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Abstract

For a system of polynomial equations over Qp we present an
efficient construction of a single polynomial of quite small degree
whose zero set over Qp coincides with the zero set over Qp of
the original system. We also show that the polynomial has some
other attractive features such as low additive and straight-line
complexity.

The proof is based on a link established here between the above
problem and some recent number theoretic result about zeros of
p-adic forms.

1 Introduction

Let us consider a system of n polynomial equations in m variables

fi(x1, . . . , xm) = 0, i = 1, . . . , n, (1)
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over a field IK,

fi(X1, . . . , Xm) ∈ IK[X1, . . . , Xm], i = 1, . . . , n.

It is shown in [8, Lemma 13] that if IK is not algebraically closed then
there exists a polynomial

f(X1, . . . , Xm) ∈ IK[X1, . . . , Xm]

such that the system (1) has a solution x1, . . . , xm ∈ IK if and only if the
equation

f(x1, . . . , xm) = 0 (2)

has a solution x1, . . . , xm ∈ IK. Moreover if the total degree of polynomi-
als f1, . . . , fn does not exceed d, then the total degree of the polynomial
f does not exceed dnO(1). Thus we have a polynomial blow-up of the
degree. This result has been applied to studying the complexity of some
linear algebra problems [8].

Here we show that over Qp the same can be achieved with polyloga-
rithmic blow-up of the degree. Moreover, the same is true for the blow-
up of the additive and the straight-line complexity of the polynomials
f1, . . . , fn. In fact, for our construction

ZIK(f1, . . . , fm) = ZIK(f)

where ZIK(f1, . . . , fm) and ZIK(f) are the zero sets (over IK) of the system
of equations (1) and the equation (2).

The construction is based on a link established here between the above
reduction problem and some recent results on p-adic forms of low degree
and exponentially many variables having only trivial p-adic solutions [2,
3, 5, 6, 18].

This type of argument seems to be new in this area and we hope
that this technique may be useful for a number of other applications in
complexity theory and symbolic computation.

2 Notation and Auxiliary Results

For our applications we adapt a result from [6], although other results
from [2, 3, 5, 18] can be used as well.
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Lemma 1 (i) Let p be an odd prime. Given n polynomials

f0, . . . , fn−1 ∈ Qp[X1, . . . , Xm]

and an integer t > logp n, we define t polynomials

Fj =
n−1∑
i=0

f
(p−1)(2t−j)
i

n−1∑
k=0

f
(p−1)(2t+j)
k ∈ Qp[X1, . . . , Xm],

where j = 0, . . . , t− 1. Then

ZQp
(f0, . . . , fn−1) = ZQp

(F0, . . . , Ft−1).

(ii) Let p = 2. Given n polynomials

f0, . . . , fn−1 ∈ Q2[X1, . . . , Xm]

and an integer t > log8 n, we define t polynomials

Fj =
n−1∑
i=0

f
2(4t−j)
i

n−1∑
k=0

f
2(4t+j)
k ∈ Q2[X1, . . . , Xm],

where j = 0, . . . , t− 1. Then

ZQ2
(f0, . . . , fn−1) = ZQ2

(F0, . . . , Ft−1).

Proof. Let be be an odd prime. Clearly

ZQp
(f0, . . . , fn−1) j ZQp

(F0, . . . , Ft−1).

It is now enough to show that for t > logp n the following system of
homogeneous equations

n−1∑
i=0

x
(p−1)(2t−j)
i

n−1∑
k=0

x
(p−1)(2t+j)
k = 0, j = 0, . . . , t− 1,

does not have a nontrivial solution over Qp. Indeed, let (x1, . . . , xn) be
such a nontrivial solution. We can also assume that all x1, . . . , xn are
nonzero p-adic integers, not all divisible by p. We remark that the above
system of equations leads to t equations of the form

n−1∑
i=0

x
(p−1)jν

i = 0, ν = 1, . . . , t,
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with some integers t < j1 < . . . < jt < 3t. By Basic Odd Lemma
of [6, Section 2] we see that this system does not have nonzero modulo p
solutions which contradicts our assumption on x1, . . . , xn, which finishes
the proof in the case p ≥ 3.

