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MFPS XX1 Preliminary Version

Program extraction from proofs
of weak head normalization

Ma lgorzata Biernacka, Olivier Danvy, and Kristian Støvring

BRICS 1

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, 8200 Aarhus N, Denmark

Abstract

We formalize two proofs of weak head normalization for the simply typed lambda-
calculus in first-order minimal logic: one for normal-order reduction, and one for
applicative-order reduction in the object language. Subsequently we use Kreisel’s
modified realizability to extract evaluation algorithms from the proofs, following
Berger; the proofs are based on Tait-style reducibility predicates, and hence the
extracted algorithms are instances of (weak head) normalization by evaluation, as
already identified by Coquand and Dybjer.

Key words: program extraction, normalization by evaluation,
weak head normalization.

1 Introduction and related work

In the early nineties, Berger and Schwichtenberg introduced normalization by evalu-
ation in a proof-theoretic setting [5]. Berger then substantiated their normalization
function by extracting it from a proof of strong normalization [2], using Kreisel’s
modified realizability interpretation [11]. In their own study of what also turned
out to be normalization by evaluation [7,8], Coquand and Dybjer constructed nor-
malization functions interpreting source terms in so-called glueing models. They
also outlined a process of “program extraction” with which their normalization
algorithms can be obtained from simple instances of a normalization proof due
to Martin-Löf, and noticed the connection with Berger’s work. In this article,
we use part of Berger’s framework to formalize some of the relationship identified
by Coquand and Dybjer between glueing models and Tait-style proofs as used by
Martin-Löf. We consider two intuitionistic proofs of weak head normalization for
the simply typed λ-calculus: A normal-order proof essentially due to Martin-Löf,
and an applicative-order counterpart due to Hofmann [12, page 152].

1 Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
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Our results can be described informally as follows: Applying modified realiz-
ability to the definition of the Tait-style reducibility predicate gives the definition
of a glueing model. Applying modified realizability to the proof of normalization of
a particular simply typed term t gives a λ-term denoting the interpretation of t in
this glueing model.

The program extraction we perform can be intuitively explained as a “program
optimization” [7]: Martin-Löf’s normalization proof is formalized in an intuitionistic
meta-language, and such a proof can informally be regarded as a function return-
ing the normal form, together with a proof that this result actually is a normal
form [7,9]. To go from such a normalization proof to a function returning only the
normal form, one can then remove the redundant parts representing the axioms for
convertibility, and simplify the types accordingly [7]. Berger’s use of the modified
realizability interpretation works like that (in the setting of first-order logic): the
axioms for convertibility can be stated as Harrop formulas, and subproofs which
are proofs of Harrop formulas disappear during the extraction.

Coquand and Dybjer’s weak normalization function for the λ-calculus can be
perceived as an optimized version of the program we extract in the applicative-order
case. This is not surprising, since our focus here is on formalizing the proofs and
considering two different evaluation strategies in the object language rather than
optimizing the extracted programs. In doing so, we identify certain technical diffi-
culties arising with the applicative-order case, and we adjust the extraction method
to solve them. In his recent work [3], Berger has proposed a similar refinement as
part of a bigger framework, the Uniform Heyting Arithmetic.

Our account has the following limitations:

• Like Berger, we only partially formalize the normalization proof. Since a part of
the proof is performed at the meta-level, we cannot formally extract a normal-
ization function, but only a λ-term denoting the glueing interpretation of t for
every particular term t.

• For simplicity, we only consider normalization of closed terms. With this restric-
tion, we do not need to formalize renaming of bound variables.

• We only treat the case of the simply typed λ-calculus with one uninterpreted
base type, whereas Coquand and Dybjer consider a variety of more advanced
examples.

In the remainder of this article, we first review the modified realizability interpre-
tation (Section 2); we then specify the problem of weak head normalization for
the λ-calculus and we extract a call-by-name λ-interpreter and then a call-by-value
λ-interpreter (Section 3). ML implementations of the extracted normalization pro-
grams are presented in Appendix A.

2 Preliminaries

We begin by reviewing the techniques used by Berger to extract normalization
functions from proofs [2]. The key concept is Kreisel’s modified realizability proof
interpretation [11]. Our presentation is based on Berger’s article [2] and Troelstra’s
treatise [14].
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2.1 First-order minimal logic

We formalize the normalization proofs in a first-order logic M1. The language of
M1 is that of many-sorted first-order minimal logic with conjunction, defined in a
standard way. Specifically, such a language is given by:

• Sorts ι, ι1, ι2, . . .

• Constants cι, function symbols fι1×...×ιn→ι.

• Predicate symbols Pι1×...×ιn .

