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Abstract

When writing semantic descriptions of programming languages, it
is convenient to have tools for checking the descriptions. With frame-
works that use inductively defined semantic functions to map pro-
grams to their denotations, we would like to check that the semantic
functions result in denotations with certain properties. In this paper
we present a type system for a modular style of the action semantic
framework that, given signatures of all the semantic functions used in
a semantic equation defining a semantic function, performs a soft type
check on the action in the semantic equation.

We introduce types for actions that describe different properties of
the actions, like the type of data they expect and produce, whether
they can fail or have side effects, etc. A type system for actions which
uses these new action types is presented. Using the new action types in
the signatures of semantic functions, the language describer can assert
properties of semantic functions and have the assertions checked by
an implementation of the type system.

The type system has been implemented for use in connection with
the recently developed formalism ASDF. The formalism supports writ-
ing language definitions by combining modules that describe single
language constructs. This is possible due to the inherent modularity
in ASDF. We show how we manage to preserve the modularity and
still perform specialised type checks for each module.
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1 Introduction

This paper is concerned with type checking of action semantic functions as
they occur in the ASDF formalism, so we will start by introducing Action
Semantics and ASDF before we return to introducing type checking.

1.1 Action Semantics

Action Semantics (AS) is a hybrid of Denotational Semantics and Oper-
ational Semantics. As in a conventional denotational description, induc-
tively defined semantic functions map programs (and declarations, expres-
sions, statements, etc.) compositionally to their denotations, which model
their behavior. The difference is that here denotations are actions instead of
higher-order functions.

An Action Semantic Description (ASD) of a programming language must
describe the syntax of the language, semantic functions mapping the language
constructs to actions, and semantic entities used in the semantic functions.
ASDs of non trivial languages, like Java [3] and SML [11], have already been
constructed.

Actions are expressed in Action Notation (AN) [12, 14], a notation resem-
bling English but still strictly formal. AN consists of a kernel that is defined
operationally; the rest of AN can be reduced to kernel notation. Actions are
constructed from yielders, action constants, and action combinators, where
yielders consist of data, data operations, and predicates. Yielders are not
part of the kernel.

The performance of an action might be seen as an evaluation of a function
from data and bindings to data, with side effects like changing storage and
sending messages. We shall often refer to the input data/bindings of an
action as the given data/bindings. The action combinators correspond to
different ways of composing functions to obtain different kinds of control
and data flow in the evaluation. The evaluation can terminate in three
different ways: Normally (the performance of the enclosing action continues
normally), abruptly (the enclosing action is skipped until the exception is
handled), or failing (corresponding to abandoning the current alternative
of a choice and trying alternative actions). AN has actions to represent
evaluation of expressions, declarations, abstractions, manipulation of storage,
and communication between agents. The yielders can be used to inspect
memory locations and compute data and bindings.
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To limit this paper, we are not concerned with the actions used to rep-
resent communication between agents. Table 1 presents all kernel action
combinators and constants, together with a short informal explanation. In
the figure A ranges over actions.

Action Explanation
copy returns the given data
result D returns data D
give O applies data operator O to the given data
A1 then A2 output from A1 is input to A2
A1 and-then A2 sequencing, results are concatenated
A1 and A2 interleaving, results are concatenated
indivisibly A A cannot be interleaved with other actions
check O terminates abruptly if O returns false
choose-nat returns a random non-negative integer
unfolding A iterates A (in combination with unfold)
unfold performs action A of smallest enclosing unfolding A
throw terminates abruptly with the given data as result
A1 catch A2 A2 receives output if A1 terminates abruptly
A1 and-catch A2 abrupt sequencing, results are concatenated
fail fails
A1 else A2 A2 is the alternative if A1 fails
copy-bindings returns current bindings as data
A1 scope A2 the scope of bindings produced by A1 is A2
recursively A allows recursive bindings in A
apply applies the given action to the given data
close computes the closure of the given action
create allocates a fresh location
inspect inspects the contents of the given location
update updates the given location with the given data

Table 1: Kernel AN

Fig. 1 gives an example of an action. In line 1 a new memory location l1,
containing a random non-negative integer, is allocated. In line 3 the identifier
“x” is provided, and the action combinator in line 2 makes sure that line
3 is performed after line 1 and that the output from both evaluations is
concatenated into the tuple (x, l1). Line 4 passes the tuple to the action in
line 5 which applies the data operator binding to it and returns the bindings
map { x : l1 }. The scope of these bindings is line 7 where they are just
returned as data.
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(1) (((result x)
(2) and-then
(3) (choose-nat then create))
(4) then
(5) (give binding))
(6) scope
(7) copy-bindings

Figure 1: Example of an action

1.2 ASDF

The recent formalism ASDF [2] was developed by Peter Mosses and the
author. The main purpose of ASDF is to support writing action semantic
descriptions of single language constructs [7]. These constructs can then be
combined into a description of a full language. Since an ASDF module only
describes a single language construct, and ASDF has inherent modularity,
the modules can easily be reused verbatim in other language descriptions.

An ASDF module consists of syntax, semantics, and requires sections,
defining the abstract syntax of the language construct1, the semantic func-
tion mapping the construct to an action, and auxiliary notation used in the
semantic function respectively.

The module in Fig. 2 exemplifies the use of the syntax and semantics
sections to define the local definitions construct.