For p = 2 the proof is completely analogous except that we use Basic
Even Lemma of [6, Section 2]. ut

We also need a more trivial construction of higher degree:

Lemma 2 Let p be a prime. Given n polynomials

f0, . . . , fn−1 ∈ Qp[X1, . . . , Xm]

and an integer k > logp n, we define a polynomial F ∈ Qp[X1, . . . , Xm]
by

F =

n−1∑
i=0

f
(p−1)pk−1

i

Then ZQp
(f0, . . . , fn−1) = ZQp

(F ).

Proof. We observe that if p |/ y then y(p−1)pk−1 ≡ 1 (mod pk), and if p |y
then y(p−1)pk−1 ≡ 0 (mod pk). Hence for the polynomial

Φ(Y1, . . . , Ypk−1) =

pk−1∑
i=1

Y
(p−1)pk−1

i ∈ Qp[Y1, . . . , Ypk−1]

we have
ZQp

(Φ) = {(0, . . . , 0)}
and the result follows, when using that pk − 1 ≥ n. ut

Now we recall several notions from algebraic complexity theory.
For a polynomial f(X1, . . . , Xm) ∈ IK[X1, . . . , Xm] we define its ad-

ditive complexity A(f) as the least number of signs + and − which are
necessary to represent f as an algebraic formula over IK (thus we do not
count × and /).

We also define its straight-line complexity L(f) as the length of the
shortest straight-line arithmetic program which computes the values of
f at any point (x1, . . . , xm) ∈ IKm. That is the length L of the shortest
chain of the relations ui = xi, i = 1, . . . , m, and either ui = uji

◦ uki

or ui = ci where ci ∈ IK is a constant, i = m + 1, . . . , L, with uL =
f(x1, . . . , xm) for all (x1, . . . , xm) ∈ IKm, where ◦ stands for one of the
arithmetic operations and 1 ≤ ji, ki ≤ i− 1.
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For example, for the polynomial

f(x1, x2, x3) =

((
(2x1 + x2)

k + 3xk2+1
1 xk3

3

)2k+1

+ 1

)

× (
(x1 + 3x2x3)

k − 2
)

+ 1.

we have
A(f) = 6, L(f) = O(log k).

These two notions play a central role in many parts of complexity
theory [7, 10, 17, 19, 21, 22, 23, 24]. In particular, polynomials of low
additive complexity admit a short encoding but exhibit quite complicated
behaviour.

Also, for a polynomial f(X1, . . . , Xm) ∈ IK[X1, . . . , Xm] we define its
sparsity S(f) as the number of non-zero coefficients in the representation
of f of the form

f(X1, . . . , Xm) =
∑

i1,...,im

ai1...imX i1
1 . . .X im

m .

That is S(f) is the number of distinct monomials in such a representation.
Obviously A(f) ≤ S(f) but as the above example shows S(f) cannot

be estimated in terms of A(f).
There is a constantly growing interest to various features of sparse

polynomials over various algebraic domains, see [4, 9, 11, 12, 13, 14, 15,
16, 20, 25, 27, 28, 29] and references therein.

One can easily verify the following statement.

Lemma 3 For given n polynomials

f0, . . . , fn−1 ∈ Qp[X1, . . . , Xm],

we put

F =

n−1∑
i=0

fD1
i

n−1∑
k=0

fD2

k ,

where D1, D2 are non-negative integers with D1 + D2 = O(logn). Let

d = max1≤i≤n deg fi, a = max
1≤i≤n

A(fi),

l = max1≤i≤n L(fi), s = max
1≤i≤n

S(fi).
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Then

deg F = O(d logn), A(F ) = O(an),

L(F ) = O(ln + n log log n), S(F ) = sO(log n),

provided s ≥ 2.

In connection with the iterated use of Lemma 1 we need the following
notation. Let log(i) n denote i iterations of the function x 7→ dlog3(x+1)e
taken on n, and let log∗ n denote the minimal i for which log(i) n ≤ 1.
Finally, we denote

λ(n) =

log∗ n∏
i=1

log(i) n.

Throughout this paper p is assumed to be fixed; thus implicit con-
stants in ‘O’-symbols may depend on p.

3 Main Results

Theorem 4 Let polynomials

fi(X1, . . . , Xm) ∈ Qp[X1, . . . , Xm],

where i = 1, . . . , n, be of total degree at most d, of additive complexity
at most a, of straight-line complexity at most l and of sparsity at most
s ≥ 2.

