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Abstract

Some basic programming constructs (e.g., conditional statements) are found in many
different programming languages, and can often be included without change when
a new language is designed. When writing a semantic description of a language,
however, it is usually not possible to reuse parts of previous descriptions without
change.

This paper introduces a new formalism, ASDF, which has been designed specif-
ically for giving reusable action semantic descriptions of individual language con-
structs. An initial case study in the use of ASDF has already provided reusable
descriptions of all the basic constructs underlying Core ML.

The paper also describes the Action Environment, a new environment supporting
use and validation of ASDF descriptions. The Action Environment has been im-
plemented on top of the ASF+SDF Meta-Environment, exploiting recent advances
in techniques for integration of different formalisms, and inheriting all the main
features of the Meta-Environment.
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1 Introduction

Action Semantics [19] is a practical framework for describing the dynamic
semantics of programming languages. The part of an action semantic descrip-
tion (ASD) concerned with any particular construct is independent of what
other constructs are included in the described language, so ASDs enjoy a high
degree of inherent modularity, and can easily be extended or modified. It is
also possible to reuse parts of the ASD of one language in the ASD of an-
other, without change. With the conventional modular structure of an ASD,
however, it is usually not possible to reuse entire modules, so one has to copy
and paste the required parts.

Doh and Mosses [12] proposed a flatter modular structure for ASDs, with the
description of each construct being a separate module. This new structure
allows a complete language to be described simply by listing the names of
the modules for the included constructs, and fully supports explicit reuse of
parts of semantic descriptions. Doh and Mosses formulated their modules in
ASF+SDF [11], and used the ASF+SDF Meta-Environment [7] for checking
them.

The approach of Doh and Mosses was feasible, but the direct use of ASF+SDF
carried a considerable notational overhead. In this paper, we introduce a new
action semantic description formalism, ASDF, which has been designed specif-
ically for giving reusable descriptions of individual language constructs. We
also report on the Action Environment, a new environment supporting use
and validation of ASDF descriptions. The Action Environment has been im-
plemented on top of the ASF4+SDF Meta-Environment, exploiting recent ad-
vances in techniques for integration of different formalisms [6], and inheriting
all the main features of the Meta-Environment. This was feasible due to the
open architecture of the Meta-Environment. The Meta-Environment has a
component-based architecture which allows an easy connection of new com-
ponents in a fairly easy manner. In order to transform the ASF4+SDF Meta-
Environment into the Action Environment, a number of new components had
to be defined, and plugged into the Meta-Environment. The most important
ones were the components that took care of translating ASDF into ASF+SDF.

The present paper is an extended version of [5]. We have added documenta-
tion of how the Action Environment has been improved within the last year,

which include support for both ASF+SDF and ASDF, and that an ASDF type
checker and an action interpreter have been connected to the environment.

Overview: Section 2 recalls ASF4+SDF and the Meta-Environment. Section 3
gives a brief outline of Action Semantics, focusing on modularity. Section 4
introduces ASDF and the Action Environment. Section 5 recalls the archi-



tecture of the Meta-Environment, and explains the novel techniques used to
integrate ASDF. Section 6 mentions some related work. Section 7 concludes.

2 ASF+4SDF

ASF+SDF is a general-purpose, executable, algebraic specification language.
Its main application area has hitherto been in the modular definition of the
syntax and the static semantics of (programming) languages, but it has also
been used for the modular definition of (dynamic) action semantics of lan-
guages (see Section 3) and for defining translations between languages.

As the name indicates, the ASF+SDF formalism is a combination of two
previous formalisms: ASF, the Algebraic Specification Formalism [2, 11], and
SDF, the Syntax Definition Formalism [13]. SDF is used to define the concrete
syntax of a language, whereas ASF is used to define conditional rewrite rules;
the combination ASF+SDF allows the syntax defined in the SDF part of a
specification to be used in the ASF part, thus supporting the use of so-called
‘mixfix notation’ in algebraic specifications. ASF+SDF allows specifications
to be divided into named modules, facilitating reuse and sharing (as in SDF).

In the rest of this section, both SDF and ASF will be discussed, as well as the
interactive programming environment that supports the use of ASF+SDF: the
ASF+SDF Meta-Environment [7].

2.1 Syntax Definition Formalism

The Syntax Definition Formalism SDF is a declarative formalism used to de-
fine concrete syntax of languages: not only programming languages, e.g., Java
and COBOL, but also specification languages, e.g., CASL, Elan, and Action
Semantics. In contrast to (E)BNF-like formalisms, SDF allows a modular def-
inition of grammars. Furthermore, SDF does not impose a specific class of
grammars, like LL(k), LR(k), etc., but allows arbitrary, cycle-free, context-
free grammars — the grammars may even be ambiguous. The choice of the
class of arbitrary context-free grammars enables the modular definition of
grammars, because only this class is closed under union. Although the full
power of arbitrary context-free grammars is hardly necessary when defining
the syntax of a programming language (except for languages like COBOL,
PL/I, etc.), modularity is essential for reuse of specific language constructs in
various language definitions.