In Fig. 3 the requires section is used to declare variables with prefix ’E’ to
range over the syntactic sort Exp. This declaration is utilised in Fig. 2 where
the semantic equation uses variables to range over sub-trees. The requires
section in Fig. 5 is used to declare a datatype Func with a data constructor
func and a data selector action. This is further explained in Subsection 3.1.

Based on the syntactic sorts used in a module other modules are imported
that define the common properties of these sorts, e.g., if the sort Exp is used
the module Exp is imported. The module in Fig. 2 imports Exp (Fig. 3).

A complete language description consists of a collection of ASDF modules.
Since we only deal with abstract syntax, a complete language description
must also contain a mapping from concrete syntax to abstract syntax. For

1Concrete syntax is not supported because it impedes reuse of the module, e.g., “if
Exp then Exp else Exp” in ML has the same semantics as “Exp ? Exp : Exp” in C, but
not the same concrete syntax
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module Exp/Local

syntax

Exp ::= local(Dec, Exp)

semantics

evaluate local(D, E) = furthermore declare D
scope evaluate E

Figure 2: The Exp/Local module

module Exp

requires

E : Exp

semantics

evaluate: Exp -> using data & giving val

Figure 3: The Exp module

module Dec

requires

D : Dec

semantics

declare: Dec -> using data & giving bindings

Figure 4: The Dec module

this purpose we have found the ASF+SDF formalism [6] helpful.
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module Data/Func

requires

Func ::= func(action: using val & giving val & raising val)

Figure 5: The Data/Func module

1.3 Type checking

Type checking in connection with AS can be done at two levels: Either
semantic functions in an ASD are type checked to reveal mistakes made by
the language describer, or the actions resulting from applying the semantic
functions to a program are type checked to reveal errors in the program and
to support code generation (if a type has been inferred for all subactions).
The topic of this chapter is the former.

Type checking a semantic function is done one module at a time by type
checking the semantic equations in a module defining the semantic func-
tion’s behaviour on a single construct. By type checking semantic equations
we mean checking that the equation conforms to the signature of the se-
mantic function it defines. This of course requires information about all the
user defined semantic functions, types, data, and data operators used in a
semantic equation, and it requires that information can be collected from the
module containing the equation and the modules it imports. If the action in
a semantic equation contains type errors or its type is not a subtype of the
expected type (according to the semantic function signature), we can report
an error. We shall say that an action has a type error if one of its subactions
terminates abruptly because it is given a type of data it did not expect. An
example of an action containing a type error is the action ‘result 5 then close’.
This action is flawed because close expects an action, but receives an integer.
If execute has the signature ‘execute : Stm → Action & using data & giving
()’, the semantic equation “execute new(E ) = evaluate E then create” will
also result in a type error because the signature does not allow that actions
resulting from execute give memory cells.

Type checking of semantic equations is obstructed by the fact that the
action on the right hand side appears out of the context it will appear in
when the semantic equation is used to map a complete program. A con-

6



servative type checker would reject many semantic equations because of the
lack of information about the context. It is worth considering whether we
can use quantified types or principal typings [15] to solve the problem with
the missing context. We could use quantified types where we quantify over
the tokens bound in the context, or we could use principal typings to define
type judgements that describe the context, but the main problem is that
type checking is done before token values are known (they will not be known
until the semantic functions are applied to concrete programs), so we can
never instantiate the quantified types or check the type judgements. There-
fore quantified types or principal typings would not help us. We have chosen
to develop a soft type checker that approves many actions but still warns the
user against the most obvious mistakes.

The purpose of the type checker is to type check semantic functions in
ASDF modules. Because of the modularity of ASDF descriptions we also
want the type checker to be modular as explained in Section 5.

An implementation of the type checker, integrated into the Action Envi-
ronment [2], has been used to type check an ASDF description of the core of
ML [11].

1.4 Overview of the paper

In Section 2 we present related work. In Section 3 we present the types,
operators on types, and the type rules that make up our type system. An
example of type checking can be found in Section 4. Modularity is discussed
in Section 5. In Section 6 we briefly describe how we have implemented the
type system. Section 8 concludes.

2 Related work

Type checking (or type inference) of AN has been a research area since the
beginning of the 1990’s where Even and Schmidt [9] showed how to infer
types for actions using unification on record types. Their work has been
further developed by Brown [4], Lee [13], and Iversen [10]. Common to all
these systems is that the goal is to infer a type for a self-contained action for
use in code generation. This differs from what we will present in this chapter
in that we want to type check semantic functions where the embodied action
describes a small part of a full program, and the main goal is to give the
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language developer useful feedback about his description and let him test
assertions about semantic functions.

Doh and Schmidt [8] describe a method for extracting typing laws from
semantic functions. This is not type checking of the semantic functions, but
a way to compute type rules for the described language from the semantic
functions.

In [16] Ørbæk describes a soft type inference algorithm for semantic func-
tions. The algorithm is not dependent on the user giving any kind of type
annotations, like signatures, to the semantic functions; instead it infers a
type by looking at all the semantic equations in the language description.
This differs from our approach because we want to type check the semantic
equations that describe a single language construct without looking at the
whole language description.

3 Type system

Our type system consists of a set of types T ordered by a subtype relation
and a set of type rules that can be used to derive a proof that an action
has a certain type. We will present both in the following two sub-sections.
Throughout the rest of this chapter we will use τ as a variable that ranges
over types.

