
state is essentially the same as when B is distributed (according to PB) independently
of the receiver’s view.

3.2 The Protocol

We introduce a quantum protocol for ROT that will be shown perfectly private
(against any sender) and statistically oblivious against any quantum memory-bounded
receiver.

The protocol is very simple (see Figure 1): S picks x ∈R {0, 1}n and sends to R n
qubits in state either |x〉+ or |x〉× each chosen with probability 1

2 . R then measures
all received qubits either in the rectilinear or in the diagonal basis. With probability
1
2 , R picked the right basis and gets x, while any R̃ that is forced to measure part of
the state (due to a memory bound) can only have full information on x in case the
+-basis was used or in case the ×-basis was used (but not in both cases). Privacy
amplification using any two-universal class of hashing functions Hn allows to obtain
a proper ROT. (In order to avoid aborting, we specify that if a dishonest S̃ refuses to
participate, or sends data in incorrect format, then R samples its output bits a and
b′ both at random in {0, 1}.)

qot(b):

1. S picks x ∈R {0, 1}n, and r ∈R {+,×}.
2. S sends |ψ〉 := |x〉r in basis r to R.

3. R picks r′ ∈R {+,×} and measures all qubits of |ψ〉 in basis r′. Let
x′ ∈ {0, 1}n be the result.

4. S announces r, f ∈R Hn, and s := b⊕ f(x).

5. R outputs a := 1 and b′ := s⊕ f(x′) if r′ = r and else a := 0 and b′ := 0.

Figure 1. Protocol for Rabin QOT

As we shall see in Section 3.5, the security of the qot protocol against receivers
with bounded-size quantum memory holds as long as the bound applies before Step 4
is reached. An equivalent protocol is obtained by purifying the sender’s actions.
Although qot is easy to implement, the purified or EPR-based version depicted in
Figure 2 is easier to prove secure. A similar approach was taken in the Shor-Preskill
proof of security for the BB84 quantum key distribution scheme [21].
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epr-qot(b):

1. S prepares n EPR pairs each in state |Ω〉 = 1√
2
(|00〉+ |11〉).

2. S sends one half of each pair to R and keeps the other halves.

3. R picks r′ ∈R {+,×} and measures all received qubits in basis r′. Let
x′ ∈ {0, 1}n be the result.

4. S picks r ∈R {+,×}, and measures all kept qubits in basis r. Let x ∈
{0, 1}n be the outcome. S announces r, f ∈R Hn, and s := b⊕ f(x).

5. R outputs a := 1 and b′ := s⊕ f(x′) if r′ = r and else a := 0 and b′ := 0.

Figure 2. Protocol for EPR-based Rabin QOT

Notice that while qot requires no quantum memory for honest players, quantum
memory for S seems to be required in epr-qot. The following Lemma shows the
strict equivalence between qot and epr-qot.

Lemma 3.2. qot is secure if and only if epr-qot is secure.

The proof follows easily after observing that S’s choices of r and f , together with the
measurements all commute with R’s actions. Therefore, they can be performed right
after Step 1 with no change for R’s view. Modifying epr-qot that way results in
qot.

Lemma 3.3. epr-qot is perfectly private.

Proof: It is straightforward to verify that no information about whether R has re-
ceived the bit is leaked to any sender S̃, since R does not send anything, i.e. epr-qot

is non-interactive! �

3.3 Modeling Dishonest Receivers

We model dishonest receivers in epr-qot under the assumption that the maximum
size of their quantum storage is bounded. These adversaries are only required to
have bounded quantum storage when they reach Step 4 in epr-qot. Before that,
the adversary can store and carry out quantum computations involving any number
of qubits. Apart from the restriction on the size of the quantum memory available
to the adversary, no other assumption is made. In particular, the adversary is not
assumed to be computationally bounded and the size of its classical memory is not
restricted.

Definition 3.4. The set Rγ denotes all possible quantum dishonest receivers {R̃n}n>0

in qot or epr-qot where for each n > 0, R̃n has quantum memory of size at most
γn when Step 4 is reached.

In general, the adversary R̃ is allowed to perform any quantum computation com-
pressing the n qubits received from S into a quantum register M of size at most γn
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when Step 4 is reached. More precisely, the compression function is implemented by
some unitary transform C acting upon the quantum state received and an ancilla of
arbitrary size. The compression is performed by a measurement that we assume in the
computational basis without loss of generality. Before starting Step 4, the adversary
first applies a unitary transform C:

2−n/2
∑

x∈{0,1}n

|x〉 ⊗ C|x〉|0〉 7→ 2−n/2
∑

x∈{0,1}n

|x〉 ⊗
∑

y

αx,y|ϕx,y〉M |y〉Y ,

where for all x,
∑

y |αx,y|2 = 1. Then, a measurement in the computational basis is
applied to register Y providing classical outcome y. The result is a quantum state
in register M of size γn qubits. Ignoring the value of y to ease the notation, the
re-normalized state of the system is now in its most general form when Step 4 is
reached:

|ψ〉 =
∑

x∈{0,1}n

αx|x〉 ⊗ |ϕx〉M ,

where
∑

x |αx|2 = 1.