An SDF definition consists of a collection of modules where modules may im-



port other modules. The import mechanism offers primitive parameterisation
and symbol-renaming facilities. This is demonstrated in Figure 1: The formal
parameter X of the module “containers/List” is instantiated with the actual
parameter Integer. The imported modules are automatically exported; the
syntax defined in the module can either be exported or hidden.

module ListOfIntegers
imports basic/Integers containers/List[Integer]

module containers/List/X]
imports basic/Booleans basic/Integers

Fig. 1. A small SDF definition demonstrating the parameterisation mechanism

Figure 2 demonstrates the basic SDF features for defining lexical syntax,
context-free syntax, associativities, and priorities.

module basic/Integers
imports basic/Booleans

exports
sorts NatCon Integer
lexical syntax
[0-9]1+ -> NatCon
context-free syntax

NatCon -> Integer

Integer "+" Integer  -> Integer {left}
Integer "=" Integer — => Integer {left}
Integer "x" Integer — => Integer {left}

" (" Integer ")" -> Integer {bracket}

context-free priorities
Integer "x" Integer -> Integer >
{left: Integer "+" Integer -> Integer
Integer "=" Integer -> Integer}

lexical restrictions
NatCon -/- [0-9]

hiddens

variables
"Int" [0-9]* -> Integer

Fig. 2. An SDF module of the Integers



2.2 Algebraic Specification Formalism

The Algebraic Specification Formalism ASF provides conditional equations,
where also negative conditions are allowed, see Figure 3 for a number of ASF
equations for the Integers. The concrete syntax defined in the correspond-
ing SDF module and in the transitive closure of the imported modules (only
the exported sections, of course) can be used when writing the conditional
equations of an ASF module.

equations
[0 0+ Int = Int
(1 Int + 0 = Int
Jd1+1=2
l1+2=23
(] Int x0=0
(1 Int * 1 = Int
(1 gt(Int2, 1) = true
====>
Intl *x Int2 = Intl + Int1 * (Int2 - 1)

Fig. 3. Some ASF equations for the Integers

2.8 The ASF+SDF Meta-Environment

The development of ASF+SDF specifications is supported by an interactive
integrated programming environment, the ASF+SDF Meta-Environment [7].
This programming environment provides syntax directed editing facilities for
both the SDF and ASF parts of modules as well as for terms, well-formedness
checking of modules, interactive debugging of ASF equations, and visualisa-
tion facilities of the import graph and parse trees. The environment offers all
kinds of refactoring operations at the specification level: renaming of modules,
copying of modules, etc. Furthermore, a library of predefined primitive data
structures, e.g., Booleans, Integers, Strings, Lists, Sets, etc., is available. The
library contains also a growing collection of grammars of programming and
specification languages, e.g., Java, C, CASL, SDF itself, etc.

The user interface of the ASF4+SDF Meta-Environment is shown in Figure 4.
Modules defining the concrete syntax of Pico (a toy language) have been
opened. In the left part we see a tree-structured view of the modules, whereas
the right pane shows the graph with import relations of the modules.
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Fig. 4. GUI of the ASF4+SDF Meta-Environment.

3 Action Semantics

The main aim of Action Semantics [19] is that descriptions of programming
languages should be as easy as possible to work with. Action semantic de-
scriptions (ASDs) scale up smoothly from small idealised languages to full
languages [8, 22], and they have a high degree of comprehensibility (regard-
ing not only perspicuity of notation, but also underlying concepts). They also
have inherently good modularity, and can be extended or modified without
reformulation of those parts of the description concerned with the unchanged
constructs.

Action Semantics (AS) is a hybrid of Denotational Semantics and Operational
Semantics, and combines the best features of both approaches. As in a con-
ventional denotational description, inductively defined semantic functions map
programs (and declarations, expressions, statements, etc.) compositionally to
their denotations, which model their behaviour. The difference is that here,
denotations are actions, and expressed in Action Notation (AN), which is it-
self defined operationally (originally [19, App. C] using Structural Operational
Semantics, later [20] in a more modular style).

The inherent modularity of ASDs comes from the design of AN, not from their



explicit division into named modules. For instance, applications of action com-
binators remain valid (and meaningful) when the actions that they combine
are enriched with new facets of behaviour; and similarly regarding the data
processed by actions. The original version of AN [19, App. B| was rather large,
but the revised version, AN-2 [16], is much more economical, and the size of
the AN-2 kernel notation is comparable to that of the notation used in the
monadic style of denotational semantics (e.g., as used in [17]).

Although the division of an ASD into named modules is not essential for exten-
sibility and modifiability, the overall modular structure is of crucial significance
for reusability. The original structure of ASDs was hierarchical, being a refine-
ment of the usual division of semantic descriptions into sections dealing with
abstract syntax, auxiliary semantic entities, and definitions of semantic func-
tions. The abstract syntax module was divided into submodules, one for each
sort of construct (expressions, statements, etc.), and similarly for the semantic
functions; the submodules for the auxiliary entities were similarly focused on
particular sorts of data. The implementation of a previous environment for
AS based on the ASF+SDF Meta-Environment, the ASD Tools [10], relied on
this structure to distinguish between the different kinds of submodules.