3.1 Types

We shall view types as sets of values. Our type system has three different
kinds of types: the built-in AN types, the action types, and the user defined
types. The built-in AN types are listed in Fig. 6.

Type ::= data | datum | ∅ | integer | boolean | token | bindable
bindings | storable | cell | ActionType | Type× . . .× Type

Figure 6: AN built-in types

The type data contains all values, and all types are subtypes of data.
All values except tuples of data is included in the type datum. The type
∅ does not contain any values. Notice that action types (ActionType) are
also included in the built-in types; this is necessary because actions can be
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used as data in AN. The product type is the type of tuples of data, and the
symbol () denotes the product type of length 0, the type of the empty tuple
(like unit in Standard ML).

ActionType ::= Action | using Type | giving Type | raising Type |
infallible | closed | terminates | uncreative |
ineffective | stable | ActionType & ActionType

Figure 7: Action types

Action types are listed in Fig. 7. We use the symbol & to denote the
intersection of two action types. The type Action is the supertype of all
action types and says nothing about the action, except that it is an action.
The three types parameterised with a type, ‘using τ ’, ‘giving τ ’, and ‘raising
τ ’, are the types for actions that can be given data of some type, actions
that produce data of some type when they terminate normally, or actions
that produce data of some type in case of abrupt termination, respectively.

An action type which does not contain ‘using τ ’, ‘giving τ ’, or ‘raising τ ’
is equal to the same action type with ‘using ∅’, ‘giving data’, or ‘raising data’
respectively added (this means that ‘Action ≡ using ∅ & giving data & raising
data’). This is also illustrated in the equivalence in Fig. 8. This equivalence
is a consequence of ‘using τ ’ being contravariant in its type argument and
‘giving τ ’ and ‘raising τ ’ being covariant, as shown in the subtype relations
listed in Fig. 9. Throughout the rest of this chapter we shall use α as a
variable to range over all action types and γ to range over atomic action
types (all action types listed in Fig. 7 except ‘ActionType & ActionType’).

The type ‘using data’ contains only the actions which accept all types of
input. Many of the actions with this type ignore their input, like ‘result D’.
The types ‘giving ∅’ and ‘raising ∅’ contain the actions that cannot terminate
normally or abruptly, respectively.

The names of the rest of the types should indicate what their intended
meaning is. To illustrate their use, the action type ‘giving token × bindings
& infallible & stable’ describes the actions which produce a pair consisting of
a token and bindings, and do not fail or inspect memory. The action type
‘using storable & closed & ineffective & uncreative’ describes actions which
can be given a storable, are closed with respect to bindings, do not update
storage, and do not allocate new memory locations.

9



Some of the action types are “negative” in the way that they describe
behaviour an action may not have: it may not fail (infallible), it may not
create new memory cells (uncreative), it may not update memory (ineffective),
or it may not inspect memory cells (stable). The reason we have chosen
“negative” types in these cases is that it is difficult (often impossible) to
determine if an action fails or manipulates storage. It is difficult because we
cannot with static analysis determine which parts of an action are evaluated.
On the other hand we can easily point out a large set of actions that, for
instance, do not create memory cells (the actions that do not contain the
action create). This also means that if an action type does not contain, for
instance, infallible, it describes all actions that might fail or not fail.

Fig. 8 presents an equivalence on action types. The five rules say that the
order of the atomic action types is not important, the action types ‘using ∅’,
‘giving data’, and ‘raising data’ can be introduced, and if there is a subtype
relation between two atomic action types the “highest” type can be removed
(this also means that if an atomic action type occurs twice in an action type
one of the occurrences can be removed). When a type operator or a type
rule mentions an action type, we shall assume that the equivalence has been
applied to the action type such that the type operator or the type rule can
be applied.

γ1 & . . . & γi−1 & γi & . . . & γn ≡ γ1 & . . . & γi & γi−1 & . . . & γn

α ≡ using ∅& α

α ≡ giving data & α

α ≡ raising data & α

γ1 & γ2 & . . . & γn ≡ γ2 & . . . & γn when γ2 ≤ γ1

Figure 8: Equivalence on action types

The readers familiar with the previous work on inferring types for actions
[4, 9, 10, 13] might have noticed that our types cannot describe the bindings
used by an action. In previous work the bindings used by an action were also
inferred using record types. This allowed a stronger type inference because
the type of the output from yielders, like ‘bound-to the token x’, was more
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specific than just bindable, and the type inference algorithm was able to
check that the token was actually bound in the current bindings. Due to the
fact that token values are seldom known in a semantic function before the
function is applied, the type system cannot deal with bindings on a more
detailed level than the atomic type bindings. To illustrate this, a semantic
function containing the action ‘give the bindable bound-to I ’ (where I is an
ASDF variable ranging over tokens) will always type check in our system
because the value of I is not known until the semantic function is applied, so
we cannot check that the instantiation of I is bound in the current bindings.

In an ASDF module the user can provide type information. A production,
like ‘Bindable ::= Integer ’ defines the type integer to be a subtype of bindable2.
A more advanced production, like ‘Func ::= func(action : using val & giving
val & raising val)’ (see Fig. 5), defines the data constructor func to be a data
operator which takes an action of type ‘using val & giving val & raising val’
and gives data of type func. The production also defines the data selector
action to be a data operator which takes a func and gives an action of the
before mentioned type. Finally ASDF modules can also contain signatures
of semantic functions, like ‘evaluate : Exp → Action & using data & giving val’
(see Fig. 3).