(We will see that the sorts of M1 are the base types of the extracted programs.)
The terms and formulas of M1 are:

Terms tι := xι | cι | fι1×...×ιn→ι(tι11 , . . . , t
ιn
n )

Formulas φ,ψ := Pι1×...×ιn(tι11 , . . . , t
ιn
n ) | φ ∧ ψ | φ→ ψ | ∀xι. φ | ∃xι. φ

A natural deduction proof system of M1 is shown in Figure 1. Instead of presenting
the proof rules graphically, we directly define a proof of a formula φ to be a depen-
dently typed λ-term dφ. In the definition, FV(φ) denotes the set of free variables in
the formula φ, while FA(d) denotes the set of free assumptions in the proof d. Only
the interesting defining cases of FA(d) are shown.

We will also use the notation u1 : ψ1, . . . , un : ψn `M1 d : φ to mean that dφ is
an M1-proof of φ with free assumptions contained in the set {uψ1

1 , . . . , uψn
n }.

2.2 Modified realizability

In the presentation we use one of Troelstra’s variants of modified realizability [14,
p. 218].

The programs extracted from proofs are terms of the simply typed λ-calculus
with product and unit types, and with the sorts of M1 as base types:

Types σ := 1 | ι1 | ι2 | . . . | σ1 → σ2 | σ1 × σ2

Terms t := xσ | t0 t1 | λxσ.t | fst t | snd t | (t1, t2) | ∗ | c | f(t1, . . . , tn)
Note that the language of λ-terms includes the constants and function symbols of
M1. Moreover, meta-variables ranging over λ-terms are denoted with the Roman
font (t), and thus differ from the notation for logical terms in M1 (t).

In the following, by a “program” we mean a simply typed λ-term as just de-
fined. Only in Appendix A are actual programming language implementations
considered [6].

Definition 2.1 [Program extraction] Given an M1-proof d of φ, we define a type
τ(d) and a λ-term [[d]] of type τ(d) as follows:

3
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(ass.) uφ

(→+) (λuφ.dψ)φ→ψ

(→−) (dφ→ψ eφ)ψ

(∧+) (dφ, eψ)
φ∧ψ

(∧−1 ) (fst dφ∧ψ)φ

(∧−2 ) (snd dφ∧ψ)ψ

(∀+) (λxι.dφ)∀x
ι. φ

(provided xι /∈ FV(ψ) for every uψ ∈ FA(d))

(∀−) (d∀x
ι. φ tι)φ [t/x]

(∃+) 〈t, dφ [t/x]〉∃x. φ
(∃−) [e∃x. φ, uφ.dψ]

ψ

(provided x /∈ FV(ψ),

and x /∈ FV(χ) for every vχ ∈ FA(d) \ {uφ})

where FA(uφ) = {uφ}
FA((λuφ.dψ)φ→ψ) = FA(dψ) \ {uφ}
FA([e∃x. φ, uφ.dψ]

ψ
) = FA(e∃x. φ) ∪ (FA(dψ) \ {uφ})

etc.

Fig. 1. The proof system M1

τ(P(t1, . . . , tn)) := 1

τ(φ ∧ ψ) := τ(φ)× τ(ψ)

τ(φ→ ψ) := τ(φ) → τ(ψ)

τ(∀xι. φ) := ι→ τ(φ)

τ(∃xι. φ) := ι× τ(φ)

[[uφ]] := x
τ(φ)
u

[[λuφ.dψ]] := λx
τ(φ)
u .[[d]]

[[dφ→ψ eφ]] := [[d]] [[e]]

[[(dφ, eψ)]] := ([[d]], [[e]])

[[fst dφ∧ψ]] := fst [[d]]

[[snd dφ∧ψ]] := snd [[d]]

[[λxι.dφ]] := λxι.[[d]]

[[d∀xι. φ tι]] := [[d]] t

[[〈t, dφ [t/x]〉]] := (t, [[d]])

[[[e∃x. φ, uφ.dψ]]] := [[d]][fst [[e]]/x, snd [[e]]/xu ]

Subsequently, we simplify the extracted terms using the isomorphisms A× 1 ∼= A,
1 × B ∼= B, A → 1 ∼= 1, and 1 → B ∼= B. 2 This means that the type τ(φ) of an
extracted term will either be 1 or not contain 1 at all. The first case happens exactly

2 In the original version of modified realizability [11], as well as in newer variants [4], this
“optimization” is built-in. We use the simpler version for presentational purposes.
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when φ is a Harrop formula—we then informally say that φ “has no computational
content.”

2.2.1 Soundness of the extraction
We now briefly consider in what sense a λ-term extracted from a proof of φ “realizes”
φ. The notion of realizability is formalized in a finite-type extension M−

1 (λ) of M1

[2]. The point is that every extracted term [[d]] is a term of M−
1 (λ).

Definition 2.2 [Modified realizability] By induction on the M1-formula φ we de-
fine an M−

1 (λ)-formula tτ(φ) mr φ as follows:

t1 mr P(t1, . . . , tn) := P(t1, . . . , tn)

tσ1×σ2 mr φ ∧ ψ := (fst t)mr φ ∧ (snd t)mr ψ

tσ1→σ2 mr φ→ ψ := ∀yσ1 . (ymr φ→ t ymrψ)

tι→σ mr ∀zι. φ(z) := ∀zι. t zmrφ(z)

tι×σ mr ∃zι. φ(z) := (snd t)mr φ(fst t)

Given an M1-proof d of φ, the goal is therefore to give an M−
1 (λ)-proof of

[[d]]mr φ. It turns out that the proof d is allowed to contain free assumptions of
Harrop formulas.

