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Strongly uniform bounds from
semi-constructive proofs

Philipp Gerhardy Ulrich Kohlenbach∗

December, 2004

Abstract

In [12], the second author obtained metatheorems for the extrac-
tion of effective (uniform) bounds from classical, prima facie non-
constructive proofs in functional analysis. These metatheorems for
the first time cover general classes of structures like arbitrary met-
ric, hyperbolic, CAT(0) and normed linear spaces and guarantee the
independence of the bounds from parameters raging over metrically
bounded (not necessarily compact!) spaces. The use of classical logic
imposes some severe restrictions on the formulas and proofs for which
the extraction can be carried out. In this paper we consider simi-
lar metatheorems for semi-intuitionistic proofs, i.e. proofs in an in-
tuitionistic setting enriched with certain non-constructive principles.
Contrary to the classical case, there are practically no restrictions on
the logical complexity of theorems for which bounds can be extracted.
Again, our metatheorems guarantee very general uniformities, even in
cases where the existence of uniform bounds is not obtainable by (in-
effective) straightforward functional analytic means. Already in the
purely intuitionistic case, where the existence of effective bounds is
implicit, the metatheorems allow one to derive uniformities that may
not be obvious at all from a given constructive proofs. Finally, we il-
lustrate our main metatheorem by an example from metric fixed point
theory.

∗Ulrich Kohlenbach partially supported by the Danish Natural Science Research Coun-
cil, Grant no. 21-02-0474.
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1 Introduction

Proof mining is the application of logical, or more precisely, proof theoretic
methods to the analysis of formal systems and proofs with the aim of ex-
tracting additional information from (mathematical) proofs. E.g. one might
want to extract from a proof that a certain iteration sequence converges an
effective, computable modulus of convergence and to establish the unifor-
mity of such a modulus or even to state general a-priori conditions for the
independence of an extracted modulus from certain parameters.
In the classical case, i.e. formalizations of mathematics based on classi-
cal logic, the goal of proof mining is to extract realizers and bounds - we
will focus on the extraction of bounds - from prima facie ineffective, non-
constructive proofs. The technique used to prove the existence of effective
bounds and, if needed, to carry out the extraction is based on an interpre-
tation of classical proofs via some negative translation and (a suitable form
of) Gödel’s functional interpretation, further combined with majorization(see
[8, 12]). Whereas previously only theorems involving constructively repre-
sentable Polish spaces could be treated and uniformity in parameters was
guaranteed only for the case of compact spaces ([8, 9]) recent results ([12])
due to the second author allow one to treat classes of arbitrary metric, hy-
perbolic, CAT(0) and normed linear spaces X. Moreover, under very general
conditions, uniformity in parameters ranging over metrically bounded spaces
can be inferred a-priorily even in cases where this could not have been ob-
tained by usual ineffective functional analytic methods. However, both the
raw material, classical proofs, and the techniques employed for the interpre-
tation impose certain restrictions: One can use at most weak extensionality
in the proofs to be analyzed, as full extensionality can be shown to be too
strong under functional interpretation. In the context of [12] this is a severe
restriction as it implies that not every object fX→X of type X → X can be
viewed as a function f : X → X.1 Also, as many classically true theorems
cannot be given computational meaning (this includes already Π0

3-sentences),
the extraction of realizers and bounds can be carried out at most for (classi-
cal) proofs of sentences of the form ∀∃Aqf where Aqf is quantifier-free with
some further restrictions on the types of the quantified variables.
In this paper, we consider proof mining in the semi-intuitionistic case: in-

1As a consequence of this, the applications given in [12] mainly concern classes of func-
tions, like nonexpansive functions, for which the extensionality can be deduced directly.
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tuitionistic analysis enriched with certain non-constructive principles. In
the purely intuitionistic setting bounds and realizers are implicitly given.
Nevertheless, even in the intuitionistic setting our results prove non-trivial
consequences: as in the classical setting of [12] we can now guarantee very
strong uniformity results (independence from parameters ranging over met-
rically bounded spaces). Even in the presence of various highly ineffective
principles (such as comprehension in all types for arbitrary negated or ∃-
free formulas and many others), most of the restrictions needed in the fully
classical case disappear in our semi-constructive setting: we can now use
full extensionality and extract realizers and bounds from (semi-intuitionistic)
proofs of arbitrary formulas, with comparatively modest restrictions on the
types of the quantified variables.
The technique employed to establish these results for such semi-intuitionistic
systems is a monotone variant of Kreisel’s modified realizability interpreta-
tion, so-called monotone modified realizability. The metatheorem for the
semi-intuitionistic case we present in this paper is to some extent based on
results in [10], and the extensions presented here can be considered as the
counterpart to the extensions of [8] presented in [12] for the classical case.
As stated above, both in the classical and the semi-intuitionistic case the
metatheorems allow one to derive new, strong uniformity results, by giving
general, easy to check conditions under which an extracted bound will be
guaranteed to be independent from certain parameters - all of this without
actually having to carry out the extraction. For the independence of (ef-
fective) bounds from parameters ranging over compact spaces such results
are well known and have been treated in [9, 10]. For non-compact bounded
metric or hyperbolic spaces there are no general mathematical reasons why
such uniformities should hold, and in metric fixed point theory similar (inef-
fective) uniformity results have hitherto only been obtained in special cases
by non-trivial functional analytic techniques (see [12, 14] for discussions of
these points). Already in the context of fully intuitionistic proofs one can
derive new uniformities that may not be obvious from a given constructive
proof or a bound implicit in the proof.
We illustrate the various aspects of the metatheorems by a very simple ex-
ample from metric fixed point theory: First we state the original ineffective
version of Edelstein’s fixed point theorem[3]. The main part of Edelstein’s
fixed point theorem is of a too complicated logical form (namely Π0

3) to di-
rectly allow the extraction via the classical metatheorem. Therefore in [15]
an effective uniform bound for Edelstein’s fixed point theorem is extracted
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by splitting up Edelstein’s proof into three lemmas, each simple enough to
allow the extraction of a bound. Next we present a variant of Edelstein’s
fixed point theorem due to Rakotch[20]. Rakotch’s proof is fully construc-
tive, which permits us to extract a uniform bound as guaranteed by the semi-
intuitionistic metatheorem. Finally, we compare the results with a treatment
of Edelstein’s fixed point theorem in the setting of Bishop-style constructive
mathematics by Bridges, Julian, Richman and Mines[2]. Both the classi-
cal and the intuitionistic metatheorem a-priorily guarantee uniformities not
stated in the constructive proof by Bridges et. al. The bound extracted from
Rakotch’s constructivized proof, while superior to the bound extracted in
[15], is identical to the bound implicit in [2].