Doh and Mosses [12] realized that this conventional modular structure was a
major impediment to explicit reuse of parts of ASDs. For example, suppose
that an AS for Standard ML has already been given [22], and we are writing
an AS for Java [8]. We cannot import the entire module for expressions from
the ASD of ML for reuse in the ASD of Java, since this would include ML
constructs not found in Java (e.g., anonymous function abstractions). On the
other hand, if we were simply to copy and paste the individual semantic equa-
tions for the common constructs, this would leave no explicit indication of the
fact that the two languages do have constructs in common, and readers of the
two descriptions would have to compare the details of the semantic equations
to discover exactly which the common constructs are.

Doh and Mosses proposed a radical change to the modular structure of ASDs,
to support an incremental approach to semantics and allow explicit reuse of
parts of ASDs. The main idea was to introduce a separate module for each
indiwidual construct, specifying both its syntax and the semantic equation
defining its AS, and referring to auxiliary modules for any required auxiliary
entities. There was also a separate module for each sort of construct, but, in
contrast to the original structure, this module did not combine a particular
selection of individual constructs: it merely introduced the syntactic sort itself,
some meta-variables ranging over it, and the symbol used for the corresponding
semantic function.

An ASD of a particular language was given simply by referring to the modules
for the required individual constructs and sorts of constructs; an ASD of a



different language could reuse some of the modules, omit others, and add
further modules. It was easy to determine which constructs two languages
have in common, simply by comparing the references to the modules.

ASF+SDF was used for writing ASDs with the new modular structure [12],
and a demonstration involving a small case study has been given [18].

Figure 5 shows the SDF module for the sort Ezp from [12]. It introduces the
semantic function evaluate and meta-variables ranging over Ezp. It imports
the auxiliary module Values, shown in Fig. 6, which introduces the sort Value
of expressible data (without constraining it at all). The Values module also
imports the module AN, which introduces the sort Action and all the rest of
the standard notation for actions.?

module Fxp
imports Values
exports
sorts Fxp
context-free syntax
"evaluate" "[[" Fxzp "11" -> Action %% giving Value
variables
"E"[1-9]17 -> FEap

Fig. 5. Module Exp in SDF

module Values
imports AN
exports
sorts Value
context-free syntax
Value -> Datum

Fig. 6. Module Values in SDF

Figure 7 shows an ASF+SDF module for an ASD of the usual conditional
expression, where the condition is supposed to be boolean-valued. It uses SDF
to introduce the mixfix notation used for the syntax of the construct, and to
require Bool to be included in the sort Value. It is necessary to import modules
for all the sorts of constructs involved in the described construct — here, just
Ezp.

The equations part gives an equation in ASF to define the action semantics
of the construct, using the notation introduced in the SDF part of the same
module and that originating in imported modules. The design of the Action
Environment is largely independent of the details of AN: the crucial feature is
that when modules are combined to provide an ASD of a complete language,

2 The version of AN used by Doh and Mosses did not include formal notation for
subsorts of Action, and the ‘giving Value’ in Fig. 5 is merely a comment.



module Exp/if-then-else
imports FEzp
exports
context-free syntax
"if" Ezp "then" Fxp "else" Ezp -> Exp
Bool -> Value

equations

[1 evaluate [[ if E! then E2 else E3 1] =
evaluate [[E1]] then
maybe check the boolean then
evaluate [[E2]] else
evaluate [[E3]]

Fig. 7. Module Exp/if-then-else in ASF+SDF

there should be no need to reformulate any of the actions given in the semantic
equations.

For instance, if the conditional expression construct of Fig. 7 were to be in-
cluded in a language with constructs that allowed expressions to have side-
effects (or even spawn threads), no changes would be required. This is possible
because action combinators are defined on all possible actions. An action such
as A; then A; makes the data given on normal termination of A; available to
Ay, but fails or throws an exception if A; does that. By the way, the (com-
pound) action maybe check the boolean fails when the data given to it is
not simply true, and A; else Ay performs Ay only when A; fails. (A more
detailed informal introduction to an earlier version of AN is given by Doh and
Mosses [12].)

4 ASDF

ASDF is a language specification formalism designed to make it easier to write
ASDs of single language constructs.

4.1 Formalism

We have previously used plain ASF+SDF for writing ASDs, as described in
Section 3. An advantage of using ASF+SDF was that it allowed ASDs to
be prototyped using the Meta-Environment. Furthermore other tools, like an
action interpreter, action type-checker, etc., could be connected to the Meta-
Environment. However, using ASF+SDF for writing small modules describing



single language constructs was not optimal, and this prompted the develop-
ment of ASDF. The main problems with using ASF+SDF were related to the
cumbersome notation:

e When using a syntactic sort, e.g., Ezrp, in a production rule, the module
introducing the syntactic sort had to be explicitly imported (see Figure 7).
Also modules describing AN had to be imported, since it was not part of
the SDF language.

e The declaration of metavariables ranging over sorts is somewhat tedious
(see Figure 5).

o ASF+SDF requires many keywords and can be misleading, e.g., the sig-
nature of a semantic function is introduced by the words ‘context-free
syntax’.

ASDF solves these problems, making specifications easier both to write and
read.