3.4 Uncertainty Relation

We first prove a general uncertainty result and derive from that a corollary that plays
the crucial role in the security proof of epr-qot. The uncertainty result concerns the
situation where the sender holds an arbitrary quantum register of n qubits. He may
measure them in either the +- or the ×-basis. We are interested in the distribution
of both these measurement results, and we want to claim that they cannot both be
“very far from uniform”. One way to express this is to say that a distribution is very
non-uniform if one can identify a subset of outcomes that has much higher probability
than for a uniform choice. Intuitively, the theorem below says that such sets cannot
be found for both of the sender’s measurements.

Theorem 3.5. Let the density matrix ρA describe the state of a n-qubit register A.
Let Q+(·) and Q×(·) be the respective distributions of the outcome when register A is
measured in the +-basis respectively the ×-basis. Then, for any two sets L+ ⊂ {0, 1}n

and L× ⊂ {0, 1}n it holds that

Q+(L+) +Q×(L×) ≤
(
1 +

√
2−n|L+||L×|

)2

.

Proof: We can purify register A by adding a register B, such that the state of the
composite system is pure. It can then be written as |ψ〉AB =

∑
x∈{0,1}n αx|x〉A|ϕx〉B

for some complex amplitudes αx and normalised state vectors |ϕx〉.
Clearly, Q+(x) = |αx|2. To give a more explicit form of the distribution Q×, we

apply the Hadamard transformation to register A:

(H⊗n ⊗ 1
B)|ψ〉 =

∑
z∈{0,1}n

|z〉 ⊗
∑

x∈{0,1}n

2−
n
2 (−1)x·zαx|ϕx〉

and obtain

Q×(z) =

∣∣∣∣∣
∑

x∈{0,1}n

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

.
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Let L
+

denote the complement of L+ and p its probability Q+(L
+
). We can now

split the sum in Q×(z) in the following way:

Q×(z) =

∣∣∣∣∣
∑

x∈{0,1}n

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

=

∣∣∣∣∣√p
∑

x∈L
+

2−
n
2 (−1)x·z αx√

p
|ϕx〉+

∑
x∈L+

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

=

∣∣∣∣∣√p · ζz|υz〉+
∑

x∈L+

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣
2

where |υz〉 is defined as follows: For the normalised state |υ〉 :=
∑

x∈L
+

αx√
p |x〉|ϕx〉,

ζz|υz〉 is the z-component of the state H⊗n|υ〉 =
∑

z ζz|z〉 ⊗ |υz〉. It therefore holds
that

∑
z |ζz |2 = 1.

To upperbound the amplitudes provided by the sum over L+, we notice that the
amplitude is maximized when all unit vectors |ϕx〉 point in the same direction and
when (−1)x·zαx = |αx|. More formally,∣∣∣∣∣

∑
x∈L+

2−
n
2 (−1)x·zαx|ϕx〉

∣∣∣∣∣ ≤ 2−
n
2

∑
x∈L+

|αx|

≤ 2−
n
2

√∣∣L+
∣∣√ ∑

x∈L+

|αx|2 (2)

≤ 2−
n
2

√∣∣L+
∣∣,

where (2) is obtained from the Cauchy-Schwarz inequality. Using `+ and `× as short-
hands for

∣∣L+
∣∣ respectively

∣∣L×∣∣, we conclude that

Q×(L×) =
∑

z∈L×
Q×(z)

≤
∑

z∈L×

(
|√p · ζz |υz〉|+ 2−

n
2
√
`+

)2

≤ p
∑

z∈L×
|ζz |2 + 2 · 2−n

2
√
`+

∑
z∈L×

|ζz|+ `× · 2−n`+

≤ p+ 2 · 2−n
2
√
`+

√
`×

∑
z∈L×

|ζz |2 + 2−n`+`× (3)

≤ p+ 2
√

2−n`+`× + 2−n`+`×

= 1−Q+(L+) + 2
√

2−n`+`× + 2−n`+`×. (4)

Inequality (3) follows again from Cauchy-Schwarz while in (4), we use the definition
of p. The claim of the proposition follows after re-arranging the terms. �
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This theorem yields a meaningful bound as long as |L+| · |L×| < (
√

2 − 1)2 · 2n,
e.g. if L+ and L× both contain less than 2n/2 elements. If for r ∈ {+,×}, Lr contains
only the n-bit string with the maximal probability of Qr, we obtain as a corollary a
slightly weaker version of a known relation (see (9) in [16]).

Corollary 3.6. Let q+∞ and q×∞ be the maximal probabilities of the distributions Q+

and Q× from above. It then holds that q+∞ · q×∞ ≤ 1
4 (1 + c)4 where c = 2−n/2.