Theorem 2.3 (Soundness of modified realizability) Let ψ1, . . . , ψn be Har-
rop formulas. If u1 : ψ1, . . . , un : ψn `M1 d : φ, then ψ1, . . . , ψn `M−

1 (λ) [[d]]mr φ.

Proof. Standard [2,14]. 2

As an example, suppose that d is a M1-proof of ∀x.∃y.P(x, y) containing only
Harrop formulas as free assumptions. Then Theorem 2.3 gives an M−

1 (λ)-proof
of ∀x.P(x, fst([[d]] x)) from the same free assumptions. In this way, free Harrop
assumptions can be thought of as “axioms” with no effect on the extracted program.

2.2.2 Eliminating computationally redundant variables
The extraction procedure can be refined in order to keep the resulting programs
simple. We first present a refinement due to Berger [2] which allows computationally
redundant universal variables to be eliminated from the extracted program. To
this end, we add a new kind of formulas of the form {∀x}. φ with the following
introduction and elimination rules:

(∀+) ({λxι}.dφ){∀xι}. φ

(provided xι /∈ FV(ψ) for every uψ ∈ FA(d)) and x /∈ CV(d))

(∀−) (d{∀xι}. φ {tι})φ [t/x],

where the set of computationally relevant variables CV(d) is defined as the set of
all variables occurring free in a witness for an existential quantifier, or in any term
instantiating a universal quantifier in d. A universally quantified variable is called
redundant if it is not computationally relevant.

The type of realizers for the new formulas simply ignores the redundant vari-
able: τ({∀x}. φ) := τ(φ). The corresponding clause for modified realizability is

5



Biernacka, Danvy, and Støvring

tmr {∀x}. φ := ∀x. tmr φ (with x /∈ FV(t)). As desired, the extracted program does
not contain the redundant variable:

[[{λx}.d]] := [[d]]

[[d {t}]] := [[d]]

The proof of soundness of modified realizability can be extended to handle this
case [2].

The second refinement allows us to choose which of the existential quantifiers
in a formula we want to have witnesses of. However, we postpone the description
of this extension until Section 3.3, where it will be essential that not all of the
existential quantifiers are realized.

3 Weak head normalization

We now specify the problem of weak head normalization for the λ-calculus. In the
presentation, we assume that all terms are well-typed, but for clarity we omit all
typing annotations. We consider only closed terms.

By normalization we understand the process of reducing a term to a normal
form, where the basic reduction step is β-reduction [1]:

(λx .t) s→ t [s/x ].

The compatible closure of β-reduction yields the one-step reduction relation.
Weak head normalization is a restricted form of normalization producing terms

in weak head normal form, which—for closed terms—stops at a λ-abstraction, with-
out normalizing its body. Therefore any λ-abstraction is in weak head normal form.

We consider two deterministic restrictions of the one-step reduction that lead to
weak head normal forms: the normal-order and applicative-order reduction strate-
gies. Since weak head normalization is closely related to evaluation in the λ-calculus
regarded as a programming language, where computations are not performed under
λ-abstractions, we also refer to the above reduction strategies as the call-by-name
and call-by-value evaluation strategies, respectively [13].

Definition 3.1 [Normal-order reduction] The normal-order reduction strategy is
obtained from one-step reduction by restricting it to the following rules:

(β) (λx .r) s→ r [s/x ]

(ν)
r → r′

r s→ r′ s
Definition 3.2 [Applicative-order reduction] The (left-to-right) applicative-order
reduction strategy is obtained from one-step reduction by restricting it to the fol-
lowing rules:

(βv) (λx .r) s→ r [s/x ] if s is a value

(ν)
r→ r′

r s→ r′ s

(µv)
s→ s′

r s→ r s′
if r is a value

6



Biernacka, Danvy, and Støvring

Values are λ-abstractions.

These specifications of evaluation strategies can be axiomatized directly in the
logic M1 using only Harrop formulas, as will be shown in the following sections.

The theorem we want to prove can be stated informally as follows:

Theorem 3.3 (Weak head normalization) The process of reducing a closed
well-typed λ-term according to either of the above strategies terminates with a (weak
head) normal form.

The proof proceeds by first defining a suitable logical relation on well-typed
closed terms that implies the desired property. Next we show that every well-typed
term satisfies this relation. Obviously, the exact shape of the proof relies on the
chosen reduction strategy (normal-order or applicative-order), and consequently the
extracted program produces the result according to the corresponding strategy in
the object language (call by name or call by value).

In the rest of the section we first formalize this theorem for the two evaluation
strategies, and then we use modified realizability to extract the underlying pro-
grams. For the case of call-by-name evaluation this is a straightforward exercise,
whereas in the call-by-value case we need to refine the extraction procedure further.
Our development in this section formalizes and extends the proof of normalization
for call-by-value evaluation presented in Pierce’s book [12, pp. 149-152].