Exp == Ide| if Ezp then Exp else Exp |
Ezxp Exp | fn Ide => Exp
Dec = wval Ide = Ezp | Dec Dec

Fig. 8. Small subset of ML

module SmallML
imports

Exp/Ide  Exp/Cond Exp/App-Seq
Ezp/Abs Dec/Bind-Val Dec/Accum

Module 1

module Fxp
requires
E : Exp
Datum ::= Val

semantics evaluate: Exp -> Action & using () & giving val

Module 2
A semantic description of a language consists of a collection of ASDF modules,

together with a mapping from the concrete syntax used in the language to the
abstract syntax described in the modules. Figure 8 shows a small subset of

10



module Ezp/Ide
syntax Fxp ::= val(lde)

semantics evaluate val(l) = give the val bound-to [

Module 3
module Ezp/Cond
syntax Fzp ::= cond(Fzp, Exp, FExp)
requires Val ::= Boolean
semantics

evaluate cond(E1, E2, E3) = evaluate EF1 then
maybe check the boolean then
evaluate E2 else evaluate E3S

Module 4
module Exp/App-Seq
syntax Exp ::= app-seq(FEzp, Ezxp)
requires Val ::= Func | func-no-apply

semantics

evaluate app-seq(l1,E2) =
evaluate E1 and-then evaluate E2
then (apply(action(the func#1l), the val#2)
else (throw func-no-apply))

Module 5
module FEzp/Abs
syntax FEzp ::= abs(lde, Fzxp)
requires Val ::= Func
semantics

evaluate abs(l, F) =
give func(closure(furthermore bind(/, the val)
scope evaluate E))

Module 6

11




module Dec
requires
D : Dec
Datum ::= Bindings

semantics declare : Dec -> Action & using () & giving bindings

Module 7

module Dec/Bind-Val
syntax Dec ::= bind-val(lde, Ezp)
semantics

declare bind-val(l, FE) = evaluate E then bind(/, the val)

Module &

module Dec/Accum
syntax Dec ::= accum(Dec+)
semantics

declare accum(D) = declare D

declare accum(D D+) = declare D before declare accum(D+)

Module 9
module Data/Func
requires Func ::= func(action: Action)
Module 10

ML and Modules 2 — 10 can be used to describe the abstract constructs found
in the ML subset. The import-relation between the modules can be seen in
the screenshot in Figure 9, where the modules at one level import the modules

on the lower level, if there is an edge connecting them.

Comparing Module 4 with the module found in Figure 7, one immediately no-
tices that we use abstract syntax with prefix constructors instead of concrete
syntax, when describing constructs in ASDF. The advantage of using language
independent prefix constructors for abstract syntax is greater reusability. For

12
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Fig. 9. The Action Environment

equations

[cond] map(if FE1 then E2 else E3) =
cond(map(E1), map(E2), map(E3))

[let] map(fn I => E) = abs(I, map(E))
i:ééq] map(D1 D2) = accum(map(D1) map(D2))

Fig. 10. Mapping concrete to abstract syntax

instance, a description of the if-then-else expression from Standard ML might
be reused for describing the ‘?:” expression in Java, since they have the same
compositional structure and intended interpretation even though their con-
crete syntax differs. Part of the definition of the function map that maps
concrete ML syntax to abstract syntax is shown in Figure 10.

An ASDF module consists of a name (after the keyword module) and three
optional sections. The syntax section defines the abstract syntax of the con-
struct. This is illustrated in Module 3 with the identifier expression constructor
val, which takes an Identifier (Ide) as argument. When writing production
rules the familiar separator ‘::=" is used, instead of the ‘—’ found in SDF.

The requires section is used for introducing data, types, operators, and vari-
ables used in the semantics section. This is illustrated in Module 6, where
the sort Val is extended with the sort Func, such that actions can produce
functions. The syntax for declaring variables is illustrated in Module 7, where
‘D : Dec’ declares the variable D to range over the syntactic sort Dec. When
declaring the variable X to range over a sort S the variables Xn, X* and
X+, where n is a positive integer, are automatically declared to range over
the sorts S, S*, and S*. The use of these variables is illustrated in Module 4
and Module 9.

13



Module 10 illustrates how types and operators are introduced. The declaration
‘Func ::= func(action: Action)’, introduces the type Func, and the data
operators func and action becoming available in actions, such that we can
write actions as ‘give the func’ and ‘give action(...)’ (the syntax of the
action give is ‘give DataOp’, where DataOp contains among other terms ‘the
ANType’). The operator func is a data constructor, and action selects the
action component of such data.

The semantic function, mapping the abstract syntax construct introduced in
the syntax section to an action, is defined, using an equation, in the seman-
tics section. In the equation, terms from AN and imported modules can be
used. For instance, in Module 5 the semantic function contains action com-
binators and constants, together with the value func-no-apply from the re-
quires section, and the type Func declared in the implicitly imported module
Data/Func. Notice that it is possible to define the function using more than
one equation, as illustrated in Module 9. The semantics section can also con-
tain the signature of a semantic function, as we see in Modules 2 and 7. It
is required that the signature of a function, used in a module, is defined in
the same module or an imported module. The notation used in a semantic
equation (besides AN) is defined in the syntax and requires sections of the
module and the imported modules. Therefore parsing a module must be done
in two steps, where the first step builds a parsetable based on the syntax and
requires sections. More about this in Sections 4.2 and 5.2.