Theorem 3.5 can be generalised to more than two mutually unbiased bases. We
call different sets B0,B1, . . . ,BN of bases of the complex Hilbert space C2n

mutually
unbiased, if for all i 6= j ∈ {0, . . . , N}, it holds that

∀|ϕ〉 ∈ Bi ∀|ψ〉 ∈ Bj : |〈ϕ|ψ〉|2 = 2−n.

Theorem 3.7. Let the density matrix ρA describe the state of a n-qubit register A
and let B0,B1, . . . ,BN be mutually unbiased bases of registerA. LetQ0(·), Q1(·), . . . , QN (·)
be the distributions of the outcome when registerA is measured in bases B0,B1, . . . ,BN ,
respectively. Then, for any sets L0, L1, . . . , LN ⊂ {0, 1}n, it holds that

N∑
i=0

Qi(Li) ≤ 1−
(
N + 1

2

)
+

∑
0≤j<k≤N

(
1 +

√
2−n|Lj ||Lk|

)2

.

Proof: Like in the proof of Theorem 3.5, we can purify register A by adding a register
B. The composite state can then be written as |ψ〉AB =

∑
x∈{0,1}n αx|x〉A|ϕx〉B for

some complex amplitudes αx and normalised state vectors |ϕx〉.
We prove the statement by induction overN : For N = 1, by applying an appropri-

ate unitary transform to the whole system, we can assume without loss of generality
that B0 is the standard +-basis.

Let us denote by T the matrix of the basis change from B0 to B1. As the inner
product between states |φ〉 ∈ B0 and |φ′〉 ∈ B1 is always |〈φ|φ′〉| = 2−n/2, it follows
that all entries of T are complex numbers of the form 2−n/2 · eiλ for real λ ∈ R.

It is easy to verify that the same proof as for Theorem 3.5 applies after replac-
ing the Hadamard transform H⊗n on the sender’s part by T and using the above
observation about the entries of T .

For the induction step fromN toN+1, we define p := Q0(L
0
), |υ〉 :=

∑
x∈L

0

αx√
p |x〉|ϕx〉,

and let ζj
z |υj

z〉 be the z-component of the state |υ〉 transformed into basis Bj. As in
the proof of Theorem 3.5, using `i as a short hand for

∣∣Li
∣∣, it follows:

N∑
i=1

Qi(Li) =
N∑

i=1

∑
z∈Li

Qi(z)

≤
N∑

i=1

∑
z∈Li

(√
p
∣∣ζi

z

∣∣υi
z

〉∣∣ + 2−n/2
√
`0

)2

≤ p ·
N∑

i=1

∑
z∈Li

|ζi
z|2 +

N∑
i=1

(
2 ·

√
2−n`0`i + 2−n`0`i

)

11



≤ p ·
N∑

i=1

P i(Li) +
N∑

i=1

(
1−

√
2−n`0`i

)2

−N

where the distributions P i are obtained by measuring register A of the normalised
state |υ〉 in the mutually unbiased bases B1,B2, . . . ,BN . We apply the induction
hypothesis to the sum of P i(Li):

N∑
i=1

Qi(Li) ≤ p ·
N∑

i=1

P i(Li) +
N∑

i=1

(
1 +

√
2−n`0`i

)2

−N

≤ [
1−Q0(L0)

] [ ∑
1≤j<k≤N

(
1 +

√
2−n`j`k

)2

+ 1−
(
N

2

)]

+
N∑

i=1

(
1−

√
2−n`0`i

)2

−N

≤ −Q0(L0) + 1−
(
N + 1

2

)
+

∑
0≤j<k≤N

(
1 +

√
2−n`j`k

)2

where the last inequality follows by observing that the term in the right bracket is at
least 1 and rearranging the terms. This completes the induction step and the proof
of the proposition. �

Analogous to Corollary 3.6, we derive an uncertainty relation about the sum of
the min-entropies of up to 2

n
4 distributions.

Corollary 3.8. For an ε > 0, let 0 < N < 2( 1
4−ε)n. For i = 0, . . . , N , let Hi

∞ be the
min-entropies of the distributions Qi from the theorem above. Then,

N∑
i=0

Hi
∞ ≥ (N + 1)

(
log(N + 1)− negl(n)

)
.

Proof: For i = 0, . . . , N , we denote by qi
∞ the maximal probability of Qi and let

Li be the set containing only the n-bit string x with this maximal probability qi
∞.

Theorem 3.7 together with the assumption about N assures
∑N

i=0 q
i
∞ ≤ 1 + negl(n).

By the inequality of the geometric and arithmetic mean follows:

N∑
i=0

Hi
∞ = − log

N∏
i=0

qi
∞ ≥ − log

(
1 + negl(n)
N + 1

)N+1

= (N + 1)
(
log(N + 1)− negl(n)

)
.