As mentioned before, the set of types T is ordered, and the ordering ≤
is defined in Fig. 9.

3.2 Type rules

Type rules can be used to construct a proof that an action has a certain
type, and from type rules type inference rules can be constructed. For an
algorithm that checks that an action has a certain type, see Section 6.

In Figs. 11 and 12 we see examples of type rules for the actions used
to describe normal flow of data and control in programming languages. The
rules are conditional as illustrated in rule 2 where the premises state the types
of the two subactions A1 and A2. In all type rules for action combinators the
premises will state what the types of the subactions are. Rule 2 also has other
conditions which state that the type of the data produced by A1 should not
be ∅ (recall that ‘giving ∅’ means that the action does not terminate normally
and then the right subaction would never be executed, which we consider an

2The convention in ASDF is to use words starting with capital letters for naming
syntactic sorts whereas AN uses small letters in types
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τ ≤ τ

τ1 ≤ τ2 ∧ τ2 ≤ τ3 ⇒ τ1 ≤ τ3

∅ ≤ τ

τ ≤ datum when τ 6= () ∧ ∀n ≥ 2, τi. τ 6= τ1 × . . .× τn

τ ≤ data

α ≤ Action

α ≤ γ1 & . . . & γn when ∀i ∈ 1..n. α ≤ γi

γ1 & . . . & γn ≤ γ when ∃i ∈ 1..n. γi ≤ γ

using τ1 ≤ using τ2 when τ2 ≤ τ1

giving τ1 ≤ giving τ2 when τ1 ≤ τ2

raising τ1 ≤ raising τ2 when τ1 ≤ τ2

τ1 × . . .× τn ≤ τ ′1 × . . .× τ ′n when ∀i ∈ 1..n. τi ≤ τ ′i

+ user defined relations in ASDF modules

Figure 9: Subtype relation

simple = infallible & closed & terminates & uncreative & ineffective & stable
(1)

Figure 10: Definition of simple

error). The condition ‘τ ′1 ≤ τ2’ states that the type of data produced by

12



αu ` A1 : using τ1 & giving τ ′1 & raising τ r
1 & α1

αu ` A2 : using τ2 & giving τ ′2 & raising τ r
2 & α2

τ ′1 ≤ τ2, τ ′1 6= ∅
αu ` A1 then A2 : using τ1 & giving τ ′2 &

raising (τ r
1 ∪ τ r

2 ) & (α1 ∪ac α2)

(2)

αu ` A1 : using τ1 & giving τ ′1 & raising τ r
1 & α1

αu ` A2 : using τ2 & giving τ ′2 & raising τ r
2 & α2

αu ` A1 and A2 : using (τ1 ∩ τ2) & giving (τ ′1 ⊕ τ ′2) &
raising (τ r

1 ∪ τ r
2 ) & (α1 ∪ac α2)

(3)

αu ` A1 : using τ1 & giving τ ′1 & raising τ r
1 & α1

αu ` A2 : using τ2 & giving τ ′2 & raising τ r
2 & α2

αu ` A1 and-then A2 : using (τ1 ∩ τ2) & giving (τ ′1 ⊕ τ ′2) &
raising (τ r

1 ∪ τ r
2 ) & (α1 ∪ac α2)

(4)

αu ` copy : using τ & giving τ & raising ∅ & simple (5)

Figure 11: Type rules for normal flow of data and control AN

A1 should be a subtype of the type of data that can be given to A2. If
the premises hold, we can derive the type of ‘A1 then A2’ using the types
from the premises and appropriate type operators to combine them. The
∪ (∩) operator computes the union (intersection) of two types, and the ∪ac

operator takes two action types and returns the intersection of the atomic
action types occurring in both the action types. In other words ‘α1 ∪ac α2’
is the lowest action type bigger than α1 and α2, i.e., a union on action types
rounded up to the nearest action type (a least upper bound).

The rule for the action combinator and (rule 3) introduces the type opera-
tor ⊕ which concatenates two types into a product type. A formal definition
of all the type operators can be found in Fig. 13.

The rules for give (rule 7 and 8) use the constant simple which is an
abbreviation for an action type. The expansion can be found in rule 1 in
Fig. 10. The type of give O depends on the signature of the data operator O
where the question mark indicates that it is a partial operator. The action
‘check O’ (rule 9) also contains a data operator, but the rule does not depend
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D : τ

αu ` result D : using data & giving τ & raising ∅ & simple
(6)

O : τ →? τ ′

αu ` give O : using τ & giving τ ′ & raising () & simple
(7)

O : τ → τ ′

αu ` give O : using τ & giving τ ′ & raising ∅ & simple
(8)

O : τ → boolean

αu ` check O : using τ & giving τ & raising () & simple
(9)

αu ` A : α

αu ` indivisibly A : α
(10)

αu ` choose-nat : using data & giving integer & raising ∅ & simple (11)

α′ ` A : α′

αu ` unfolding A : α′
(12)

terminates /∈ αu

αu ` unfold : αu
(13)

Figure 12: Type rules for normal flow of data and control AN (continued)

on whether the operator is partial since ‘check O’ can still terminate abruptly
when the data operator is not partial. The rule insists that the result type
of the operator is boolean.