2 Formal systems

We now describe the classical and intuitionistic formal systems in which the
extraction of bounds is carried out. For technical details see [12] and also
[18].

Let Aω(:= WE-PAω + DC) be the system of so-called weakly extensional
classical analysis, based upon a finite type extension PAω of first order Peano
arithmetic PA and the axiom schema DC of dependent choice in all types.
Let Aω

i (:= E-HAω+AC) denote the intuitionistic extensional counterpart of
Aω, i.e. fully extensional intuitionistic analysis with the full axiom of choice.

Definition 2.1. The set T of all finite types is defined inductively by the
clauses

(i) 0 ∈ T, (ii) ρ, τ ∈ T ⇒ (ρ→ τ) ∈ T.

Objects of type 0 denote natural numbers, objects of type ρ → τ are op-
erations mapping objects of type ρ to objects of type τ . We only include
equality =0 between objects of type 0 as a primitive predicate. Equality
between objects of higher types s =ρ t is a defined notion:2

s =ρ t :≡ ∀xρ1
1 , . . . , x

ρk

k (s(x1, . . . , xk) =0 t(x1, . . . , xk)),

where ρ = ρ1 → ρ2 → . . . ρk → 0, i.e. higher type equality is defined as
extensional equality. An operation F of type ρ → τ is called extensional if

2Here we write s(x1, . . . , xk) for (. . . (sx1) . . . xk).
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it respects this extensional equality:

∀xρ, yρ
(
x =ρ y → F (x) =τ F (y)

)
.

Ideally, we would like to have an axiom stating the extensionality for all
functionals, but in the classical system Aω full extensionality would be too
strong for the metatheorems we are aiming at and their applications in func-
tional analysis to hold. Instead in Aω we include a weaker quantifier-free
extensionality rule due to [24]:

QF-ER :
A0 → s =ρ t

A0 → r[s] =τ r[t]
, where A0 is a quantifier-free formula.

The rule QF-ER allows one to derive the equality axioms for type-0 objects

x =0 y → t[x] =τ t[y]

but not for objects x, y of higher types (see [25], [5]).
In the intuitionistic system Aω

i we include the much stronger extensionality
axiom:

Eρ : ∀zρ, xρ1 , yρ1, . . . , xρk , yρk(
k∧

i=1

(xi =ρi
yi) → zx =0 zy),

for all types ρ.
The systems Aω and Aω

i are defined on top of many-sorted classical, resp.
intuitionistic, logic with constants O0 (zero), S1 (successor), Πρ→τ→ρ

ρ,τ (pro-
jectors), Σδ,ρ,τ (combinators of type (δ → ρ→ τ) → (δ → ρ) → δ → τ) and
constants Rρ for simultaneous primitive recursion in all types.3 In addition to

the defining equations for those constants, Aω and Aω
i contain as non-logical

axioms:

1. Reflexivity, symmetry and transitivity axioms for =0,

2. the axiom schema of complete induction:

IA : A(0) ∧ ∀x0
(
A(x) → A(S(x))) → ∀x0A(x),

where A(x) is an arbitrary formula of our language,

3It is well-known that simultaneous primitive recursion in all finite types can be reduced
to ordinary primitive recursion in all finite types over Aω

i . However, in the extensions
Aω

(i)[X, . . .] to be discussed below this is rather complicated so that we prefer to take
simultaneous recursion as a primitive concept as in [12].
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3. in Aω:

• the quantifier-free extensionality rule QF-ER

• the quantifier-free axiom of choice schema in all types:

QF-AC : ∀x∃yA0(x, y) → ∃Y ∀xA0(x, Y x),

where A0 is quantifier-free and x, y are tuples of variables of arbi-
trary types,

• the axiom schema of dependent choice DC:= {DCρ : ρ ∈ T}:
DCρ : ∀x0, yρ∃zρA(x, y, z) → ∃f 0→ρ∀x0A(x, f(x), f(S(x))),

where A is an arbitrary formula and ρ an arbitrary type.

4. in Aω
i :

• the axiom schema of extensionality E = {Eρ : ρ ∈ T} for all types
ρ

• the axiom schema of full choice AC:= {ACρ,τ : ρ, τ ∈ T}:
ACρ,τ : ∀xρ∃yτA(x, y) → ∃Y ρ→τ∀xA(x, Y x).

where A is an arbitrary formula.

We next sketch extensions ofAω andAω
i with an (non-empty) abstract metric

space (X, d), resp. hyperbolic space or CAT(0) space (X, d,W ) where for the
somewhat involved details we refer to[12]:

The theories Aω[X, d], Aω[X, d,W ] and Aω[X, d,W,CAT(0)] result from ex-
tending Aω (and also IA, R, QF-AC, DC, QF-ER, . . . ) to the set TX of all
finite types over the two ground types 0 and X, and by adding constants dX

and – in the case of Aω[X, d,W ] and Aω[X, d,W,CAT(0)] – WX represent-
ing d,W and suitable (purely universal) axioms to Aω. Moreover, we add a
constant bX (of type 0) for an upper bound of dX . Equality is defined exten-
sionally over the base types 0 and X, where xX =X yX :≡ (dX(x, y) =IR 0IR).
Analogously, the theories Aω

i [X, d], Aω
i [X, d,W ] and Aω

i [X, d,W,CAT(0)] re-
sult from an extension of Aω

i .

Similarly, one defines the extensions Aω[X, ‖ · ‖, C] and Aω
i [X, ‖ · ‖, C] of

Aω and Aω
i with an abstract (non-trivial) normed linear space (X, ‖ · ‖) and
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a (non-empty) bounded convex subset C ⊂ X (again we refer to [12] for
details):

The theories Aω[X, ‖ · ‖, C] and Aω
i [X, ‖ · ‖, C] result from extending Aω and

Aω
i to the set TX of all finite types over the two ground types 0 and X, and

by adding constants for the vector space operations and ‖ · ‖ as well as for
the characteristic function of C and an upper bound bX on the norm of the
elements of C with appropriate (purely universal) axioms to Aω expressing
the vector space and norm axioms as well as the boundedness and convexity
of C. As before, equality is defined extensionally over the base types 0 and
X.

Definition 2.2. Between functionals xρ, yρ of type ρ = τ1 → . . . → τk → 0
with τi ∈ TX we define a relation ≤ρ as follows:

x ≤ρ y :≡ ∀zτ (x(z) ≤0 y(z)

For Aω
(i)[X, ‖ · ‖, C] we extend ≤ρ to arbitrary types ρ ∈ TX by defining for

ρ = τ1 → . . .→ τk → X:

x ≤ρ y :≡ ∀zτ (‖x(z)‖X ≤IR ‖y(z)‖X).