�

3.5 Security Against Dishonest Receivers

In this section, we show that epr-qot is secure against any dishonest receiver having
access to a quantum storage device of size strictly smaller than half the number of
qubits received at Step 2.

12



In our setting, we use Theorem 3.5 to lowerbound the overall probability of strings
with small probabilities in the following sense. For 0 ≤ γ + κ ≤ 1, define

S+ :=
{
x ∈ {0, 1}n : Q+(x) ≤ 2−(γ+κ)n

}
and

S× :=
{
z ∈ {0, 1}n : Q×(z) ≤ 2−(γ+κ)n

}
to be the sets of strings with small probabilities and denote byL+ := S

+
and L× := S

×

their complements. (Here’s the mnemonic: S for the strings with Small probabilities,
L for Large.) Note that for all x ∈ L+, we have that Q+(x) > 2−(γ+κ)n and therefore
|L+| < 2(γ+κ)n. Analogously, we have |L×| < 2(γ+κ)n. For the ease of notation,
we abbreviate the probabilities that strings with small probabilities occur as follows:
q+ := Q+(S+) and q× := Q×(S×). The next corollary now immediately follows from
Theorem 3.5.

Corollary 3.9. Let γ + κ < 1
2 . For the probability distributions Q+, Q× and the

sets S+, S× defined above, we have

q+ + q× := Q+(S+) +Q×(S×) ≥ 1− negl(n).

Theorem 3.10. For all γ < 1
2 , qot is secure against Rγ .

Proof: After Lemmata 3.2 and 3.3, it remains to show that epr-qot is oblivious
against Rγ . Since γ < 1

2 , we can find κ > 0 with γ + κ < 1
2 . Consider a dishonest

receiver in epr-qot R̃ with quantum memory of size γn.
Using the notation from Section 3.1, we show that there exists an event E such that

P [E ] ≥ 1
2 −negl(n) as well as δ([B⊗ρR̃|E ], [B]⊗ [ρR̃|E ]) ≤ negl(n), as required by the

obliviousness condition of Definition 3.1. LetX denote the random variable describing
the outcome x of S’s measurement (in basis r) in Step 4 of epr-qot. We implicitely
understand the distribution of X to be conditioned on the classical outcome y of the
measurement R̃ performs, as described in Section 3.3. We define E to be the event
X ∈ Sr. Note that E is independent of B and thus [B|E ] = [B]. Furthermore, due to
the uniform choice of r, and using Corollary 3.9, P [E ] = 1

2 (q+ + q×) ≥ 1
2 − negl(n).

In order to show the second condition, we have to show that whenever E occurs,
the dishonest receiver cannot distinguish the situation where B = 0 is sent from the
one where B = 1 is sent. As the bit B is masked by the output of the hash function
F (X) in Step 4 of epr-qot (where the random variable F represents the random
choice for f), this is equivalent to distinguish between F (X) = 0 and F (X) = 1. This
situation is exactly suited for applying Theorem 2.1, which says that F (X) = 0 is
indistinguishable from F (X) = 1 whenever the right-hand side of (1) is negligible.

In the case r = +, we have

H∞(X |X ∈ S+) = − log
(

max
x∈S+

Q+(x)
q+

)

≥ − log
(

2−(γ+κ)n

q+

)
= γn+ κn+ log(q+). (5)

If q+ ≥ 2−
κ
2 n then H∞(X |X ∈ S+) ≥ γn+ κ

2n and indeed the right-hand side of
(1) decreases exponentially when conditioning on X ∈ S+. The corresponding holds
for the case r = ×.
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Finally, if q+ < 2−
κ
2 n (or similarly q× < 2−

κ
2 n) then instead of as above we define

E as the empty event if r = + and as the event X ∈ S× if r = ×. It follows
that P [E ] = 1

2 · q× ≥ 1
2 − negl(n) as well as H∞(X |E) = H∞(X |X ∈ S×) ≥ γn +

κn+ log(q×) ≥ γn+ κ
2n (for n large enough), both by Corollary 3.9 and the bound

on q+. �

3.6 Weakening The Assumptions

Observe that qot requires error-free quantum communication, in that a transmitted
bit b, that is encoded by the sender and measured by the receiver using the same basis,
is always received as b. And it requires a perfect quantum source which on request
produces one qubit in the right state, e.g. one photon with the right polarization.
Indeed, in case of noisy quantum communication, an honest receiver in qot is likely
to receive an incorrect bit, and the obliviousness of qot is vulnerable to imperfect
sources that once in while transmit more than one qubit in the same state: a malicious
receiver R̃ can easily determine the basis r ∈ {+,×} and measure all the following
qubits in the right basis. However, current technology only allows to approximate
the behavior of single-photon sources and of noise-free quantum communication. It
would be preferable to find a variant of qot that allows to weaken the technological
requirements put upon the honest participants.