Each rule has an action type on the left hand side of the turnstile, and
most of the rules just propagate it to the premises. The action type is used
in connection with the two actions related to unfolding (rule 12 and 13). The
type of ‘unfolding A’ is the same as the type of A, and the type of unfold is the
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Type concatenation

τ1 ⊕ τ2 = τ1 × τ2

∅ ⊕ τ = ∅
τ ⊕ ∅ = ∅

Action type combinator

(γ & α1) ∪ac (γ & α2) = γ & (α1 ∪ac α2)
(γ & α1) ∪ac α2 = (α1 ∪ac α2) when γ /∈ α2

γ ∪ac (γ & α) = γ
γ ∪ac α = Action when γ /∈ α

Action type subtraction

(γ & α)\γ = α\γ
(γ1 & α)\γ2 = γ1 & (α\γ2) when γ1 6= γ2

γ\γ = Action
γ1\γ2 = γ1 when γ1 6= γ2

Action type projections

has(γ, α) =
{

γ when γ ∈ α
Action when γ /∈ α

Figure 13: Type operators

same as the type of the enclosing unfolding action. When using the rule for
unfolding, the type of A must be guessed and then passed on to the premise
that derives the type for A. The rule for unfold just states that unfolds’s type
is the type left to the turnstile and that this type cannot contain terminates.

The rules in Fig. 14 concern the actions used to describe exceptional and
alternative control flow (like raising exceptions and conditional expressions).
Comparing with Fig. 11 we see that there are many similarities (compare
throw with copy, then with catch, and and with and-catch). The main differ-
ence is that some actions terminate abruptly instead of normally.

Intersection between action types is very common in our type system, but
as illustrated in the rule for fail (rule 17), there is also a subtraction operator
\. The action fail does of course fail, and therefore we must remove the type
infallible from its type.

In rule 18 we introduce the type operator has . The domain of has is an
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αu ` throw : using τ & giving ∅ & raising τ & simple (14)

αu ` A1 : using τ1 & giving τ ′1 & raising τ r
1 & α1

αu ` A2 : using τ2 & giving τ ′2 & raising τ r
2 & α2

τ r
1 ≤ τ2, τ r

1 6= ∅
αu ` A1 catch A2 : using τ1 & giving (τ ′1 ∪ τ ′2) &

raising τ r
2 & (α1 ∪ac α2)

(15)

αu ` A1 : using τ1 & giving τ ′1 & raising τ r
1 & α1

αu ` A2 : using τ2 & giving τ ′2 & raising τ r
2 & α2

αu ` A1 and-catch A2 : using (τ1 ∩ τ2) & giving (τ ′1 ∪ τ ′2) &
raising (τ r

1 ⊕ τ r
1 ) & (α1 ∪ac α2)

(16)

αu ` fail : using data & giving ∅ & raising ∅ & simple \ infallible (17)

αu ` A1 : using τ1 & giving τ ′1 & raising τ r
1 & α1

αu ` A2 : using τ2 & giving τ ′2 & raising τ r
2 & α2

infallible /∈ α1

αu ` A1 else A2 : using (τ1 ∩ τ2) & giving (τ ′1 ∪ τ ′2) &
raising (τ r

1 ∪ τ r
2 ) & (α1 ∪ac α2) & has(infallible, α2)

(18)

Figure 14: Type rules for abrupt and alternative control flow AN

atomic action type and an action type. The operator returns the first type if
the second action type contains the first, otherwise the result is Action. Using
this operator ensures that the type of the whole action contains infallible if
the right subaction cannot fail.

In Fig. 15 the type rules for actions describing declarations are shown.
The atomic type bindings is used in all three rules to describe that an action
produces a mapping from token’s to data. As discussed in Subsection 3.1,
action types does not describe the bindings used by an action, but the type
closed indicates that an action does not use the current bindings.
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αu ` A : giving bindings & α′

αu ` recursively A : giving bindings & α′
(19)

αu ` copy-bindings : using data & giving bindings &
raising ∅ & simple \ closed

(20)

αu ` A1 : using τ1 & giving bindings & raising τ r
1 & α1

αu ` A2 : using τ2 & giving τ ′2 & raising τ r
2 & α2

αu ` A1 scope A2 : using (τ1 ∩ τ2) & giving τ ′2 &
raising (τ r

1 ∪ τ r
2 ) & (α1 ∪ac α2) & has(closed, α1)

(21)

Figure 15: Type rules for declarative AN

τ2 ≤ τ1

αu ` apply : using ((using τ1 & α′)× τ2) & α′ \ terminates
(22)

αu ` close : using α′ & giving (α′ & closed) & raising ∅ & simple (23)

Figure 16: Type rules for reflective AN

Actions can handle other actions as data; this necessitates the inclusion
of action types in the set of ordinary types so it becomes a higher-order type
system. In Fig. 16 this is illustrated. The actions there expect an action
as input and either execute it with some arguments and return the result
(rule 22), or they return a moderated action (rule 23). We cannot guarantee
that the action apply terminates because it might recur forever, and therefore
terminates must be removed from α′. Notice also that the use of the variable
α′ expresses how the type of apply depends on the type of the action given
to apply.