Definition 2.3. Let X be a non-empty set. The full set-theoretic type struc-
ture Sω,X := 〈Sρ〉ρ∈TX over IN and X is defined by

S0 := IN, SX := X, Sτ→ρ := SSτ
ρ .

Here SSτ
ρ is the set of all set-theoretic functions Sτ → Sρ.

We say that a sentence of L(Aω[X, d]), holds in a bounded metric space
(X, d) if it holds in the model4 of Aω[X, d] obtained by letting the variables
range over the appropriate universes of the full set-theoretic type structure
Sω,X with the set X as the universe for the base type X, and the constants
of (X, d) interpreted by elements of the suitable universes as specified in [12].
Similarly for L(Aω[X, d,W ]), L(Aω[X, d,W,CAT(0)]) and L(Aω[X, ‖·‖, C]),
and for the languages formed over the corresponding intuitionistic systems.

4Strictly speaking, we would have to use the plural here as the interpretation of constant
bX is not uniquely determined. For details see [12].
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In the following (for ρ ∈ T) ‘∀xC A(x)’, ‘∀f ρ→C A(f)’, ‘∀fX→C A(f)’ and
‘∀fC→C A(f)’ abbreviate

∀xX(χC(xX) =0 0 → A(x)),
∀fρ→X

(∀yρ(χC(f(y)) =0 0) → A(f)
)
,

∀fX→X
(∀yX(χC(f(y)) =0 0) → A(f)

)
and

∀fX→X
(∀xX(χC(x) =0 0 → χC(f(x)) =0 0) → A(f̃)

)
,

where f̃(x) =

{
f(x), if χC(x) =0 0
cX , otherwise.

Analogously for the corresponding ∃-quantifiers with ‘∧’ instead of ‘→’. This
extends to types of degree (1, X, C) and (X,C) defined below.

Definition 2.4. We say that a type ρ ∈ TX has degree

• 1 if ρ = 0 → . . .→ 0 (including ρ = 0),

• (0, X) if ρ = 0 → . . .→ 0 → X (including ρ = X),

• (1, X) if it has the form τ1 → . . .→ τk → X (including ρ = X), where
τi has degree 1 or (0, X),

• (1, X, C) if it has the form τ1 → . . . → τk → C (including ρ = C),
where τi has degree 1 or τi = X or τi = C,

• (·, 0) if ρ = τ1 → . . .→ τk → 0 (including ρ = 0) for arbitrary types τi,

• (·, X) if ρ = τ1 → . . .→ τk → X (including ρ = X) for arbitrary types
τi,

• (X,C) if ρ = τ1 → . . . → τk → C (including ρ = C) where τi ∈ T or
τi = X or τi = C.

3 Extracting bounds from classical proofs

In this section we briefly restate material from [12].

Definition 3.1. A formula F is called ∀-formula (resp. ∃-formula) if it has
the form F ≡ ∀aσFqf(a) (resp. F ≡ ∃aσFqf (a)) where Fqf does not contain
any quantifier and the types in σ are of degree 1 or (1, X).

8



For metric, hyperbolic and CAT(0) spaces we have the following metatheo-
rem:

Theorem 3.2 ([12]). 1. Let σ, ρ be types of degree 1 and τ be a type of de-
gree (1, X). Let sσ→ρ be a closed term of Aω[X, d] and B∀(xσ, yρ, zτ , u0)
(resp. C∃(xσ, yρ, zτ , v0)) be a ∀-formula containing only x, y, z, u free
(resp. a ∃-formula containing only x, y, z, v free).
If

∀xσ∀y ≤ρ s(x)∀zτ
(∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
is provable in Aω[X, d], then one can extract a computable functional
Φ : Sσ × IN → IN such that for all x ∈ Sσ and all b ∈ IN

∀y ≤ρ s(x)∀zτ
[∀u ≤ Φ(x, b)B∀(x, y, z, u) → ∃v ≤ Φ(x, b)C∃(x, y, z, v)

]

holds in any (non-empty) metric space (X, d) whose metric is bounded
by b ∈ IN.

2. For bounded hyperbolic spaces (X, d,W ) statement‘1.’ holds with
‘Aω[X, d,W ], (X, d,W )’ instead of ‘Aω[X, d], (X, d)’.

3. If the premise is proved in ‘Aω[X, d,W,CAT(0)], instead of ‘Aω[X, d,W ]’,
then the conclusion holds in all b-bounded CAT(0)-spaces.

Instead of single variables x, y, z, u, v we may also have finite tuples of vari-
ables x, y, z, u, v as long as the elements of the respective tuples satisfy the
same type restrictions as x, y, z, u, v. Moreover, instead of a single premise
of the form ‘∀u0B∀(x, y, z, u)’ we may have a finite conjunction of such
premises.

The proof in [12] is based on an extension of Spector’s[24] extension of Gödel’s
functional interpretation to classical analysis Aω by bar recursive function-
als (i.e. recursion over well-founded trees) to Aω[X, d], resp. Aω[X, d,W ]
and Aω[X, d,W,CAT(0)], and a subsequent interpretation of these function-
als in an extension Mω,X of the Howard-Bezem[5, 1] strongly majorizable
functionals Mω to TX .
These extensions rest on the following observations:

1. As is the case with Aω, the prime formulas of Aω[X, d] are of the form
s =0 t and hence decidable. Thus the soundness of negative translation
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and subsequent functional interpretation of the logical axioms and rules
and the defining equations for combinators Σ,Π and the recursor R,
the rule QF-ER and the axiom schema QF-AC extend to the new set
of types TX without any changes. Likewise the interpretation of the
axiom schema of induction and the axiom schema of dependent choice
extends to TX using constants Rρ for simultaneous primitive recursion

and Bρ,τ for simultaneous bar recursion in all types ρ, τ ∈ TX .

2. The functional interpretation of the negative translation of the new
axioms of Aω

(i)[X, d],Aω
(i)[X, d,W ] and Aω

(i)[X, d,W,CAT(0)] are equiv-
alent to themselves as they are purely universal and don’t contain ∨.

3. Bezem’s[1] type structure of hereditarily strongly majorizable function-
als Mω extends easily to all types of TX , taking x∗ majX x always
true. The realizer Ψ ∈ Mω,X for a bound on u0, v0 extracted by neg-
ative translation and functional interpretation depends on X via an
interpretation of the constants of X. Using majorization we show that
we can extract a bound which only depends on X via an interpretation
of some integer bound b on the metric d.