In this section, we present such a protocol based on BB84 states [1], bb84-qot

(see Figure 3). The security proof follows essentially by adapting the security analysis
of qot in a rather straightforward way, as will be discussed later.

Let us consider a quantum channel with an error probability φ < 1
2 , i.e., φ denotes

the probability that a transmitted bit b, that is encoded by the sender and measured by
the receiver using the same basis, is received as 1−b. In order not to have the security
rely on any level of noise, we assume the error probability to be zero when considering
a dishonest receiver. Also, let us consider a quantum source which produces two or
more qubits (in the same state), rather than just one, with probability η < 1−φ. We
call this the (φ, η)-weak quantum model.

In order to deal with noisy quantum communication, we need to do error-correction
without giving the adversary too much information. For this, we use secure sketches,
as introduced in [11]. A (`,m, φ)-secure sketch2 is a randomized function S : {0, 1}` →
{0, 1}∗ such that (1) for any w ∈ {0, 1}` and for w′ received from w by flipping each
bit (independently) with probability φ, the string w can be recovered from w′ and
S(w) except with negligible probability (in `), and (2) for all random variables W
over {0, 1}`, the “average min-entropy” of W given S(W ) is at least H∞(W ) − m.
We would like to point out that the notion of average min-entropy used in [11] and
here differs slightly from the standard notion H∞(W |S(W )), but it implies that for
any ∆ > 0, the probability that S(W ) takes on a value y such that H∞(W |S(W ) =
y) ≥ H∞(W )−m−∆ is at least 1− 2−∆ (which is sufficient for our purpose).

Consider the protocol bb84-qot in the (φ, η)-weak quantum model shown in Fig-
ure 3. For simplicity, we assume n to be even. The protocol uses a (n

2 , α
n
2 , φ)-secure

sketch S. We will argue later that α can be chosen arbitrarily close to (but greater
than) h(φ). Like before, the memory bound in bb84-qot applies before Step 4.

By the properties of a secure sketch, it is obvious that R receives the correct bit b if
r′ = r, except with negligible probability. Also, since there is no communication from

2Note that our definition of a secure sketch differs slightly from the one given in [11].
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bb84-qot(b):

1. S picks x ∈R {0, 1}n and a random index set I+ ⊂R {1, . . . , n} of size n
2

and sets I× := {1, . . . , n} \ I+.

2. For i = 1, 2, . . . , n: If i ∈ I+, S sends |xi〉+ to R. If otherwise i ∈ I×, S
sends |xi〉×.

3. R picks r′ ∈R {+,×} and measures all qubits in basis r′. Let x′ ∈ {0, 1}n

be the result.

4. S picks r ∈R {+,×} and announces r, Ir , y := S(x|Ir ), f ∈R Hn/2, and
s := b⊕ f(x|Ir ).

5. R can recover x|Ir from x′|Ir and y, and outputs a := 1 and b′ := s⊕f(x|Ir )
if r′ = r and else a := 0 and b′ := 0.

Figure 3. Protocol for the BB84 version of Rabin QOT

R to S, bb84-qot is clearly private. Similar as for protocol qot, in order to argue
about obliviousness we compare bb84-qot with a purified version shown in Figure 4.
bb84-epr-qot runs in the (φ, 0)-weak quantum model, and the imperfectness of the
quantum source assumed in bb84-qot is simulated by S in bb84-epr-qot so that
there is no difference from R’s point of view. We would like to point out that the way
S chooses the set Ir is more complicated than necessary; this is for proof-technical
reasons, as will be clear later.

The security equivalence between bb84-qot (in the (φ, η)-weak quantum model)
and bb84-epr-qot (in the (φ, 0)-weak quantum model) is omitted here as it follows
essentially along the same lines as in Section 3.2. The main difference here is that
additionally one has to argue that the distribution of the “imperfectly generated
qubits” (within the sets I+ and I×) is the same as in bb84-qot. As a matter of fact,
it is not perfectly the same, but it is obviously the same conditioned on the event
that the number of “imperfectly generated qubits” with basis + and the number of
those with basis × are both at most (η + ε)n/2 (in which case S does not abort
in bb84-epr-qot). This event, though, happens with overwhelming probability by
Bernstein’s law of large numbers. This is good enough.

Theorem 3.11. In the (φ, η)-weak quantum model, bb84-qot is secure against Rγ

for any γ < 1−η
4 − h(φ)

2 (if parameter α is appropriately chosen).