Syntactic sorts used in the syntax section result in implicit imports, so for
instance in Module 8 the modules Dec (Module 7), Ide (not shown), and Exp
(Module 2) are automatically imported. Implicit imports are also generated
from the sorts used in the requires section, with the difference that only
syntactic sorts used on the right hand side of the production results in imports,
and the imported modules always start with Data/, for instance Module 6
imports Data/Func (Module 10). The automatically imported modules, like
Ezp or Data/Func, may provide further sorts than those that caused their
importation.

ASDF also allows explicit imports. This is mostly used in the top module that
imports all the modules used to describe a language (see Module 1).

The modules presented in this section are simplified versions of the modules
used in a semantic description of core ML, which can be found in [15]. The
description contains both ASDF modules and ASF+SDF modules mapping
ML concrete syntax to abstract syntax.

14



4.2 Environment

The Action Environment supports working with ASF+SDF and ASDF si-
multaneously, with the restriction that ASF4+SDF modules can import ASDF
modules, but not the other way round. If there is a name conflict, i.e., an
ASF+SDF module and an ASDF module with the same name, it is solved by
using the module with the same type as the module importing the problematic
module. Being built on top of the ASF+SDF Meta-Environment, the Action
Environment inherits most of its features (described in Section 2.3).

On the surface the differences between the Meta-Environment and the Action
Environment seem negligible. Because a module in the module graph can be
either an ASDF or an ASF+SDF module, different popup menus will appear
over modules of different type. Not all features available for ASF+SDF are
available for ASDF because they have not yet been implemented (e.g., chang-
ing module name and imports). When editing an ASDF module one notices
more differences, since the syntax directed editor now uses an ASDF gram-
mar for parsing. Furthermore, the grammar defined in a module (and in the
modules it imports) is used when parsing the semantic equations in a module
(remember that the equations and the rest of the ASDF module is in the same
file, and not in two files as in ASF+SDF). This has two advantages: It gives
a better syntactic check of the semantic equation, and it allows the syntax di-
rected structure editor to display the right sorts for the tokens in the semantic
equations. As in the Meta-Environment, it is possible to employ the given
language specification for parsing and rewriting terms over the language. Due
to the way we implemented the Action Environment, everything concerning
terms works as in the Meta-Environment.

The advantage of supporting both ASF+SDF and ASDF in the Action Envi-
ronment is that language descriptions in the environment can describe both
concrete syntax (using SDF), abstract syntax constructs, and their semantics
(using ASDF), and a mapping from concrete syntax to abstract syntax (using
ASF). Using the Action Environment and a description of a language L, we
obtain a tool for mapping a program written in L to an action.

As in the ASF4+SDF Meta-Environment, it is possible to save the parse tables
generated by the environment for a specification and the parsed equations
collected from the ASF files. Saving parse table and equations to files allows
parsing and rewriting terms independently of the Action Environment. The
saved parse table and equations can be used to construct a front-end for a com-
piler. Combining this front-end with an action compiler we obtain a compiler
for the language described in the specification.

Different external tools have been integrated into the Action Environment. A

15



type-checker for action semantic functions (see Section 4.3) gives us a better
check of the well-formedness of the ASDF modules and thereby the correctness
of the ASD of the language. An action interpreter (see Section 4.4) allows us
to interpret programs written in the language we are designing. All in all,
the Action Environment should provide a particularly useful environment for
developing semantic descriptions and documenting the design of programming
languages.

4.8 ASDF type checker

When writing semantic descriptions of programming languages, it is conve-
nient to have tools for checking the descriptions. With ASDF we would like
to check that the semantic functions result in actions with certain properties.
In the Action Environment it is possible to perform a soft type check of the
action in a semantic equation defining a semantic function. The user should
provide a signature for the semantic function, and the type checker then checks
that the semantic equation conforms to the signature.

evaluate: FExp -> Action & using () & giving val &
infallible & uncreative

declare: Dec => Action & using () & giving bindings &
infallible & uncreative

Fig. 11. Signatures

In Fig. 11 two signatures are displayed. The first describes a semantic func-
tion ewvaluate that maps expressions to actions. The actions expect no data
(the empty tuple), produce a value, do not fail, and do not create any new
memory cells. The second signature, declare, describes a mapping to actions
with almost the same properties; the only difference is that the actions pro-
duce bindings instead of values. When using the first signature to type check
the semantic equation in Module 4, the signature is both used to infer the
type for the applications of evaluate to the sub-expressions and to define the
type that we expect the action to have. Notice that a sub-action (maybe ...)
can fail, but that the failure is caught by the else action combinator, so the
whole action will not fail. If an action has the type uncreative none of its sub-
actions must create memory cells. This means that the action cannot contain
the action create, and the semantic functions occurring in the action must
produce actions with type uncreative. The action in Module 4 satisfies these
two conditions. Module 8 contains an example of a semantic equation where
two signatures are needed to type check the action.

Besides the signatures, the type checker also uses other type information from
the module containing the semantic equation and modules imported from this
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module, for instance, in Module 4 the line “Val ::= Boolean” defines booleans
to be a subtype of values.