4. Since for the restricted types γ of degree 1, (0, X) or (1, X) occurring
in

∀xσ∀y ≤ρ s(x)∀zτ
(∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
Mγ = Sγ, this bound holds in any b-bounded space (X, d), resp. (X, d,W )
and (X, d,W,CAT(0)).

For a detailed proof, see [12].

Definition 3.3. 1. Let (X, d) be a metric space. A function f : X → X
is called nonexpansive (short: ‘f n.e.’) if

∀x, y ∈ X(
d(f(x), f(y)) ≤ d(x, y)

)
.

2. ([6]) Let (X, d,W ) be a hyperbolic space. A function f : X → X is
called directionally nonexpansive (short: ‘f d.n.e.’) if

∀x ∈ X∀y ∈ seg(x, f(x))
(
d(f(x), f(y)) ≤ d(x, y)

)
,

where seg(x, y) := {W (x, y, λ) : λ ∈ [0, 1]}.
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Definition 3.4. Let f : X → X, then Fix(f) := {x ∈ X | x = f(x)}.
In [12], the following corollary of theorem 3.2 is derived which is specially
tailored towards applications to metric fixed point theory:

Corollary 3.5 ([12]). 1. Let P (resp. K) be a Aω-definable Polish space
(resp. compact Polish space), given in so-called standard representa-
tion, and B∀(x1, y1, z, f, u), C∃(x1, y1, z, f, v) be as in the previous the-
orem.
If Aω[X, d,W ] proves that

∀x ∈ P∀y ∈ K∀zX , fX→X
(
f n.e. ∧ Fix(f) 6= ∅ ∧ ∀u0B∀ → ∃v0C∃

)
,

then there exists a computable functional Φ1→0→0 (on representatives
x : IN → IN of elements of P) such that for all x ∈ ININ, b ∈ IN

∀y ∈ K∀z ∈ X∀f : X → X
(
f n.e.∧∀u ≤ Φ(x, b)B∀ → ∃v ≤ Φ(x, b)C∃

)
holds in any hyperbolic space (X, d,W ) whose metric is bounded by b.

2. An analogous result holds if ‘f n.e.’ is replaced by ‘f d.n.e’.

Note that in the corollary, the assumption Fix(f) 6= ∅ has disappeared in
the conclusion! For a discussion of this remarkable point see [12].

For normed linear spaces, the following metatheorem is proved in [12]:

Theorem 3.6 ([12]). Let σ be a type of degree 1, ρ of degree 1 or (1, X)
and τ of degree (1, X, C). Let sσ→ρ be a closed term of Aω[X, ‖ · ‖, C] and
B∀(xσ, yρ, zτ , u0) (resp. C∃(xσ, yρ, zτ , v0)) be a ∀-formula containing only
x, y, z, u free (resp. a ∃-formula containing only x, y, z, v free).
If

∀xσ∀y ≤ρ s(x)∀zτ
(∀u0B∀(x, y, z, u) → ∃v0C∃(x, y, z, v)

)
is provable in Aω[X, ‖ · ‖, C], then one can extract a computable functional
Φ : Sσ × IN → IN such that for all x ∈ Sσ and all b ∈ IN

∀y ≤ρ s(x)∀zτ
[∀u ≤ Φ(x, b)B∀(x, y, z, u) → ∃v ≤ Φ(x, b)C∃(x, y, z, v)

]
holds in any non-trivial normed linear space (X, ‖ · ‖) and any non-empty
b-bounded convex subset C.
Instead of single variables and a single premise we may have tuples of vari-
ables and a finite conjunction of such premises.
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Remark 3.7. In [12], there are also corresponding theorems proved for uni-
formly convex normed spaces (X, ‖ · ‖, η) with convexity modulus η (then the
bound Φ(x, b, η) will additionally depend on the modulus η) and for inner
product spaces.

The proof in [12] is based on the same fundamental ideas as the proof of
Theorem 3.2, the main difference being that the majorization relation on
objects of type X can no longer be treated as trivial as in the case of a
bounded metric space. Instead one defines the majorization relation s-maj
for elements of type X to be

x∗ s-majX x :≡ ‖x∗‖X ≥IR ‖x‖X .

Then one can prove, as before, the extractability of effective bounds, where
the main difficulty is to define suitable majorants for the constants and con-
structions of Aω[X, ‖ · ‖, C].

Discussion on extensionality: As mentioned above, one can only allow
the weak extensionality rule instead of the full axiom of extensionality in
the formal systems based on classical logic. In order to reverse the double
negations introduced by the negative translation, it is strictly necessary that
the interpretation we choose to interpret classical logic in particular interprets
the Markov principle. However, together with the Markov Principle full
extensionality would cause severe problems, as it allows us, when combined
with functional interpretation, to obtain witnesses for potential universal
quantifiers hidden in the extensionally defined equalities in the premise of
implications, e.g. in the extensionality axiom itself.
The extraction of witnesses combined with majorization, would thus trans-
form an instance of the extensionality axiom into a statement about uniform
continuity. An axiom stating the extensionality of a single function constant
would allow us to prove its uniform continuity. E.g. the full extensionality
axiom for type-X equality would even allow us to prove (in the context of
Aω[X, d]) the equicontinuity of all functions fX→X which – of course – is
not true in general (but does hold for the class of nonexpansive mappings
f : X → X, whose full extensionality follows in Aω[X, d]).
A similar problem with extensionality arises from the representation of a
convex subset C of a normed linear space via its characteristic function χC .
Here we would like the characteristic function to respect the extensional
equality, i.e.

x =X y → χC(x) =0 χC(y).
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In the presence of functional interpretation and majorization, this would not
only yield that points x ∈ X close to C behave similar to points in C, it
would also describe a modulus for how close to C you have to be to behave
‘sufficiently similar’. Unless the subset C is topologically very simple (e.g. a
closed bounded ball), such statements will in general not be correct.
Therefore, we must restrict the formal system to make unwanted or simply
false conclusions, drawn from extensionality statements, impossible. In turn,
when it is necessary to employ an extensional equality in a proof, we cannot
simply assume extensionality: every statement of extensionality that is used
in a proof must itself be explicitly proved with the use of QF-ER or follow
from uniform continuity. For more details, see the discussion of extensionality
in section 3 of [12].