Proof Sketch: It remains to show that bb84-epr-qot is oblivious against Bγ (in
the (φ, 0)-weak quantum model). The reasoning goes exactly along the lines of the
proof of Theorem 3.10, except that we restrict our attention to those i’s which are
in J . Write n′ = |J | = (1 − η − ε)n/2, and let γ′ be such that γn = γ′n′, i.e.,
γ′ = 2γ/(1− η − ε). It then follows as in the proof of Theorem 3.10 that

H∞
(
X |J

∣∣X |J ∈ S+
) ≥ γ′n′ + κn′ + log(q+)

= γn+ κ(1− η − ε)n/2 + log(q+)
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bb84-epr-qot(b):

1. S prepares n EPR pairs each in state |Ω〉 = 1√
2
(|00〉+ |11〉). Additionally,

S samples θ ∈ {+,×}n such that θi = + for exactly n
2 indices i, and S

initializes I ′+ := ∅ and I ′× := ∅.
2. For every i ∈ {1, . . . , n}, S does the following. With probability 1 − η S

sends one half of the i-th pair to R and keeps the other half. While with
probability η S replaces I ′θi

by I ′θi
∪ {i} and sends two or more qubits in

the same state |xi〉θi
to R where xi ∈R {0, 1}.

3. R picks r′ ∈R {+,×} and measures all received qubits in basis r′. Let
x′ ∈ {0, 1}n be the result.

4. S picks a random index set J ⊂R {1, . . . , n}\(I ′+∪I ′×) of size (1−η−ε)n/2
(where ε > 0 is sufficiently small). Then, S picks r ∈R {+,×}, chooses
a random index set Ir ⊂ {1, . . . , n} of size n

2 subject to J ∪ I ′r ⊆ Ir
(respectively aborts if that is not possible) and for each i ∈ Ir \I ′r measures
the corresponding qubit in basis r. Let xi be the corresponding outcome,
and let x|Ir be the collection of all xi’s with i ∈ Ir . S announces r, Ir,
y = S(x|Ir ), f ∈R Hn/2, and s = b⊕ f(x|Ir ).

5. R can recover x|Ir from x′|Ir and y, and outputs a := 1 and b′ := s⊕f(x|Ir ),
if r′ = r and else a := 0 and b′ := 0.

Figure 4. Protocol for EPR-based Rabin QOT, BB84 version

Property (2) of a secure sketch then implies that, except with negligible probability,
y is such that

H∞
(
X |Ir

∣∣X |J ∈ S+, S(X |Ir) = y
)

≥ γn+ κ(1− η − ε)n/2 + log(q+)− αn/2− εn

Similar as in the proof of Theorem 3.10, one can consider the cases q+ ≥ 2−εn and
q+ < 2−εn, and in both cases argue that the min-entropy in question is larger than
γn+εn (which then completes the proof by referring to Theorem 2.1) if κ(1− η − ε) >
α + 4ε, where ε > 0 may be arbitrarily small and κ has to satisfy κ < 1

2 − γ′ =
1
2 − 2γ/(1 − η − ε). This can be achieved (by choosing ε appropriately) if α <
κ(1− η) < (1− η)/2− 2γ, which can be achieved (by choosing κ appropriately) if

γ <
1− η

4
− α

2
.

By the assumed restriction on γ, this inequality can be satisfied if α is chosen arbi-
trarily close to h(φ). But this follows in a straightforward way from a result in [11],
where it is shown that every (efficiently decodable) error correcting code induces an
(efficient) secure sketch (with related parameters), combined with the fact that for
every α > h(φ) there exists an efficiently decodable code of large enough length `,
with rate R = 1 − α and which (except with negligible probability) corrects errors
introduced with probability φ (see [4] and the reference therein). �
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4 Quantum Commitment Scheme

In this section, we present a BC scheme from a committer C with bounded quantum
memory to an unbounded receiver V. The scheme is peculiar since in order to com-
mit to a bit, the committer does not send anything. During the committing stage
information only goes from V to C. The security analysis of the scheme uses similar
techniques as the analysis of epr-qot.

4.1 The Protocol

The objective of this section is to present a bounded quantum-memory BC scheme
comm (see Figure 5). Intuitively, a commitment to a bit b is made by measuring
random BB84-states in basis {+,×}[b].

comm(b):

1. V picks x ∈R {0, 1}n and r ∈R {+,×}n.

2. V sends xi in the corresponding bases |x1〉r1
, |x2〉r2

, . . . , |xn〉rn
to C.

3. C commits to the bit b by measuring all qubits in basis {+,×}[b]. Let
x′ ∈ {0, 1}n be the result.

4. To open the commitment, C sends b and x′ to V.

5. V verifies that xi = x′i for those i where ri = {+,×}[b]. V accepts if and
only if this is the case.

Figure 5. Protocol for quantum commitment

As for the OT-protocol of Section 3.2, we present an equivalent EPR-version of
the protocol that is easier to analyze (see Figure 6).

epr-comm(b):

1. V prepares n EPR pairs each in state |Ω〉 = 1√
2
(|00〉+ |11〉).

2. V sends one half of each pair to C and keeps the other halves.

3. C commits to the bit b by measuring all received qubits in basis {+,×}[b].
Let x′ ∈ {0, 1}n be the result.

4. To open the commitment, C sends b and x′ to V.

5. V measures all his qubits in basis {+,×}[b] and obtains x ∈ {0, 1}n. He
chooses a random subset I ⊆ {1, . . . , n}. V verifies that xi = x′i for all
i ∈ I and accepts if and only if this is the case.