3.1 The object language

We consider an explicitly typed version of the simply typed λ-calculus with variables
contained in a countable set V = xT1

1 , xT2
2 , . . . (infinitely many of each type). This

language is now encoded in a first-order minimal logic. The variables are used to
index the sorts and constants of the logic, which is given by the following:

• Sorts: For every type T and finite set of variables X, we have the sort ΛXT of
object-level λ-terms of type T containing exactly free variables X.

• Constants: The λ-term constructors are:

VARx : Λ{x}
T (for each variable xT )

LAMx,T1,T2,X : ΛXT2
→ ΛX\{x}T1→T2

(where x has type T1)

APPT1,T2,X,Y : ΛXT1→T2
→ ΛYT1

→ ΛX∪YT2

• Predicate symbols: the set of predicate symbols differs for call-by-name and call-
by-value evaluation, and we specify each of them in Section 3.2 and Section 3.3,
respectively.

Notation. For the sake of presentation, we use a number of notational ab-
breviations when constructing object terms, e.g., we omit type annotations from
λ-term constructors—in most cases they can be inferred from the context; we use
the “uncurried” versions of the term constructors; we also write LAMxi. t instead of
LAMxi,T1,T2,X(t), and VARxi instead of VARxi .
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We abbreviate sorts of closed terms Λ∅
T as ΛT . In the formulas used in the rest

of this article, we only quantify over sorts of closed terms.
We treat substitution in λ-terms at the meta level. For a variable xT1

i and logical
terms sΛT1 and tΛT2 , we define t [s/VARxi] as t with every subterm VARxi not in
scope of a LAMxi replaced by s. As ΛT1 is a sort of closed λ-terms, free object-
level variables are never captured as a result of this form of substitution. For this
definition of t [s/VARxi] to faithfully encode substitution, we further require that
all free logical variables in t range over sorts of closed object-level terms. Thus the
formal definition of substitution is as follows:

Definition 3.4 Let xT1
i be a variable, and let sΛ

∅
T1 and t

ΛX
T2 be logical terms such

that all free logical variables in t belong to (possibly different) sorts Λ∅
T of closed

object-level terms. We define the term t [s/VARxi] of sort ΛX\{xi}
T2

inductively:

yΛ∅T [s/VARxi] = y (where y is a logical variable)

VARxi [s/VARxi] = s

VARxj [s/VARxi] = VARxj (j 6= i)

APP(t1, t2) [s/VARxi] = APP(t1 [s/VARxi], t2 [s/VARxi])

(LAMxi,X t1) [s/VARxi] = LAMxi,X t1

(LAMxj ,X t1) [s/VARxi] = LAMxj ,X\{xi} (t1 [s/VARxi]) (j 6= i)

3.2 Call-by-name evaluation

First, we give an axiomatization of call-by-name evaluation in the λ-calculus. We use
two primitive predicates: Ev(t, s), understood as “t evaluates to s,” and Rd(t, s),
understood as “t reduces to s in one step.” The process of call-by-name evaluation
is defined through the following axioms:

(A1) {∀s}.Rd(APP(LAMxi. t, s), t [s/VARxi])

(A2) {∀rst}.Rd(r, s) → Rd(APP(r, t), APP(s, t))

(A3) {∀rst}.Rd(r, s) → Ev(s, t) → Ev(r, t)

(A4) Ev(t, t) for all terms t = LAMxi. s

The first and the last axioms are schematic in the logical term t whose free logical
variables must range over sorts of closed object-level terms. As explained above, this
restriction is necessary for the meta-level definition of substitution to be correct.

The axioms formally capture the idea that (call-by-name) evaluation is the re-
flexive, transitive closure of (normal-order) one-step reduction as defined above.
The notion of reduction is β-reduction (axiom (A1)); it can be applied to left-most
redexes (axiom (A2)) yielding a one-step reduction relation. The evaluation stops
when a λ-abstraction is reached (the family of axioms (A4)); otherwise it is defined
as the transitive closure of one-step reduction (axiom (A3)).

In the proofs, we will use free assumption variables A1, A2, A3, A4 corresponding
to the respective axioms above. Since all the axioms are Harrop formulas, these free
variables will not occur in the extracted programs.

8
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3.2.1 Formalizing the proof
The logical relation used in the proof is defined as follows:

Rb(t) := ∃v.Ev(t, v)

RT1→T2(t) := ∃v.Ev(t, v) ∧ ∀s.RT1(s) → RT2(APP(t, s))

A term of an arrow type satisfying the relation RT is not only required to
evaluate to a value (or “halt”, in Pierce’s terms [12, p. 150]), but it should also halt
when applied to another halting term. This stronger condition allows to prove the
desired theorem for both call-by-value and call-by-name evaluation strategies. If we
are only interested in evaluation at base types, a weaker condition is actually enough
to prove the normalization theorem for call-by-name evaluation (see Section 3.4),
but for the call-by-value case we still need this stronger definition.