4 Extracting bounds from semi-constructive

proofs

The metatheorems from [12] which we briefly discussed in the previous section
allow one to extract bounds from proofs in fairly strong systems, namely
extensions of classical analysis with an abstract metric, hyperbolic, CAT(0)
resp. normed linear space. However, the fact that the formal systems were
based on classical logic imposes severe restrictions on the class of formulas
for which extraction of bounds is possible.
The first step in the extraction algorithm is to apply negative translation
to the classical proof (of some formula F ), i.e. to translate it into an es-
sentially intutionistic proof of the negative translation FN of F (which may,
however, use the Markov principle to be discussed below). This restricts the
extraction of bounds to ∀∃A-formulas for which the equivalence between the
formula and its negative translation can be shown to hold under the Markov
Principle, namely the class of formulas ∀∃Aqf , where Aqf is quantifier-free
(or purely existential). In consequence, the interpretation must interpret the
Markov Principle, as functional interpretation indeed does. In general, such
an equivalence can be validated at most for ∀∃Aqf , as already the formula
class Π0

3 yields counterexamples to the existence of effective bounds in the
form of e.g. the halting problem.
Secondly, the interpretation of the negative translation of the axiom of de-
pendent choice by bar recursive functionals requires arguments which hold
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only in the model of hereditarily strongly majorizable functionals Mω,X over
the types IN and X but not in the full set-theoretic model Sω,X . In conse-
quence, for the extracted bounds to hold in Sω,X , we must restrict the types
of the quantified variables in the theorem to be proved to types of degree
1 or (1, X), as for those low types the proper inclusions between these two
models hold.
We will see now that the intuitionistic counterpart of Aω and its extensions
to metric, hyperbolic, CAT(0) and normed linear spaces do not suffer from
such restrictions (even when strong ineffective principles are added):

In the classical case we used an extension of Gödel’s Dialectica interpretation
combined with negative translation and majorization (monotone functional
interpretation) to obtain the results. In the intuitionistic setting we derive
these results from a monotone variant of Kreisel’s modified realizability inter-
pretation (in short: mr-interpretation), the so-called monotone modified real-
izability interpretation. Kreisel’s mr-interpretation was introduced in [16, 17]
and studied in great detail in [25, 26]. The monotone mr-interpretation was
introduced in [10] and is studied in detail in [7].
This interpretation has the following nice properties:

1. As in the classical case, we can use the general metatheorem as a black
box to prove (even qualitatively new) uniformity results without actu-
ally having to carry out the extraction.

2. Contrary to classical systems, we are no longer restricted to proofs
of ∀∃Aqf -statements, but can allow ∀∃A-statements for arbitrary A.
Furthermore, the additional restrictions on the quantifiers stated in
Theorem 3.2 and Theorem 3.6 can be significantly relaxed.

3. We may add large classes of additional axioms Γ¬ which include highly
ineffective principles such as full comprehension for arbitrary negated
formulas (which is not even allowed in the classical context, where it
would allow full comprehension for all formulas).

The Markov Principle in all finite types is the principle

Mω : ¬¬∃xAqf (x) → ∃xAqf(x),

where Aqf is an arbitrary quantifier-free formula of Aω and x is a tuple of
variables of arbitrary types (Aqf may contain further free variables).
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As discussed above, in the classical case it is strictly necessary that the
interpretation we choose interprets the Markov principle, and this imposes
certain restrictions on the formal system. In the intuitionistic setting we
can choose not to include the Markov Principle. As a consequence, when
extending intuitionistic analysis with non-constructive principles we have an
actual choice between two main directions in which to extend the formal
system: with or without the Markov Principle Mω:
Extending the system with the Markov Principle would force us to both
restrict extensionality to weak extensionality and to allow at most the in-
dependence of premise scheme for purely universal formulas. However, we
could still – replacing the use of negative translation in the proofs of the main
results in [12] by the reasoning used to prove theorem 3.18 in [10] (which is
based on monotone functional interpretation rather than monotone modified
realizability) – extract bounds for arbitrary formulas ∀∃A, instead of the
restricted formula class ∀∃Aqf .
We choose instead to extend our formal system in the direction without Mω.
Abandoning the Markov Principle allows us to add full extensionality and
comprehension and independence of premise schemes for arbitrary negated
formulas, as well as many other essentially non-constructive analytic or log-
ical principles (see also [10]).

Let comprehension for negated formulas be the principle:

CAρ
¬ : ∃Φ ≤ρ→0 λx

ρ.10∀yρ(Φ(y) =0 0 ↔ ¬A(y)),

let the independence-of-premise principle for negated formulas be:

IP ρ
¬ : (¬A→ ∃yρB(y)) → ∃yρ(¬A→ B(y)) (y /∈ FV(A)),

where in both cases A,B are arbitrary formulas. The union of these principles
over all types ρ of the underlying language are denoted by CA¬ and IP¬
where – when working over the systems Aω

i [X, . . .] – we allow arbitrary types
ρ ∈ TX .

Definition 4.1. A formula A ∈ Aω
i , resp. A ∈ Aω

i [. . .], is called ∃-free (or
‘negative’), if A is built up from prime formulas by means of ∧,→,¬ and ∀
only, i.e. A contains neither ∃ nor ∨. We denote ∃-free formulas A by Aef .

The principles CAef and IPef are the principles corresponding to CA¬ and
IP¬, where instead of ¬A we have an ∃-free formula Aef .
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We next recall Kreisel’s mr-interpretation and Bezem’s[1] notion of strong
majorizability, which is an extension of Howard’s[5] notion of majorizability,
for all types TX . Combining these allows us to define the monotone mr-
interpretation.
For each formula A(a), where a are the free variables of A, Kreisel’s mr-
interpretation defines, by induction on the logical structure of A, a corre-
sponding formula ‘x mr A’ (in words: x modified realizes A), where x is a
(possibly empty) tuple of variables, which do not occur free in A. From a
proof of A Kreisel’s mr-interpretation extracts a tuple of closed terms t s.t.
∀a(ta mr A(a)). For details see e.g. [25, 26].

Remark 4.2. 1. For every ∃-free formula A we have (x mr A) ≡ A with
x the empty tuple.

2. (x mr A) is always an ∃-free formula.

Definition 4.3 ([12], extending [5, 1]). The strong majorizability relation
s-maj is defined as follows:

• x∗ s-maj0 x :≡ x∗ ≥ x

• x∗ s-majX x :≡ (0 =0 0) in Aω
(i)[X, d, . . .],

• x∗ s-majX x :≡ ‖x∗‖X ≥IR ‖x‖X in Aω
(i)[X, ‖ · ‖, . . .],

• x∗ s-majρ→τ x :≡ ∀y∗, y(y∗ s-majρ y → x∗y∗ s-majτ x
∗y, xy)

Definition 4.4 ([10]). A tuple of closed terms t∗ satisfies the monotone
mr-interpretation of A(a) if

∃z(t∗ s-maj z ∧ ∀a(za mr A(a))

We briefly recall some properties of the mr-interpretation. As we have the
full axiom of choice AC in Aω

i , resp. Aω
i [. . .], one shows:

Proposition 4.5 (Troelstra[25]).