The three rules in Fig. 17 shows the use of the action types uncreative,
ineffective, and stable. Besides defining the type of data used, produced, and
raised by the actions the rules also illustrate how the three action types are
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αu ` create : using storable & giving cell & raising ∅ & simple \ uncreative
(24)

αu ` update : using (cell× storable) & giving () & raising () & simple \ ineffective
(25)

αu ` inspect : using cell & giving storable & raising () & simple \ stable (26)

Figure 17: Type rules for imperative AN

closely connected to these three actions, i.e., the type of an action contains
uncreative, ineffective, or stable if, and only if, it does not contain the actions
create, update, or inspect, respectively.

The actions found in semantic functions can contain applications of other
semantic functions as subactions (as illustrated in Fig. 2). The type rule for
these applications is shown in rule 27. The rule states that if the function
f has a signature σ → α, then the result of applying f to a construct S of
syntactic sort σ has type α.

αu ` f : Σ → α
S : Σ

αu ` f S : α

(27)

Figure 18: Type rule for semantic function

The subsumption rule (rule 28 in Fig. 19) says that if an action A has a
type α and α′ is a supertype of α, then A also has the type α′.

AN contains only few built-in data operators and expects the user to
provide the necessary definitions of data and data operators. We shall not
spend many lines on data notation here, but it is relevant to know about the
built-in partial data operator ‘the τ ’ which performs type projections. Given
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αu ` A : α
α ≤ α′

αu ` A : α′
(28)

Figure 19: Subsumption rule

data of type τ it returns the given data, otherwise it is undefined. In our
type system we have to settle with the type of data given to ‘the τ ’ not being
disjoint with τ because we often cannot determine types that are specific
enough. An example of this is the action ‘inspect then give the integer’ where
inspect produces a storable which is not necessarily an integer (but an integer
can be a storable). This liberal typing of ‘the τ ’ turns our type checker into
a soft type checker, because we cannot always guarantee that the action will
not err when it tries to perform ‘the τ ’.

4 An example

To illustrate the use of the type system we will try to type check the ASDF
module Exp/Local (see Fig. 2). The module describes declarations local to an
expression. To maintain simplicity we have omitted ‘raising τ ’ and the action
before the turnstile from the rules in this example. Before type checking can
start, the type information defined by the user must be collected. The type
information relevant for the module Exp/Local can be found in the modules
Exp (see Fig. 3) and Dec (see Fig. 4).

It is also necessary to rewrite the action in the semantic equation to the
corresponding kernel action. This is necessary because we only have type
rules for kernel actions. The action

(furthermore (declare D)) scope (evaluate E )

corresponds to the kernel action

(1) ((copy-bindings and (declare D))
(2) then
(3) (give overriding))
(4) scope
(5) (evaluate E )
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Starting from the top of the parse tree representing the kernel action we apply
rule 21, the type rule for the action combinator scope. The rule requires a
type for the two subactions, so we use rule 2 to derive a type for the left
subaction (lines 1-3), and again we must infer a type for the two subactions
(lines 1 and 3). To infer a type for the action in line 1 we use rule 20:

` copy-bindings : using data & giving bindings & simple \ closed (29)

and rule 27

` declare : Dec → using data & giving bindings
D : Dec
` declare D : using data & giving bindings

(30)

(where we use the signature from Fig. 4 to satisfy the premises) and finally
rule 3 (29 together with 30 provide a proof for the premises).

` copy-bindings : using data & giving bindings & simple \ closed
` declare D : using data & giving bindings
` copy-bindings and (declare D) :

using data & giving (bindings, bindings)

(31)

The data operator overriding has signature

overriding : bindings× bindings → bindings (32)

and using rule 8 we get

overriding : bindings× bindings → bindings
` give overriding :

using (bindings× bindings) & giving bindings & simple
(33)

Now combining 31, 33, and rule 2 we get:

` A1 : using data & giving (bindings, bindings)
` give overriding : using (bindings, bindings) &

giving bindings & simple
bindings× bindings ≤ bindings× bindings,
bindings× bindings 6= ∅
` A1 then (give overriding) : using data & giving bindings

(34)
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(where A1 is ‘copy-bindings and (declare D)’). The application of the semantic
function evaluate in line 5 can be typed using rule 27:

` evaluate : Exp → using data & giving val
E : Exp
` evaluate E : using data & giving val

(35)

Finally we can use 34, 35, and rule 21 to derive a type for the whole
action (lines 1-5).

` A1−3 : using data & giving bindings
` evaluate E : using data & giving val
` A1−3 scope (evaluate E ) : using data & giving val

(36)

where A1−3 is the part of the whole action that spans lines 1-3. We now have
a type for the action from the right-hand side of the semantic equation in
the module Exp/Local , and we can conclude the type check by checking that
the inferred type is a subtype of the action type in the signature for evaluate.
Since they are both ‘using data & giving val’, we conclude that the semantic
equation type checks.

5 Constructive type checking

A constructive ASD of a programming language written in ASDF is extensi-
ble and reusable. This is advantageous because it allows incremental devel-
opment of descriptions, e.g., we can start by describing the core of a language
and then incrementally add more features to the language by adding more
modules. Furthermore the modules can be reused by reference in other lan-
guage descriptions.

This section deals with the problem that we might want different sig-
natures for the same semantic function depending on which properties we
want, for instance, expressions to have in our description. The problem is
complicated further because we want the ASDF modules to preserve their
reusability.