We immediately see that every term satisfying the relation RT evaluates to a
value:

Lemma 3.5 {∀t}.RT (t) → ∃v.Ev(t, v).

Proof. By induction on types at the meta level. The corresponding proof terms
are:

pb
1 = {λt}.λuRb(t).u

pT1→T2
1 = {λt}.λuRT1→T2

(t).fstu
2

To prove the main lemma, we need the following property.

Lemma 3.6 {∀rs}.Rd(r, s) → RT (s) → RT (r).

Proof. By induction on types at the meta level.

Case b. Assume Rd(r, s) and Rb(s). By Lemma 3.5, we obtain ∃v.Ev(s, v) from
Rb(s). Then using axiom (A3) we deduce ∃v.Ev(r, v).

The proof term corresponding to this case is as follows:

pb
2 = {λrs}.λuRd(r,s)vRb(s).[pb

1 v,w
Ev(s,v′).〈v′, A3 {rsv′}uw 〉]

Case T1 → T2. Assume Rd(r, s) and RT1→T2(s). We need to prove ∃v.Ev(r, v)
and ∀t.RT1(t) → RT2(APP(r, t)). The first fact is proved analogously to the base
case. For the second, assume that RT1(t) holds for some t. By axiom (A2) we ob-
tain Rd(APP(r, t), APP(s, t)). Next, unwinding the definition of RT1→T2(s) yields
RT2(APP(s, t)). Hence, by induction hypothesis we conclude that RT2(APP(r, t)).
Here is the corresponding proof term:

pT1→T2
2 = {λrs}.λuRd(r,s)vRT1→T2

(s).(pT1→T2
2,1 ,pT1→T2

2,2 )

where

pT1→T2
2,1 = [pT1→T2

1 v,wEv(s,v′).〈v′, A3 {rsv′}uw〉]
pT1→T2

2,2 = λtΛT1zRT1
(t).pT2

2 {APP(r, t)APP(s, t)} (A2 {rst}u) (snd v s z)

9
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2

Lemma 3.7 For any term t of type T , with FV(t) = {x1, . . . , xn}, and for any
n-tuple of closed terms ~r = r1, . . . , rn of types Ti such that RTi(ri) holds for all
1 ≤ i ≤ n, we have

RT (t [~r/~x]).

(We use the abbreviation t [~r/~x] for t [r1/VARx1] · · · [rn/VARxn].)

Proof. By induction on the typing derivation (or, on the structure of t, parame-
terized by the set of free variables). The formula to prove is

∀~r. (RT1(r1) ∧ . . . ∧RTn(rn)) → RT (t [~r/~x]).

Case t = VARxTi . Obvious. pVARxi,~x
3 = λ~r~u.ui.

Case t = APP(sT1→T
1 , sT1

2 ). We apply the induction hypothesis to both subterms to
obtain RT1→T (s1 [~r/~x]) and RT1(s2 [~r/~x]). Unwinding the definition of
RT1→T (s1 [~r/~x]) then yields RT (APP(s1, s2) [~r/~x]) (using APP(s1 [~r/~x], s2 [~r/~x]) =
APP(s1, s2) [~r/~x]).

pAPP(s1,s2),~x
3 = λ~r~u.snd(ps1,~x3 ~r~u) (s2 [~r/~x]) (ps2,~x3 ~r~u).

Case t = LAMxT1
n+1. r

T2(T = T1 → T2). We need to show that ∃v.Ev(t [~r/~x], v) and
∀s.RT1(s) → RT2(APP(t [~r/~x], s)). The first fact follows from (an instance of) the
axiom (A4), since (LAMxn+1. r) [~r/~x] is a λ-abstraction. For the second, assume
that RT1(s) holds for some s. By induction hypothesis, RT2(r [~r/~x] [s/xn+1])
holds. We now obtain RT2(APP(LAMxn+1. r [~r/~x], s)) using axiom (A1) and Lemma
3.6, which concludes the proof. The corresponding proof term reads as follows:

pLAMxn+1. r,~x
3 = λ~r~u.(p3,1,p3,2)

where

p3,1 = 〈(LAMxn+1. r) [~r/~x], A4〉
p3,2 = λsΛT1vRT1

(s).pT2
2 {t1t2} (A1 {s}) pr,~xxn+1

3 (~rs) (~uv)

with

t1 = APP(LAMxn+1. r [~r/~x], s)

t2 = r [~r/~x] [s/VARxn+1]
2

The normalization theorem can now be stated formally as follows.

Theorem 3.8 For any closed term t of type T , ∃v.Ev(t, v) holds.