Figure 6. Protocol for EPR-based quantum commitment
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Lemma 4.1. comm is secure if and only if epr-comm is secure.

Proof: The proof uses similar reasoning as the one for Lemma 3.2. First, it clearly
makes no difference, if we change Step 5 to the following:

5’. V chooses the subset I, measures all qubits with index in I in basis {+,×}[b]

and all qubits not in I in basis {+,×}[1−b]. V verifies that xi = x′i for all i ∈ I
and accepts if and only if this is the case.

Finally, we can observe that the view of C does not change if V would have done his
choice of I and his measurement already in Step 1. Doing the measurements at this
point means that the qubits to be sent to C collapse to a state that is distributed
identically to the state prepared in the original scheme. The EPR-version is therefore
equivalent to the original commitment scheme from C’s point of view. �

It is clear that epr-comm is hiding, i.e., that the commit phase reveals no infor-
mation on the committed bit, since no information is transmitted to V at all. Hence
we have
Lemma 4.2. epr-comm is perfectly hiding.

4.2 Modeling Dishonest Committers

A dishonest committer C̃ with bounded memory of at most γn qubits in epr-comm

can be modeled very similarly to the dishonest OT-receiver R̃ from Section 3.3: C̃
consists first of a circuit acting on all n qubits received, then of a measurement of all
but at most γn qubits, and finally of a circuit that takes the following input: a bit
b that C̃ will attempt to open, the γn qubits in memory, and some ancilla in a fixed
state. The output is a string x′ ∈ {0, 1}n to be sent to V at the opening stage.

Definition 4.3. We define Cγ to be the class of all committers {C̃n}n>0 in epr-comm

that, at the start of the opening phase (i.e. at Step 4), have a quantum memory of
size at most γn qubits.

We adopt the binding condition for quantum BC from [12]:

Definition 4.4. A (quantum) BC scheme is (statistically) binding against C if for
all {C̃n}n>0 ∈ C, the probability pb(n) that C̃n opens b ∈ {0, 1} with success satisfies

p0(n) + p1(n) ≤ 1 + negl(n).

In the next section, we show that epr-comm is binding against Cγ for any γ < 1
2 .

Note that the binding condition given here in Definition 4.4 is weaker than the
classical one, where one would require that a bit b exists such that pb(n) is neg-
ligible. But it is the best that can be achieved for a general quantum adversary
who can always commit to 0 and 1 in superposition. However, an adversary with
bounded quantum storage cannot necessarily maintain a commitment in superposi-
tion since the memory compression may force a collapse. Indeed, in upcoming work,
we show that commitment schemes exist satisfying the stronger binding condition
in the bounded quantum-storage model [8]. While the weaker condition is sufficient
for many applications, the stronger one seems to be necessary in some cases (see the
conclusion).
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4.3 Security Proof Of The Commitment Scheme

Note that the first three steps of epr-qot and epr-comm (i.e. before the memory
bound applies) are exactly the same! This allows us to reuse Corollary 3.9 and the
analysis of Section 3.5 to prove the binding property of epr-comm.

Theorem 4.5. For any γ < 1
2 , comm is perfectly hiding and statistically binding

against Cγ .

The proof is given below. It boils down to showing that essentially p0(n) ≤ 1−q+ and
p1(n) ≤ 1 − q×. The binding property then follows immediately from Corollary 3.9.
The intuition behind p0(n) ≤ 1 − q+ := 1 − Q+(S+) is that a committer has only
a fair chance in opening to 0 if x measured in +-basis has a large probability, i.e.,
x 6∈ S+. The following proof makes this intuition precise by choosing the ε and δ’s
correctly.

Proof: It remains to show that epr-comm is binding against Cγ . Let κ > 0 be such
that γ + κ < 1

2 . For the parameters κ and γ considered here, define Q+, S+ and q+

as well as Q×, S× and q× as in Section 3.5. Furthermore, let 0 < δ < 1
2 be such that

h(δ) < κ/2, where h is the binary entropy function, and choose ε > 0 small enough
such that h(δ) < (κ− ε)/2. This guarantees that Bδn ≤ 2(κ−ε)n/2 for all (sufficiently
large) n. For every n we distinguish between the following two cases. If q+ ≥ 2−εn/2

then
H∞(X |X ∈ S+) ≥ γn+ κn+ log(q+) ≥ γn+

(
κ− ε

2

)
n

where the first inequality is argued as in (5). Applying Lemma 2.2, it follows that
any guess X̂ for X satisfies

Pr
[
X̂ ∈ Bδn(X) |X ∈ S+

] ≤ 2−
1
2 (H∞(X|X∈S+)−γn−1)+log(Bδn) ≤ 2−

ε
4n+ 1

2 .