Aω
i + IPef ` A↔ ∃x(x mr A)

Similarly for Aω
i [. . .] + IPef .

Proof. By induction on the logical structure of A.
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Corollary 4.6. 1. For every formula A ∈ Aω
i we can construct an ∃-free

formula Bef s.t.
Aω

i + IPef ` ¬A↔ Bef

Similarly for Aω
i [. . .].

2. For every ∃-free formula Aef ∈ Aω
i we have that Aω

i ` Aef ↔ ¬¬Aef .
Similarly for Aω

i [. . .].

3. Over Aω
i we have IPef ↔ IP¬ and CAef ↔ CA¬. Similarly for Aω

i [. . .].

Proof. 1. By Proposition 4.5 we have

Aω
i + IPef ` ¬A↔ ∀y((y mr A) → ⊥),

where ∀y((y mr A) → ⊥) is ∃-free, as (y mr A) is ∃-free.
2. This equivalence is provable intuitionistically in the context of decidable
prime formulas.
3. Aω

i + IPef ` IP¬ follows from ‘1.’, Aω
i + CAef ` CA¬ follows from the

fact that Aω
i + CAef ` IPef and ‘1.’. The converse implications follow from

‘2.’.

In the following, we will omit mentioning IP¬ and IPef , as they follow from
the corresponding comprehension schemes CA¬ and CAef (and the decid-
ability of =0).

Discussion on extensionality, continued: As mentioned above, in the
context of functional interpretation full extensionality is much too strong,
as it would allow us to derive (when combined with the generalized ma-
jorizability from [12]) statements e.g. about uniform continuity which are
not true in general. In the context of (monotone) modified realizability full
extensionality is harmless. Extensionally defined equalities in the premise
of implications, e.g. in instances of the extensionality axiom, as indeed in-
stances of the extensionality axiom as a whole, are ∃-free and thus realized
by the empty tuple.
Informally speaking, functional interpretation is ‘too eager’, seeking to ex-
tract every possible and hence some unwanted bounds. In contrast, modified
realizability is ‘lazy enough’ to only extract bounds where this is explicitly
asked for, namely from positive existential statements. Where functional
interpretation extracts bounds on universal premises in an implication, mod-
ified realizability leaves them alone. In practice, this allows us to remove the
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requirement to explicitly prove every extensional equality used in the proof
and instead to simply assume it as a premise, leading to a more natural,
intuitive treatment of extensionality.

We can prove the following theorem, corresponding to Theorem 3.2 in the
classical setting:

Theorem 4.7. 1. Let σ be a type of degree 1, let ρ be a type of degree
(·, 0) and let τ be a type of degree (·, X). Let sσ→ρ be a closed term of
Aω

i [X, d] and let A(resp. B) be an arbitrary formula with only x, y, z, n
(resp. x, y, z) free. Let Γ¬ be a set of sentences of the form ∀uα(C →
∃v ≤β tu∃wγ¬D) with tα→β be a closed term of Aω

i [X, d], the type α
arbitrary, the type β of degree (·, 0) and γ of degree (·, X). If

Aω
i [X, d] + CA¬ + Γ¬ ` ∀xσ∀y ≤ρ s(x)∀zτ (¬B → ∃n0A),

then one can extract a primitive recursive (in the sense of Gödel) func-
tional Φ : Sσ × IN → IN such that for all b ∈ IN

∀xσ∀y ≤ρ s(x)∀zτ∃n ≤ Φ(x, b)(¬B → A)

holds in any (non-empty) metric space (X, d) whose metric is bounded
by b ∈ IN and which satisfies Γ¬.5

2. For bounded hyperbolic spaces (X, d,W ), ‘1.’ holds with Ai[X, d,W ], (X, d,W )
instead of Aω

i [X, d], (X, d).

3. If the premise is proved in Aω
i [X, d,W,CAT(0)] instead of Aω

i [X, d,W ]
then the conclusion holds in all b-bounded CAT(0) spaces satisfying Γ¬.

As in the classical case, instead of single variables and single premises we
may also have tuples of variables and a finite conjunction of premises.

Proof. Since prime formulas in Aω
i [X, d]+CA¬ +Γ¬ are decidable, it follows

from Corollary 4.6 that this theory is equivalent to the theory Aω
i [X, d] +

CAef + Γ′ef , where Γ′ef is the set of ∃-free formulas A′ equivalent to the
formulas A ∈ Γ¬ (using Corollary 4.6). For the subsystem of Aω

i [X, d] +
CAef + Γ′ef not involving (X, d), i.e. restricted to the types T, it is proved
in [10] that this theory has a monotone mr-interpretation in its classical

5Here bX is understood to be interpreted by b.
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counterpart (for a somewhat more restricted set Γ′ef even in itself) by terms
in Gödel’s T .
To extend the proof to the full theory Aω

i [X, d]+CA¬+Γ¬, i.e. now involving
the full range of types TX , we observe the following:

1. By similar arguments as in the classical case (see [12]) the soundness
of the monotone mr-interpretation of the logical axioms and rules, the
defining equations for combinators Σ,Π and the recursor R, axiom
schemes E,AC and the axiom schema of induction extends to the types
TX without any changes.

2. The additional axioms of Aω
i [X, d] are purely universal and do not

contain ∨, and hence have a trivial monotone mr-interpretation by the
empty tuple.

3. The additional ∃-quantifiers ranging over variables of type degree (·, X),
both in the conclusion and in sentences of the set Γ¬, resp. Γ′ef , can
easily be majorized using the constant bX for the bound on d as shown
in [12].

4. The monotone mr-interpretation extracts a realizer ψ ∈ Sω,X depend-
ing only on a suitable interpretation of the constants of Aω

i [X, d]: The
majorization relation extends to TX as in [12], so given a closed term ψ
of Aω

i [X, d] we can construct a majorant ψ∗, by induction on the term
structure of ψ such that

Sω,X |= ψ∗ s-maj ψ.

ψ∗ does not involve dX and which depends on (X, d) only via the in-
terpretation of the constant bX by a bound b ∈ IN on the metric d and
on the interpretation of 0X by some arbitrary element of X. Using the
same techniques as in the classical case ([12]) one can eliminate the lat-
ter dependency and construct from ψ∗ a functional Φ ∈ S0→(σ→0) which
is given by a closed term of Aω

i (i.e. a primitive recursive functional in
the sense of Gödel) s.t.