Type checking will either result in an error message indicating what might
be wrong in the action, or a message saying that the action type checked
without problems. Because this is a soft type check, the purpose is not to
guarantee that the actions resulting from applying the semantic functions are
type correct. Instead the purpose is to warn the language designer against
possible problems in the specification. The lack of information about the type
of the current bindings in a semantic equation is the reason the type checking
is soft. The type of the current bindings can not be computed because the
actual bound identifiers are not known in the semantic equations (instead the
equations use variables to range over identifiers, see Modules 3 and 8).

4.4 Action Interpreter

An editor buffer containing an action, e.g., the result of applying a semantic
function to a program, can be interpreted using the action interpreter con-
nected to the environment. The result of interpreting an action is an indica-
tion of how it terminated (normally, abruptly, or failing), the data it produced
(if any), and a structure describing the effects evaluating the action has had
on storage. The interpreter uses information from the module the action term
was opened over and the modules imported from this module. Information
about subtype relations, data constructors and selectors, and data constants
is used.

5 Implementation Overview

The Action Environment is built on top of the ASF+SDF Meta-Environment.
Discussing the implementation details of the Action Environment involves
discussing the architecture of the Meta-Environment.

5.1 ASF+SDF Meta-Environment Architecture

The Meta-Environment has a layered architecture as displayed in Figure 12. In
this section we will discuss each of these layers in more detail. The first step
towards a layered design of the ASF+SDF Meta-Environment is discussed
in [6]. That paper discusses how ASF can be replaced by another rewriting
formalism. This development has been taken a step further, resulting in the
architecture discussed here.
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Kernel-Meta

SDF

Fig. 12. The layered architecture of the ASF+SDF Meta-Environment

5.1.1 Kernel layer

The kernel of the Meta-Environment is completely language independent. It
consists of the software coordination architecture, the ToolBus [3], which takes
care of all the communication between the components that make up the Meta-
Environment. The ToolBus allows a full separation of coordination and compu-
tation, it is a programmable software bus where the coordination between the
components is formally described using a Process Algebra based formalism.
The computation is performed within the connected components, which can
be implemented in any programming language. The exchange of data between
the components is based on a representation format, ATerms [4], specially
designed for representing tree-like data structures. This formalism provides
maximal subterm sharing and efficient linearization operations.

Besides the ToolBus the kernel of the Meta-Environment consists of a parser,
text and structure editors, graphical user interface components, a term store
to store parse tables and parse trees, a component which takes care of the com-
munication with the file system, etc. Each of the components is fully language
independent and will be instantiated via the next layer, which provides lan-
guage specific functionality. The kernel is fully prepared to deal with modular
languages and specification formalisms.

5.1.2 SDF layer

The next layer instantiates the kernel Meta-Environment with SDF function-
ality. This is achieved by adding SDF-specific components to the kernel and by
adding actions, via buttons and clickable icons in the user interface, to activate
editors for SDF modules. Examples of SDF-specific components are the SDF
parse table, the import relation calculator, and the parse table generator. The
latter is needed because of the fact that SDF is designed to describe syntax
of programming languages, and in order to use these language descriptions it
is necessary to generate parse tables for parsing programs. Furthermore, the
term store has to be instantiated in such a way that both the parse trees of
SDF modules and their corresponding parse tables can be stored.
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5.1.8 ASF layer

This layer extends the SDF Meta-Environment with ASF functionality. Again
this is achieved by adding ASF-specific components and actions to activate for
instance editors for ASF modules. An example of an ASF-specific component
is a component which extends every SDF specification with the syntax rules to
parse the ASF equations; in this way the user defined syntax in the equations
is obtained. Using SDF in combination with ASF poses some restrictions on
the grammar rules one can write in SDF, e.g., the separator in a list may
only be a literal and not an arbitrary symbol. These restrictions are checked
by an ASF+SDF-syntax-checker. Finally, this layer provides an ASF checker
to check the well-formedness of the equations, and an ASF interpreter and
compiler are added to the SDF Meta-Environment. The term store has to be
extended to store ASF modules, corresponding parse tables, etc., as well.

5.1.4 Implementation

Figure 13 shows an abstraction of the kernel Meta-Environment with each of
the extensions described above. In this section we will briefly describe how we
achieve these extensions in a flexible way.

The messages that can be received by the kernel layer are known in advance,
simply because this part of the system is fixed. The reverse is not true: the
generic part can make no assumptions about the functionality provided by the
other layers.

We identify messages that are sent from the kernel of the Meta-Environment
to the extensions as so-called hooks. The SDF layer can and will introduce
new hooks for the next layers. Each instance of the environment should at
least implement a receiver for each of these hooks. Implementing these hooks
involves writing small pieces of ToolBus specifications. Table 1 shows a few
kernel hooks. They are all related to the GUI and editors. The dashed arrows
in the Figure 13 between the kernel layer and the ASF or SDF layer denote
the hooks and the service requests.