Proof. By Lemma 3.7, RT (t) holds. Hence, by Lemma 3.5, ∃v.Ev(t, v) holds.

p = pT1 (pt3 ε ε),

where ε denotes the empty tuple. 2

10
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3.2.2 Extracted program
Since the induction on the structure of terms in the proof of Lemma 3.7 is done
at the meta level, from the proof of Theorem 3.8 we do not obtain one extracted
program of type ΛT → ΛT realizing the formula ∀tΛT .∃vΛT .Ev(t, v), but rather—
for each term tΛT —we extract a program ‘computing’ a term v such that Ev(t, v)
is provable in M−

1 (λ) [2].
We first consider the types τ(RT (t)) of programs extracted from Lemma 3.7

(for specific terms tΛT .) We see that the types τ(RT (t)) are independent of t, and
that they can be characterized inductively like this:

τ(Rb) := Λb

τ(RT1→T2) := ΛT1→T2 × (ΛT1 → τ(RT1) → τ(RT2))

This defines the semantic domains of a glueing model similar to the ones considered
by Coquand and Dybjer (relative to any particular model of M−

1 (λ)).
The terms extracted from Lemma 3.7 can be inductively described as follows

(they are parameterized by a tuple of free variables ~x):

eval VARxi,~x
= λ~t~u.ui

eval APP(r,s),~x = λ~t~u.snd(eval r,~x~t~u) (s [~t/~x]) (eval s,~x~t~u)

eval LAMxn+1. t,~x = λ~t~u.(LAMxn+1. t [~t/~x], λsv.[[pT2 ]] (eval t,~xxn+1
(~ts)(~uv)))

with

[[pb
2]] = λu.u

[[pT1→T2
2 ]] = λx.(fst x, λsv.[[pT2

2 ]] ((sndx) s v))

(Note that [[pT2 ]] is βη×-equivalent to the identity function.) For every closed term
tΛT , eval t,ε denotes the glueing model interpretation of the object-level term de-
noted by tΛT .

From Lemma 3.5 we obtain the ‘reification’ function mapping semantic values
back to syntax (parameterized with the type of a given term):

↓b = λuΛb .u

↓T1→T2 = λuΛT1→T2
×(ΛT1

→τ(RT1
)→τ(RT2

)).fstu

The complete program is the composition of the two functions and it is therefore
an instance of (weak head) normalization by evaluation:

[[p
tT

]] = ↓T (eval t,ε εε)

In this presentation of the evaluation function there are two environments, rep-
resented by the vectors ~t and ~u, whose elements can be substituted for the respective
variables in the vector ~x (by construction, the length of all the vectors is the same).
The program produces weak head normal forms, according to the call-by-name strat-
egy given by the axioms, and it is correct in the sense that the formula Ev(t, [[p

tT
]])

is provable in M−
1 (λ) for every closed simply typed term t of type T .

11
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3.3 Call-by-value evaluation

The process of call-by-value evaluation of closed terms is defined through the fol-
lowing axioms:

(A1) {∀s}.V(s) → Rd(APP(LAMxi. t, s), t [s/VARxi])

(A2) {∀rst}.Rd(r, s) → Rd(APP(r, t), APP(s, t))

(A′
2) {∀rst}.V(r) → Rd(s, t) → Rd(APP(r, s), APP(r, t))

(A4) V(t) for all terms t = LAMxi. s

Similarly to the call-by-name case, these axioms directly encode the definition of
one-step call-by-value evaluation strategy. In this case, however, the predicate Ev
cannot be taken as primitive anymore, because we need to know more about the
evaluation process. Informally, this is due to the fact that under call by value—in
order for the proof to go through—we have to verify that whenever r reduces to s
in zero or more steps, and RT (r) holds, then also RT (s) holds. Thus we need to
proceed by induction on the length of the reduction sequence r → . . .→ s.

To this end we define an auxiliary relation Rd∗n :

Rd∗0 (t, s) := t = s

Rd∗n+1 (t, s) := ∃r.Rd(t, r) ∧Rd∗n(r, s)

A formula Rd∗n (t, s) is to be understood as “t reduces to s in n steps.” Just as
for the simple types, we do not formalize the induction on natural numbers used in
proofs of properties of Rd∗n—it is done at the meta level.

Then we can define the evaluation predicate as follows:

Evn(t, v) := Rd∗n(t, v) ∧V(v)

This definition requires extending the logic M1 with the usual axioms for equal-
ity (the soundness of modified realizability is preserved with this extension [14]).

3.3.1 Computationally irrelevant existential variables
The problem with the above specification of the predicate Evn is that via modified
realizability a witness to the formula ∃v.Evn(t, v) will be a sequence of terms, rep-
resenting the whole reduction sequence t→ . . .→ v, while we are only interested in
the final result, i.e., v. To rectify this, we introduce a further refinement of the pro-
gram extraction procedure that allows to choose which of the existential quantifiers
in a formula we want to realize. We use the same notation {} for “uninteresting” ex-
istential variables as that for computationally redundant universal variables. In his
work on Uniform Heyting Arithmetic [3], Berger independently proposed a similar
refinement.