Sω,X |= ∀xσ∀y ≤ρ s(x)∀zτ∃n ≤ Φ(x, b)(¬B → A(x, y, z, n)).

Note that the negated premise ¬B, since – again by corollary 4.6 – it is
equivalent to an existential free formula, does not in any way contribute to
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the extracted term. For Aω
i [X, d,W ] and Aω

i [X, d,W,CAT(0)] the arguments
are similar. In all three cases the final extracted term Φ is primitive recursive
in the sense of Gödel, i.e. Φ is a closed term in Gödel’s T .

We furthermore show the following corollary, corresponding to Corollary 3.5
in the classical case:

Corollary 4.8. 1. Let P (resp. K) be a Aω
i -definable Polish space (resp.

compact Polish space) and let A,B and Γ¬ be as in the previous theo-
rem. If Aω

i [X, d,W ] + CA¬ + Γ¬ proves that

∀x ∈ P∀y ∈ K∀zX , fX→X(¬B → ∃n0A)

then there exists a primitive recursive functional Φ1→0→0 (on represen-
tations x : IN → IN of elements of P) such that for all x ∈ ININ, b ∈ IN

∀y ∈ K∀zX , fX→X∃n ≤ Φ(x, b)(¬B → A)

holds in any hyperbolic space (X, d,W ) whose metric is bounded by b.

2. The result also holds for Aω
i [X, d], (X, d).

Proof. The details of the proof are similar to the classical case, i.e. by Theo-
rem 4.7 we can extract a primitive recursive bound Φ(x, b) on n which holds
in all spaces (X, d,W ), resp. (X, d), whose metric is bounded by b.

Remark 4.9. As in the classical case, we can add additional assumptions
about the function f , if of suitable logical form, to the premise. In the classical
case we added the assumption ‘f n.e.’ and ‘Fix(f) 6= ∅’ to the premise of the
implication. Both assumptions can also be added in the semi-intuitionistic
case. The condition ‘f n.e.’ is purely universal and hence is equivalent to
its double negation. The statement ‘Fix(f) 6= ∅’ can be written as ∃uXC∀,
where C∀ is purely universal and so again equivalent to its double negation.
Thus, first pulling out the existential quantifier from the premise ∃uXC∀ as
a universal quantifier just as ∀zX , we can extract a bound Φ that does not
depend on u and does not depend on any of the negated premises nor C∀.
Shifting the quantifier ∃u back in we get the result.
In the classical case the premise ‘f n.e.’ ensures that a given f indeed be-
haves like a function, i.e. to prove the extensionality of f , as the weak ex-
tensionality rule QF-ER is not strong enough to ensure this. The weaker
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assumption ‘f d.n.e’ does not imply extensionality. This is the reason why
in application 3.16 of [12] one carefully had to observe that QF-ER was in
fact sufficient to formalize the proof in question. In the semi-intuitionistic
case, where we allow full extensionality this is not necessary. The benefit
of adding ‘Fix(f) 6= ∅’ was that FI would weaken the statement to f has
an approximate fixed point, which for non-expansive and even directionally
non-expansive selfmappings of a bounded hyperbolic space is always true (see
[4] and [14]) whereas ‘Fix(f) 6= ∅’ is not. In the semi-intuitionistic case
‘Fix(f) 6= ∅’ will not disappear from the premise, as monotone modified
realizability does not weaken universal premises such as dX(x, f(x)) =IR 0IR.

For normed linear spaces we prove the following semi-intuitionistic counter-
part to Theorem 3.6:

Theorem 4.10. 1. Let σ be a type of degree 1, let ρ be a type of degree
(·, 0) and let τ be a type of degree (X,C). Let sσ→ρ be a closed term
of Ai[X, ‖ · ‖, C] and let A(resp. B) be an arbitrary formula with only
x, y, z, n (resp. x, y, z) free. Let Γ¬ be a set of sentences of the form
∀uα(C → ∃v ≤β tu∃wγ¬D) with tα→β be a closed term of Aω

i [X, ‖·‖, C],
the type α arbitrary, the type β of degree (·, 0) and γ of degree (X,C).
If

Aω
i [X, ‖ · ‖, C] + CA¬ + Γ¬ ` ∀xσ∀y ≤ρ s(x)∀zτ (¬B → ∃n0A),

then one can extract a primitive recursive (in the sense of Gödel) func-
tional Φ : Sσ × IN → IN such that for all b ∈ IN

∀xσ∀y ≤ρ s(x)∀zτ∃n ≤ Φ(x, b)(¬B → A)

holds in any nontrivial normed linear space (X, ‖·‖) and any b-bounded
convex subset C which satisfy Γ¬.

Instead of single variables and single premises we may also have tuples of
variables and a finite conjunction of premises.

The proof is based on similar arguments as the proof of Theorem 3.6, resp.
the variations due to the change of setting from classical to semi-intuitionistic
discussed in the proof of Theorem 4.7. The variables of degree (X,C) in the
sentences A ∈ Γ¬ can again easily be majorized by a suitable interpretation
of the constant bX by a bound b on the norm of the elements of the convex
subset C.
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Remark 4.11. In the classical case the construction of majorants d∗X resp.
‖ · ‖∗X depends on the interpretation of dX resp. ‖ · ‖X in the model SX,ω via
an ineffective operator ()◦, which from a (representative of a) real number
selects a canonical representative of that real number. As an operator of type
1 → 1, ()◦ is primitive recursive in

E2(f 1) :=0

{
0, if ∀x0(f(x) =0 0)
1, if ¬∀x0(f(x) =0 0).

Since the monotone functional interpretation of the defining axioms of (E2)
would require non-majorizable functionals (although E2 itselfs is trivially ma-
jorizable) one must not include the operator ()◦ to Aω[X, . . .]. This causes
no problems as ()o only is involved in the interpretation of the theory in
the model Sω,X . Subsequently the ineffective ()o operator can be majorized
effectively!
In the semi-constructive case we could actually add the ()◦ operator via E2

to the theory, as monotone modified realizability leaves the defining axioms
of the E2 untouched, and carry out part of the argument regarding the ()◦
operator in the theory itself rather than in the model.