Adding a layer involves some implementation effort. Of course, the compo-
nents themselves have to be implemented. In a number of cases it is necessary
to write ToolBus scripts, but the kernel Meta-Environment also provides a
powerful button language, which can be used to connect new components and
functionality. The button language enables a flexible way of adding buttons
and icons to the GUI and adding buttons to the various types of editors.
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Hook Description

environment-name (Name) The main GUI window will display this name

extensions(Sig, Sem, Term) Declares the extensions of different file types

stdlib-path(Path) Sets the path to a standard library
top-sort(Sort) Declares the top non-terminal of a specification
Table 1

The Meta-Environment hooks: hooks that parameterise the GUI

Parsetable SDF ASF ASF

Interpreter| | Compiler

i

Text Structure
Editor Editor

1
1
1
! Generator Operations
1

1 1
1 1

parser Term Button E Relation SDF E ASF+SDF| |ASF
1 1

Store Interpreter Calculator Parsetable Checker Checker

Fig. 13. The layered implementation of the ASF+SDF Meta-Environment

5.2 The Action Environment

In the Action Environment the layered design of the Meta-Environment is
extended with an extra layer, the ASDF layer, illustrated in Figure 14. Notice
that we do not replace any parts of the ASF+SDF Meta-Environment, we
just extend it with an extra layer on the top. In [6] it is described how an
environment for another rewriting formalism is implemented by replacing the
ASF layer with a layer for the new formalism. This approach is not possible
for us because the Action Environment should still support ASF+SDF mod-
ules. Another way of viewing the ASDF layer is as an ASDF interface to the
ASF+SDF Meta-Environment.

The ASDF layer consists of several components: an ASDF parser, tools for
retrieving the module name and imported modules from an ASDF module,
and two ASDF to ASF4+SDF mappings. As with the other layers we also have
to extend the term store, in this case to hold ASDF modules. Based on the
grammar of the ASDF language, a parse table has been generated, which is
used in the ASDF parser. The tools for getting the module name and imported
modules from an ASDF module are implemented in ASF4+SDF and are almost
trivial (this is the ASDF Support component in the illustration). Here we shall
focus on the generation of ASF+SDF, and how we have connected external
tools.
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ASDF ASDF to
Parser ASF+SDF

Fig. 14. The ASDF layer

To measure the size of the ASDF layer we have counted the number of ToolBus
script lines to approximately 2300 lines compared to approximately 10000
lines in the ASF4+SDF Meta-Environment. The tools in the ASDF layer is
implemented using approximately 7000 lines of ASF+SDF.

5.2.1 Mapping ASDF to ASF+SDF

The Action Environment contains two mappings of ASDF to ASF+SDF. The
result of one mapping is used for parsing and rewriting terms. By mapping
every ASDF module to an ASF+SDF module we get the same effect, with
respect to working with terms, as if we had opened the generated ASF+SDF
modules in the Meta-Environment, so editing of terms is independent of the
ASDF layer. The result of the other mapping is used for the second parse of
the ASDF module itself (the parse that checks the semantic equations using
the notation introduced in the same module and modules imported from it).

We shall use some of the modules in Section 4.1 as examples in this section.
The ASDF module’s name declaration together with its import section (if any)
can be copied verbatim into the ASF+SDF module as illustrated in Fig. 15.
Together with the explicit imports from the ASDF module, the generated
ASF+SDF also contains imports of modules describing action notation (the
module AN) and layout characters (the module Layout). Implicit imports, as
explained in Section 4.1, are translated to explicit imports, e.g., Module 5 uses
the sorts Fxp and Func, and the SDF generated from this module imports the
modules Fzp and Data/Func (Fig. 17).

The rest of an ASDF module is translated into ASF equations and SDF sec-
tions declaring start symbols, sorts, lexical and context-free syntax produc-
tions, and variables. The sort declaring sections ensure that all sorts occurring
on the right hand side of the arrow in a syntactic function are declared. Ex-
amples of this can be seen in Fig. 16 where the sorts Fxp, Datum, AN-Type,
and Action are declared.
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module SmallML

imports Ezp/Ide Exp/Cond
Exp/App-Seq  Exp/Abs
Dec/Bind-Val  Dec/Accum

imports AN Layout

Fig. 15. SDF generated from Module 1

module Fxp

imports
AN  Layout Data/Val

exports
sorts Exp

variables _
"E"[0-9] * -> Fxp
ngn [O_gj*||+|| -> EﬁI)p"‘
nEN [O_gj*u*n -> FExp*

sorts Datum AN-Type

context-free syntax
Val -> Datum

lexical syntax
"datum" -> AN-Type
"val"  -> AN-Type

sorts Action

context-free syntax
evaluate Fxp -> Action

Fig. 16. SDF generated from Module 2

The sorts which are also declared to be context-free start symbols can be used
as the top sort in a parse tree for a term. All sorts defined in the syntax section
of an ASDF module are declared to be start-symbols (see Fig. 17).

A production of the type “Sort ::= Symbols” in the syntax and requires
sections is mapped into a context-free syntax section containing a function
“Symbols — Sort”, as shown in Fig. 17. The productions in requires sections
also result in declaration of types for use in action notation, e.g., in Fig. 16
the production “Datum ::= Val” is translated to SDF that declares datum and
val to be types for use in action notation.