However, if X̂ 6∈ Bδn(X) then sampling a random subset of the positions will detect
an error except with probability not bigger than 2−δn. Hence,

p0(n) = (1− q+) · p0|X 6∈S+ + q+ · p0|X∈S+

≤ 1− q+ + q+ · (2−δn(1− 2−
ε
4n+ 1

2 ) + 2−
ε
4n+ 1

2
)
.

If on the other hand q+ < 2−εn/2 then trivially

p0(n) ≤ 1 = 1− q+ + q+ < 1− q+ + 2−εn/2.

In any case we have p0(n) ≤ 1− q+ + negl(n).
Analogously, we derive p1(n) ≤ 1− q× + negl(n) and conclude that

p0(n) + p1(n) ≤ 2− q+ − q× + negl(n) ≤ 1 + negl(n), (6)

where (6) is obtained from Corollary 3.9. �
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4.4 Weakening The Assumptions

As argued earlier, assuming that a party can produce single qubits (with probability 1)
is not reasonable given current technology. Also the assumption that there is no
noise on the quantum channel is impractical. It can be shown that a straightforward
modification of comm remains secure in the (φ, η)-weak quantum model as introduced
in Section 3.6, with φ < 1

2 and η < 1− φ.
Let comm’ be the modification of comm where in Step 5 V accepts if and only if

xi = x′i for all but about a φ-fraction of the i where ri = {+,×}[b]. More precisely, for
all but a (φ+ ε)-fraction, where ε > 0 is sufficiently small.

Theorem 4.6. In the (φ, η)-weak quantum model, comm’ is perfectly hiding and it
is binding against Cγ for any γ satisfying γ < 1

2 (1− η)− 2h(φ).

Proof Sketch: Using Bernstein’s law of large numbers, one can argue that for honest
C and V, the opening of a commitment is accepted except with negligible probability.
The hiding property holds using the same reasoning as in Lemma 4.2. And the binding
property can be argued essentially along the lines of Theorem 4.5, with the following
modifications. Let J denote the set of indices i where V succeeds in sending a single
qubit. We restrict the analysis to those i’s which are in J . By Bernstein’s law of
large numbers, the cardinality of J is about (1− η)n (meaning within (1− η ± ε)n),
except with negligible probability. Thus, restricting to these i’s has the same effect as
replacing γ by γ/(1 − η) (neglecting the ±ε to simplify notation). Assuming that C̃
knows every xi for i 6∈ J , for all xi’s with i ∈ J he has to be able to guess all but about
a φ/(1 − η)-fraction correctly, in order to be successful in the opening. However, C̃
succeeds with only negligible probability if

φ/(1− η) < δ .

Additionally, δ must be such that

h(δ) <
κ

2
with

γ

1− η
+ κ <

1
2
.

Both restrictions on δ hold (respectively can be achieved by choosing κ appropriately)
if

2 h
(

φ

1− η

)
+

γ

1− η
<

1
2
.

Using the fact that h(νp) ≤ νh(p) for any ν ≥ 1 and 0 ≤ p ≤ 1
2 such that νp ≤ 1, this

is clearly satisfied if 2h(φ) + γ < 1
2 (1− η). This proves the claim. �

5 Conclusion And Further Research

We have shown how to construct ROT and BC securely in the bounded quantum-
storage model. Our protocols require no quantum memory for honest players and
remain secure provided the adversary has only access to quantum memory of size
bounded by a large fraction of all qubits transmitted. Such a gap between the amount
of storage required for honest players and adversaries is not achievable by classical
means. All our protocols are non-interactive and can be implemented using current
technology.
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In this paper, we only considered ROT of one bit per invocation. Our technique
can easily be extended to deal with string ROT, essentially by using a class of two-
universal functions with range {0, 1}`n rather than {0, 1}, for some ` with γ + ` < 1

2

(respectively < 1−η
4 − h(φ)

2 for bb84-qot).
Although other flavors of OTs can be constructed from ROT using standard reduc-

tions, a more direct approach would give a better ratio storage-bound/communication-
complexity. Recent extensions of this work have shown that a 1-2 OT protocol built
along the lines of bb84-qot is secure against adversaries with bounded quantum
memory [8]. Interestingly, the techniques used are quite different from the ones of
this paper (which appear to fail in case of 1-2 OT), and they additionally allow to
analyse and prove secure the BC comm with respect to the stronger security defini-
tion, as discussed in section 4.2.

comm can easily be transformed into a string commitment scheme simply by
committing bitwise, at the cost of a corresponding blow-up of the communication
complexity. In order to prove this string commitment secure, though, it is necessary
that comm is secure with respect to the stronger security definition.

How to construct and in particular prove secure a more efficient string commitment
scheme is still an open problem. Furthermore, it is still unsolved how to construct
and prove secure a 1-m OT protocol, more efficient than via the general reduction.
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