Definition 3.9 [Computationally irrelevant existential variables] Let us define an
extension of the logic M1 by adding formulas of the form {∃x}. φ, and the corre-

12
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sponding introduction and elimination rules:

(∃+) 〈{t}, dφ [t/x]〉{∃x}. φ

(∃−) [e{∃x}. φ, uφ.dψ]
ψ

(provided x /∈ FV(ψ), x /∈ FV(χ) for every vχ ∈ FA(d) \ {uφ}
and x /∈ CV(d))

Here the set of computationally relevant variables extends the previous definition
in the following way:

CV([e{∃x}. φ, uφ.dψ ]) := CV(d) ∪ CV(e)

CV(〈{t}, dφ [t/x]〉) := CV(d)

The type of realizers for these new formulas is defined as τ({∃x}. φ) := τ(φ). Fur-
thermore, rmr {∃x}. φ := ∃x. rmrφ (with x /∈ FV(r)), and

[[〈{t}, d〉]] := [[d]]

[[[e{∃x}. φ, u.d]]] := [[d]] [[[e]]/xu ]

Example 3.10 The formula ({∃x}. P (x)) → ∃x. P (x) is not provable: intuitively,
the witness for the succedent is exactly the one provided by the proof of the an-
tecedent of the implication, and since we do not want to know what that witness
is, we also cannot produce a witness for the succedent (in other words, the witness
for {∃x}. P (x) is local to the proof of this formula).

On the other hand, the formula (∃x. P (x)) → {∃x}. P (x) is provable, but it
does not have any computational content if P is a Harrop formula; otherwise the
extracted program is a function that only “forgets” the existential witness.

The proof of soundness for modified realizability (Theorem 2.3) can be extended
to handle the additional cases.

3.3.2 Formalizing the proof
Having introduced the necessary refinement, we are now in a position to redefine
the reducibility predicate in the following way (making the existential variables
computationally irrelevant):

Rd∗0 (t, s) := t = s

Rd∗n+1 (t, s) := {∃r}.Rd(t, r) ∧Rd∗n(r, s)

We can see that the type of realizers for Rd∗n(t, s) is now the unit type.
As remarked before, the logical relation used in the proof is defined as in the

call-by-name case, except that now it can be refined—the universal variable becomes
computationally redundant under call by value (we announce it in advance, but this
observation can only be made after we actually write down the proof):

Rb(t) := ∃v.Evn(t, v)

RT1→T2
(t) := ∃v.Evn(t, v) ∧ {∀s}.RT1

(s) → RT2
(APP(t, s))

For simplicity, we omit the parameterization of RT by natural numbers, induced by
the definition of the predicate Evn .

13
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The call-by-value analog of Lemma 3.5 is stated and proved in the same way:

Lemma 3.11 {∀t}.RT (t) → ∃v.Evn(t, v).

In order to prove the call-by-value version of Theorem 3.8 we need a few more
properties of evaluation, stated in Lemmas 3.12-3.15.

Lemma 3.12 {∀st}.Rd(s, t) → RT (t) → RT (s).

Proof. Induction on types, using the following property: {∀stv}.Rd(s, t) →
Rd∗n(t, v) → Rd∗n+1 (s, v), which itself is proved by induction on n. 2

Lemma 3.13 {∀st}.Rd∗n (s, t) → RT (t) → RT (s).

Proof. Induction on n, using Lemma 3.12. 2

Lemma 3.14 {∀stv}.Rd∗n (s, v) → V(t) → Rd∗n(APP(t, s), APP(t, v)).

Proof. Induction on n. 2

Lemma 3.15 {∀st}.Rd∗n (s, t) → RT (s) → RT (t), where m ≥ n.

Proof. Induction on n, using the following properties:

(i) {∀rst}.Rd∗n+1 (t, s) → Rd(t, r) → Rd∗n(r, s)

(ii) {∀st}.Rd(t, s) → RT (t) → RT (s)

The proof of Property i requires an additional axiom expressing determinism of the
reduction relation:

(Det) {∀rst}.Rd(t, r) → Rd(t, s) → r = s.
2

The call-by-value analog of Lemma 3.7 is stated just as before, and its proof—
which we omit for lack of space—relies on Lemmas 3.12-3.15:

Lemma 3.16 For any term t of type T , with FV(t) = {x1, . . . , xn}, and for any
n-tuple of closed terms ~r = r1, . . . , rn of types Ti such that RTi

(ri) holds for all
1 ≤ i ≤ n, we have

RT (t [~r/~x]).

The main theorem is also stated and proved as before.

3.3.3 Extracted program
Again we see that the types τ(RT (t)) are independent of t. They describe the
domains of a glueing model as follows:

τ(Rb) := Λb

τ(RT1→T2) := ΛT1→T2 × (τ(RT1) → τ(RT2))

14
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Similarly to the previous case, the program we obtain for call by value is the
composition of the term extracted from Lemma 3.11 (the same as for call by name),
and the one extracted from Lemma 3.16, which looks as follows:

eval VARxi,~x
= λ~t~u.ui

eval APP(r,s),~x = λ~t~u.snd(eval r,~x~t~u) (eval s,~x~t~u)

eval LAMxT1
n+1. t

T2 ,~x
= λ~t~u.((LAM xn+1. t) [~t/~x], λv.eval t,~xxn+1

(~t(↓T1 v))(~uv))

This program also threads two environments, but the first of them (represented by
the vector ~t) contains already evaluated terms. As before, for every closed term tΛT ,
eval t,ε denotes the glueing model interpretation of the object-level term denoted
by tΛT .