Then there exists a polynomial

G(X1, . . . , Xm) ∈ Qp[X1, . . . , Xm]

◦ of total degree deg G = dλ(n)2O(log∗ n);

◦ of additive complexity A(G) = anλ(n)2O(log∗ n);

◦ of straight-line complexity L(G) = O(ln + n log n);

◦ of sparsity S(G) = sλ(n)2O(log∗ n)
;

and such that ZQp
(f1, . . . , fm) = ZQp

(G).
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Proof. Let t be the minimal integer such that t > log3 n and use
the construction of Lemma 1 to find polynomials F1, . . . , Ft such that
ZQp

(f1, . . . , fm) = ZQp
(F1, . . . , Ft). While t > 1 the construction of

Lemma 1 is repeated and after a total of log∗ n iterations the result is a
single polynomial G such that ZQp

(f1, . . . , fm) = ZQp
(G).

For each application of Lemma 1, the degree of the constructed poly-
nomial grows by a factor O(log n). When the construction is repeated
log∗ n times the constant factor hidden in the O-notation may grow to a
factor 2O(log∗ n). Bearing this in mind, the stated bounds on the degree
and the sparsity follows from Lemma 3.

The bound on the additive complexity similarly follows from repeated
applications of Lemma 3.

For the straight line complexity, one must in addition compute the
intermediate results only once in order to obtain the stated bound O(ln+
n log n) ut

It is an open question, whether our result is nearly optimal. Over the
field of real numbers, one may encode an arbitrary number of polynomials
into a single polynomial while only doubling the degree when using the
form x2

1 +x2
2 + · · ·+x2

n. It is known, see [26], that any form in n variables
having only trivial zeros over Qp must have degree at least Ω(log log n).
The construction of Theorem 4 implicitly uses such a form of degree
λ(n)2O(log∗ n). An improved result may, however, not be based on such
forms, in which case no lower bound is known.

There seems to be a trade-off between additive complexity and degree
in the result of Theorem 4 in that a modified construction leads to a
better additive complexity with the cost of a slightly higher degree (and
sparsity):

Theorem 5 Under the same assumptions as in Theorem 4 there exists
a polynomial

H(X1, . . . , Xm) ∈ Qp[X1, . . . , Xm]

◦ of total degree deg H = O(d log2 n);

◦ of additive complexity A(H) = O(an log n);

◦ of straight-line complexity L(H) = O(ln + n log n);

◦ of sparsity S(H) = sO(log2 n);

and such that ZQp
(f1, . . . , fm) = ZQp

(H).
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Proof. Let integer t be the minimal such that t > log3 n and use
the construction of Lemma 1 to find polynomials F1, . . . , Ft. Apply the
construction of Lemma 2 on these t polynomials (with integer k chosen
minimal such that k > log2 t) to get the single polynomial H with the
same zero set as the original n polynomials.

The complexity bounds for H are proved similarly to those for G in
theorem 4. ut

Finally we show how to reduce studying zero sets of p-adic polynomi-
als of low additive complexity to studying zero sets of sparse polynomials
which admit a number of algorithmic approaches [4, 9, 11, 12, 13, 14, 15,
16, 19, 25, 28, 29].

Theorem 6 For any polynomial

F (X1, . . . , Xm) ∈ Qp[X1, . . . , Xm]

of additive complexity at most A(F ) there exists a polynomial

f(X1, . . . , Xm+n) ∈ Qp[X1, . . . , Xm+n]

of sparsity

S(f) ≤ A(F )λ(log n)2O(log∗ n)

and such that
ZQp

(F ) = πmZQp
(f).

where πm : Qm+n
p → Qm

p is the projection map along the first m coordi-
nates.

Proof. It is easy to show by induction, see also [10, 21, 22], that the
equation

F (x1, . . . , xm) = 0

can be written down as an equivalent system of n+1 ≤ A(F )+1 equations
in m + n variables of the following shape

xi = αi

∏
j∈Ji

x
eij

j + βi

∏
k∈Ki

xhik
k ,

i = m + 1, . . . , m + n,∏
j∈Jm+n+1

xj = 0,
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where Ji, Ki ⊆ {1, . . . , i−1}, αi, βi ∈ IK, with some integer non-negative
exponents eij , hik. Applying Theorem 4 (with s = 3) and using that

3λ(n) = (n + 1)λ(log n) ≤ (A(F ) + 1)λ(log n)

we obtain the desired statement. ut
We remark that an analogue of Lemma 1 is known for finite algebraic

extensions of Qp as well [1], thus our results can be transferred to such
fields, too.
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