In a typical description of a language we have a module Exp containing
all the features common to expressions as illustrated in Fig. 3. This module
is then imported (automatically) from all modules describing expressions.
In Exp we put the signature of the semantic function evaluate which maps
expressions to actions. The signature requires that the action resulting from
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applying evaluate to an expression can be given any data and normally pro-
duces a value. If we for instance are describing a purely functional language,
we might want to check whether the modules we include have side-effects.
Therefore we would need signatures that include the types uncreative, inef-
fective, and stable. Modules, like Exp, should be fixed so that they can be
reused in language descriptions, so changing the signature in Exp is not an
option. Two solutions to the problem can be envisaged:

1. Before every type check, the user gives a signature of the function
which is the target of the type checking, and the type checker infers
the signatures of the other semantic functions employed in the semantic
function.

2. Before every type check, the user specifies a module that contains extra
type info for use in connection with type checking a particular module.

The advantage of the first suggestion is that it allows the user to see
which demands it makes on the employed semantic functions when he makes
demands on a semantic function. The disadvantage is that it is more diffi-
cult to implement because we have to do type inference instead of just type
checking.

The second suggestion is easier to implement. The extra module given to
the type checker contains more specialised versions of signatures, for instance,
one could have a module that can be used to check that a module is purely
functional. We have chosen this solution for our implementation.

When having more than one signature for the same semantic function
that only differ with respect to the output, our type checker merges the
signatures as illustrated here:

evaluate: Exp → α1

evaluate: Exp → α2

is merged into

evaluate: Exp → α1 & α2

and the equivalence (Fig. 8) is used to simplify the action type ‘α1 & α2’.
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6 Implementation

Type inference rules for copy, unfolding, and apply, involve type variables.
This means that implementing the type system is more complicated than
a depth-first traversal of the parse tree where the type rules are used to
construct a type. The problem with rules 5, 12, and 22 is that they involve
guessing types. Our implementation uses type inclusion constraints on type
schemes (types with type variables). The types τ are extended with type
variables θ.

To keep the implementation simple we shall use another representation of
action types. The action type presented in the previous sections is readable
and useful in semantic function signatures, but the following is better in an
implementation, because it does not need to be normalised and type inclusion
constraints with action types can more easily be simplified (see Fig. 20). We
shall use the type

at(τ, τ, τ, τ ′, τ ′, τ ′, τ ′, τ ′, τ ′)

The action type constructor at has nine arguments, one for each atomic
action type, and is equivalent to the action type presented in the previous
sections. The first three arguments can contain arbitrary types, and represent
‘using τ ’, ‘giving τ ’, and ‘raising τ ’. The last six arguments can contain
empty, data, or a type variable θ. The arguments represent infallible, closed,
terminates, uncreative, ineffective, and stable in that order. This means that
an action type like ‘using integer & giving boolean & closed & terminates &
ineffective’ is represented by the type

at(integer, boolean, ∅, data, ∅, ∅, data, ∅, data)

We use ∅ to indicate that the atomic action type corresponding to an
argument is present and data means that it is absent. The type variables
are used if the algorithm cannot determine whether an atomic action type
is present or absent. The action type operator ∪ac produces an action type
where each argument is the union of the types in the same argument in the
two given action types. The type operator \ sets the appropriate argument
in an action type to data.

The idea behind the algorithm is that it transforms a set of constraints
to a set of constraints in inductive form or an inconsistent set of constraints.
Inductive sets of constraints have solutions [1]. A constraint is inductive if it
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has the form θj ⊆ τ or τ ⊆ θj , and the set of variables on the top level in τ
is included in {θ1, . . . , θj−1} (see Theorem 7.2 in [1]). Here we have assumed
that the type variables are numbered. The algorithm is:

1. Collect type information from the ASDF modules.

2. Traverse the parse tree of the action while generating constraints.

3. Repeat the following steps until all constraints in S are inductive and
no additional inductive constraints can be added:

• For any constraint that is not inductive, apply the lowest num-
bered applicable rule in Fig. 20 to simplify the set of constraints
S.

• For any pair of inductive constraints ‘τ1 ⊆ θ’ and ‘θ ⊆ τ2’ in S,
add the constraint ‘τ1 ⊆ τ2’ to S.

• Stop if S is no longer consistent.

4. If we are not able to apply a type rule for each node in the parse tree,
or the final set of constraints is not consistent, the action does not type
check.

The constraints generated in point 2 are type inclusion constraints (⊆)
and come from the use of ≤ in the type rules. Occurrences of the subtype
relation ‘τ1 ≤ τ2’ (see Rules 2 and 15) are translated into ‘τ1 ⊆ τ2’.

Notice that ‘τ1 ⊆ τ2’ is a constraint used in the implementation, and
the interpretation is that the constraint holds if ‘τ1 ≤ τ2’ with the right
assignment of types to the variables in τ1 and τ2. In the algorithm we are not
going to find an assignment of types to all variables such that all constraints
hold; instead we check whether an assignment exists.