Remark 3.17 In the original formulation of Lemma 3.16 in Pierce’s book [12,
p. 151], the terms to be substituted for free variables in a given term were required
to be values. This restriction, however, is not necessary for the proof to go through,
and the resulting program is exactly the same as the one obtained here.

3.4 Weak head normalization for closed terms of base type

We now show a variant of the proof of weak head normalization where we are only
interested in evaluating terms of base type. In order to be able to observe the
behavior of programs, we extend the object language with integers, formed with
the zero constant 0 and the successor constant S in the usual way. The set of base
types now includes the type ι for integers. As mentioned before, for call-by-name
evaluation we can simplify the definition of the relation RT , which consequently
leads to a simpler extracted program that we will show next.

We add the following two axioms specifying the evaluation strategy for the new
terms:

(A5) Ev(0, 0)

(A6) ∀tv.Ev(t, v) → Ev(S t, S v)

The definition of the logical relation is now less restrictive for higher types:

Rb(t) := ∃v.Ev(t, v)

RT1→T2
(t) := {∀s}.RT1

(s) → RT2
(APP(t, s))

Theorem 3.18 For any closed term t of type ι, ∃v.Ev(t, v) holds.

The proof is carried out almost as before, and it relies on the base-type version of
Lemma 3.5, on Lemma 3.6 as before, and on the base-type counterpart of Lemma 3.7
which now reads as follows (note that the vector of terms ~r is now computationally
redundant):

Lemma 3.19 For any term t of type T , with FV(t) = {x1, . . . , xn},

{∀~r}. (RT1
(r1) ∧ . . . ∧RTn

(rn)) → RT (t [~r/~x]).

For the proof of Lemma 3.19 we need to show that Rι(0) holds, and that for
any term t of type ι, Rι(t) → Rι(S t) holds.

15
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Remark 3.20 The proof does not go through if we use the call-by-value axiom-
atization instead of call by name; this is due to the fact that in the proof of the
main lemma, in the case for abstraction, we must know that an arbitrary term of
an arbitrary type evaluates to a value. However, with the weakened definition of
the relation RT we cannot prove this fact any more.

The program extracted from the proof looks as follows:

eval 0,~x = λ~u.0

eval S t,~x = λ~u.S (eval t,~x ~u)

eval VARxi,~x
= λ~u.ui

eval APP(r,s),~x = λ~u.(eval r,~x ~u) (eval s,~x ~u)

eval LAMxn+1. t,~x = λ~u.λv.eval t,~xxn+1
~uv
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A Implementation

This appendix contains an ML implementation of the normalization programs from
Sections 3.2.2 and 3.3.3. The implementation ignores the dependencies in the defi-
nition of the object-level terms and the semantic domains:

type ide = string

datatype term = VAR of ide
| APP of term * term
| LAM of ide * term

The ML programs work by optimistically trying to interpret an untyped object-level
term (defined in the data type term just above) into a semantic domain defined by
a reflexive type (see the data type R below for call by name and call by value).
However, as stressed by Filinski [9,10], it is a non-trivial task to prove that such
implementations are correct.

We use the following auxiliary functions, whose definitions are omitted:

subst_all : term * (ide * term) list -> term
lookup : ’’a * (’’a * ’b) list -> ’b

The function subst all implements simultaneous substitution of terms for vari-
ables. The function lookup implements a standard association-list lookup.
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A.1 Call by name

datatype R = BASE of term
| ARROW of term * (term -> R -> R)

fun reify (BASE t)
= t

| reify (ARROW (t, f))
= t

fun eval (VAR x, ts, us)
= lookup (x, us)

| eval (APP (t1, t2), ts, us)
= let val ARROW (_, f) = eval (t1, ts, us)

in f (subst_all (t2, ts)) (eval (t2, ts, us))
end

| eval (LAM (y, t1), ts, us)
= let val t = subst_all (LAM (y, t1), ts)

val f = fn s => fn u => eval (t1, (y, s) :: ts, (y, u) :: us)
in ARROW (t, f)
end

fun normalize t
= reify (eval (t, [], []))

A.2 Call by value

datatype R = BASE of term
| ARROW of term * (R -> R)

fun reify (BASE t)
= t

| reify (ARROW (t, f))
= t

fun eval (VAR x, ts, us)
= lookup (x, us)

| eval (APP (t1, t2), ts, us)
= let val ARROW (_, f) = eval (t1, ts, us)

in f (eval (t2, ts, us))
end

| eval (LAM (y, t1), ts, us)
= let val t = subst_all (LAM (y, t1), ts)

val f = fn u => eval (t1, (y, reify u) :: ts, (y, u) :: us)
in ARROW (t, f)
end

fun normalize t
= reify (eval (t, [], []))

17
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