Module 2 declares variables with the prefix E, and this is translated to the
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variables section shown in Fig. 16. Here regular expressions over character-
sets and strings are used to define variables ranging over Fzp, Ezp*, and
Exp+. The variables are used in the ASF generated from semantics sections,
as shown in Fig. 18. In the semantics section it is only the equations, and not
the signatures, that are translated to ASF. The signatures are translated to a
syntactic function as shown at the bottom of Fig. 17.

module Exp/App-Seq
imports

AN Layout
Data/Func  Ezp

exports
context-free start-symbols Fzxp

sorts FExp

context-free syntax
app-seq(Fzp, Erp) -> Exp

sorts Val AN-Type

context-free syntax
Func -> Val

lexical syntax
"val" -> AN-Type
"func" -> AN-Type

lexical syntax
"func-no-apply" -> Val

Fig. 17. SDF generated from Module 5

equations

[] evaluate app-seq (E1 ,E2) =
( evaluate E1 and-then evaluate E2 then
( apply (action(the func#1), the val#2)
else throw func-no-apply ))

Fig. 18. ASF generated from Module 5

The ASF+SDF is generated on demand (i.e., when we need to parse a term
or a module), and has to be regenerated for an ASDF module every time the
module changes. The mappings to ASF+SDF are implemented in ASF+SDF;
this was an obvious choice since an SDF grammar for ASF4+SDF already
exists, which made it easy to construct a type-safe translation.
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5.2.2  Integration of external tools

Due to the configurability of the Meta-Environment, it is possible to attach
external tools, like an action type-checker or interpreter. This is an easy task
using the button language, under the assumption that the tools just take the
contents of an editor as input, and return a text string as result.

It becomes more complicated when the tool needs global information (like a
semantic function type-checker, which needs all imported function signatures
to check a function definition), and in these cases we need to traverse the
import graph to collect the necessary information from each module.

action([description(asdf-editor,
menu(["Actions", "Type check"]))],
[push-active-module,
prompt-for-file("Extra type constraints", "",".asdf"),
split-file-name,
type-check-asdf])

Fig. 19. Definition of type checking menu item

Figure 19 shows the definition of the menu item that starts the ASDF type
checker written in button language. In the Meta-Environment anything the
user can click is referred to as a button, hence also a menu item. The first
line defines where the button should occur, and in this case it only occurs in
ASDF editors. The second line describe how it should occur, and in this case
it occurs as a menu item named “Type check” under the menu “Actions”.
The rest of the lines define the buttons behavior, using a special stack based
script language. The command push-active-module pushes the name of the
module in the editor on the stack, before the command prompt-for-file asks
the user for an ASDF file containing extra type information. Using the stack,
the name of the file is passed to the next command (split-file-name) which
splits the file name into directory, name, and extension. Finally the command
type-check-asdf calls the ToolBus interface to the type checker.

6 Related Work

An enormous amount of work has been performed in the field of defining the
syntax and semantics of programming languages and systems supporting the
development of such language definitions. We refer to Heering and Klint [14]
for a fairly complete and up-to-date overview.

In the discussion of related work we will focus on environments which can be
used to describe single language constructs in a modular way, or to give ASDs
of languages.
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The GEM-MEX system [1] allows description of languages using a collection
of MONTAGES, a formalism based on Abstract State Machines. The idea of
describing single language constructs in separate modules is encouraged by
GEM-MEX, but due to the lacking modularity of the syntax formalism used
(the semantic descriptions of individual constructs are based on concrete syn-
tax, and the collected syntax has to be LALR(1)) a MONTAGE is not often
reusable in practice.

The ABACO system [21] is an AS tool for students and programming lan-
guage designers. The main components of ABACO are an algebraic specifica-
tion compiler, specification editors, action libraries, action editors, and a GUI.
Furthermore, it offers a help system, an action debugger and facilities to ex-
port specifications to readable output. The main component is the algebraic
specification compiler, which provides syntax checking of specifications and in-
terpretation. The ABACO system and the Action Environment have a strong
resemblance, but the Action Environment offers more flexibility in adding
external components by means of openness of the underlying architecture.

The action semantics of individual constructs can be presented with an object-
oriented perspective [9]. Then the introduction of each syntactic sort and its
corresponding semantic function is given as a class definition; the syntax of
an individual construct and its action semantics are defined in a subclass that
extends the class defining the sort of the construct. The use of conventional
object-oriented class definitions does not allow as much to be left implicit as
in ASDF, but otherwise the collections of class and subclass definitions are
directly comparable to collections of modules in ASDF. However, tool support
for the approach has not yet been provided.

The ASD toolset [10] supported the creation, editing, checking, and use of
ASDs. This toolset had a very strong relation with an older version of ASF+SDF,
and its implementation has become obsolete.

7 Conclusions and Future Work

In this paper, we have presented ASDF, a new formalism for action semantic
descriptions supporting reuse of descriptions of individual constructs. We have
also reported on the Action Environment, a new environment supporting the
use of ASDF, and explained how it is implemented on top of the ASF+SDF
Meta-Environment. Two of the authors have already carried out an initial case
study in the use of ASDF and the Action Environment, providing ASDF mod-
ules for all the basic constructs underlying Core ML (accepted for publication
in IEE Proceedings Software).
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Plans for future work include further case studies in the use of ASDF, and
improving the action interpreter and the ASDF type checker.
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