The rules in Fig. 20 can be applied to the set of constraints to simplify
the constraints. It is essential that the constraints on the left hand side of
≡ hold for a given substitution of types to type variables if, and only if, the
constraints on the right hand side do. The first rule removes the obvious
constraint that does not add any extra information. Rule 2 simplifies a
constraint with to product types of equal length by generating constraints
comparing all of the element types. The two next rules use well known results
from set theory to remove union and intersection of types that cannot be
normalised. Notice that we do not have equivalent rules for intersection or
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(1) S ∪ {∅ ⊆ τ} ≡ S

(2) S ∪ {τ1 × . . .× τn ⊆ τ ′1 × . . .× τ ′n} ≡
S ∪ {τ1 ⊆ τ ′1} ∪ . . . ∪ {τn ⊆ τ ′n}

(3) S ∪ {τ1 ⊆ τ2 ∩ τ3} ≡ S ∪ {τ1 ⊆ τ2, τ1 ⊆ τ3}

(4) S ∪ {τ1 ∪ τ2 ⊆ τ3} ≡ S ∪ {τ1 ⊆ τ3, τ2 ⊆ τ3}

(5) S ∪ {τ1 × . . .× τm ⊕ θ ⊆ τ ′1 × . . .× τ ′n} ≡
S ∪ {τ1 ⊆ τ ′1, . . . , τm ⊆ τ ′m, θ ⊆ τ ′m+1 × . . .× τ ′n} when m ≤ n

(6) S ∪ {θ ⊕ τ1 × . . .× τm ⊆ τ ′1 × . . .× τ ′n} ≡
S ∪ {θ ⊆ τ ′1 × . . .× τ ′n−m, τ1 ⊆ τ ′n−m+1, . . . , τm ⊆ τ ′n} when m ≤ n

(7) S ∪ {τ1 × . . .× τn ⊆ τ ′1 × . . .× τ ′m ⊕ θ} ≡
S ∪ {τ1 ⊆ τ ′1, . . . , τm ⊆ τ ′m, τm+1 × . . .× τn ⊆ θ} when m ≤ n

(8) S ∪ {τ1 × . . .× τn ⊆ θ ⊕ τ ′1 × . . .× τ ′m} ≡
S ∪ {τ1 × . . .× τn−m ⊆ θ, τn−m+1 ⊆ τ ′1, . . . , τn ⊆ τ ′m} when m ≤ n

(9) S ∪ {at(τ1, τ2, . . . , τ9) ⊆ at(τ ′1, τ
′
2, . . . , τ

′
9) ≡

S ∪ {τ ′1 ⊆ τ1, τ2 ⊆ τ ′2, . . . , τ9 ⊆ τ ′9}

Figure 20: Constraint simplification

union on the other side of the ⊆. Such rules will not be used, as the reader
can convince himself about by looking at the type rules. Union (intersection)
of types only occurs as the type of output from (input to) actions, and the
constraints are always generated by requiring that the output of one action
be a subtype of the input given to another action (in rules 2 and 15). Rules
5 to 8 simplify constraints where application of the concatenation operator
could not be normalised. In the last rule action types are removed from
the set of constraints. Notice the covariance in the first argument of the
action type which reflects the covariance in the atomic action type ‘using τ ’
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expressed in the subtype relations.
A set of constraints is inconsistent if it contains ‘τ1 ⊆ τ2’ and ‘τ1 � τ2’.

If the constraints contains ‘τ1 ⊕ τ2 ⊆ τ3’ or ‘τ1 ⊆ τ2 ⊕ τ3’ where at least
two of the τ ’s are type variables, the simplification rules cannot simplify the
constraint to a set of inductive constraints. To be on the safe side we will
also consider constraint sets containing these cases to be inconsistent.

Our algorithm is almost identical to the one found in [1], so we shall
not bother proving that the inductive set of constraints resulting from the
simplifications has a solution if, and only if, the original set of constraints
has a solution. The algorithm does not calculate a type for an action, but
instead it checks that a type exist. This is sufficient because we just want to
know whether an action in a semantic equation has a type and that this type
is a subtype of the action type found in the signature of the corresponding
semantic function.

In the Action Environment the type checker is invoked over a module, and
the environment then collects type information from all imported modules
before passing the semantic equations in the module together with the type
information to the type checker. The result is either a message indicating
that type check went well or error messages specifying where problems have
been identified. The error messages can indicate where the type checker failed
to apply a type rule or which action caused the constraint that made the set
of constraints inconsistent. Another problem might be dead code which can
occur if the left hand side of an action combinator cannot terminate in a
way that allows the right hand side to be executed (for instance, if A1 in ‘A1

catch A2’ never terminate abruptly, i.e., the type of A1 contains ‘raising ∅’).

7 What can we prove?

It would be interesting to prove that the type checker can say something
interesting about an action. For a normal type checker, we would want to
prove that an action that type checks is well behaved. This is not possible
because our type checker is liberal enough to approve actions that are not
well behaved. By well behaved we mean that the action does not err because
of a type error. Instead we might consider proving that if an action does
not type check, then it is not well behaved, but again we run into problems.
Those problems are related to the constraints that we could not simplify,
and therefore resulted in an inconsistent set of constraints. The type checker
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rejects actions that are type correct. It appears that it is difficult to prove
anything interesting about the type checker, although practical experience
has shown that it is still useful.

8 Conclusion and future work

We have presented a type system for AS, which allows a soft type check
of action semantic functions. The system has been implemented as a type
checker operating on ASDF modules and as such it provides a useful tool
when describing languages. The type checker supports the extensibility and
reusability inherent in ASDF by letting the user supply the relevant type
information before a type check.

Type checkers can almost always be improved to accept a bigger set of
legal programs; this also holds for our semantic function type checker. With
respect to the user-friendliness of the type checker, it is worth considering
whether our type system can become more transparent [5, page 7]; can the
user predict whether a semantic function will type check, and will he under-
stand why it does not.
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