5 Application to Metric Fixed Point Theory

To illustrate the various aspects of Theorem 4.7 we consider three different
proofs of (variants of) Edelstein’s Fixed Point Theorem: first a refinement of
the original proof by Edelstein[3] developed in [15], next an alternative, con-
structive proof by Rakotch[20] and finally a more recent proof carried out in
the framework of Bishop-style constructive mathematics by Bridges, Julian,
Richman and Mines[2]. Though completely elementary, if not trivial, from
a functional analytic point of view, this example serves well to demonstrate
the various logical aspects of proof mining using the metatheorems presented
in the previous sections. For recent non-trivial applications of proof mining
see [11, 13, 14].
In [21], Rhoades presents a survey and comparison of a large number of
different notions of contractivity, compiled from the literature on metric fixed
point theory, for which fixed points theorems have been proven. Many of
these notions of contractivity and the accompanying proofs of fixed point
theorems are far more technical than the example presented in this section.
Further surveys on notions of contractivity can be found in [22, 19]. We
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intend to treat such more general fixed point theorems based upon the more
complicated notions of contractivity discussed in these survey articles in a
subsequent paper.

Edelstein defines contractive (self-)mappings as follows:

Definition 5.1 (Edelstein[3]). A self-mapping f on a complete metric
space (X, d) is contractive if for all x, y ∈ X: x 6= y → d(f(x), f(y)) <
d(x, y).

and Edelstein’s Fixed Point Theorem is:

Theorem 5.2 (Edelstein[3]). Let (X, d) be a complete metric space and
let f be a contractive self-mapping on X s.t. for some x ∈ X the sequence
{fn(x)} has a convergent subsequence {fni(x)}, then ξ = lim

n→∞
fn(x) exists

and is a unique fixed point of f .

For a compact space (X, d) the sequence {fn(x)} always has a convergent
subsequence, and thus {fn(x)} always converges to a unique fixed point.
We are now interested in obtaining a computable (Cauchy) modulus δ for
the sequence {fn(x)} s.t. ∀m,n > N = δ(ε) : d(fm(x), fn(x)) < ε. In
addition to ε, we must prima facie expect the rate of convergence δ to also
depend on x, the space (X, d), the function f and a modulus of contractivity
for f , if such a modulus exists. In an intuitionistic setting the meaning
of the implication expressing the contractivity of f is to give a procedure
to transform a witness of ‘d(x, y) > 0’ into a witness of ‘d(f(x), f(y)) <
d(x, y)’. Proving (or assuming) contractivity of f in an intuitionistic setting
yields a function that depending on x, y and an ε, by which d(x, y) is larger
than 0, produces a δ by which d(f(x), f(y)) is smaller than d(x, y). Such a
function, if uniform with regard to x, y ∈ X, is nothing else than a modulus
of contractivity.

Remark 5.3. On compact metric spaces, or more generally, on bounded
metric spaces monotone functional interpretation and monotone modified re-
alizability automatically strengthen the general notion of contractivity to uni-
form contractivity, i.e. the existence of a modulus of contractivity. As we
will see, the notion of uniform contractivity is sufficient even on unbounded
metric spaces to guarantee the convergence of {fn(x)} to a unique fixed point
and to state an effective rate of convergence.
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In [20] Rakotch considers functions with a multiplicative modulus of contrac-
tivity α s.t.

∀x, y ∈ X : d(x, y) > ε→ d(f(x), f(y)) ≤ α(ε) · d(x, y)
where 0 ≤ α(ε) < 1 for all ε > 0.6

Rakotch’s multiplicative modulus of contractivity α is only one possible in-
terpretation of witnessing the contractive inequality. From the point of view
of logic, to witness an inequality s < t one has to produce an ε > 0 s.t.
s+ ε < t. This leads to a additive modulus of contractivity η s.t.

∀x, y ∈ X : d(x, y) > ε→ d(f(x), f(y)) + η(ε) ≤ d(x, y)

It is easy to see that a modulus η can be defined given a modulus α:

η(ε) := (1− α(ε)) · ε
To define a modulus α in terms of a modulus η we further assume that the
metric d on X is bounded and define:

α(ε) := 1− η(ε)

b

What is actually used to prove the convergence of the iteration sequence
{fn(x)} (irrespectively of whether one uses η or α) is that every such iteration
sequence is bounded. Already without assuming the boundedness ofX such a
bound follows both from a multiplicative modulus α and an additive modulus
η. It should be noted that it is strictly necessary for the moduli to be uniform
with regard to x, y ∈ X, as otherwise a function, although contractive, might
not have a fixed point. Edelstein’s non-uniform notion of contractivity x 6=
y → d(f(x), f(y)) < d(x, y) is in general only sufficient to prove the existence
of a fixed point in compact spaces, where Edelstein’s notion is equivalent to
the existence of uniform moduli α and η. In most other cases the equivalence
fails. As a counterexample, consider the self-mapping f(x) := x + 1

x
of the

interval [1,∞). It is easy to see that the function f is contractive in the sense
of Edelstein. Trivially, the function f has no fixed point. One furthermore
proves by induction that for all n ≥ 1:

1 +
n∑

i=1

1

i
≤ fn(1) ≤ n + 1

6Actually Rakotch requires α to be monotonically decreasing and to satisfy x 6= y →
d(f(x), f(y)) ≤ α(d(x, y)) ·d(x, y) instead. In the proof only the above property is needed,
which follows from Rakotch’s requirements.
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Since the sum
∑∞

i=1
1
i

= ∞, the iteration sequence {fn(1)} is unbounded,
and hence f cannot have a modulus of contractivity α or η. Counterexamples
even in the case of bounded metric spaces7 are discussed in [23].

Using a multiplicative modulus α, Rakotch proves the following variant of
Edelstein’s Fixed Point Theorem:

Theorem 5.4 (Rakotch [20]). Let (X, d) be a complete metric space and
let f be a contractive self-mapping on X with modulus of contractivity α,
then ξ = lim

n→∞
fn(x) exists and is a unique fixed point of f .

The key step in the proof is to establish the following:

Lemma 5.5. Let (X, d) be a metric space and let f be a contractive self-
mapping on X with modulus of contractivity α, then the iteration sequence
{fn(x)} is a Cauchy sequence.

We now expect that our metatheorems allow us to extract from a proof of
Lemma 5.5 a Cauchy modulus δ; in fact it suffices to extract a bound on the
modulus, as such a bound trivially also is a realizer for the modulus. Contrary
to Rakotch’s proof, Edelstein’s original proof is a classical proof and since
expressing that the sequence {fn(x)} is a Cauchy sequence requires a Π0

3-
statement, the metatheorem for the classical case cannot be applied directly
to extract a Cauchy modulus from Edelstein’s proof.
In [15], Kohlenbach and Oliva use a trick to extract a bound from Edelstein’s
non-constructive proof: The proof of Edelstein’s Fixed point theorem can be
split up into three lemmas. Each of these lemmas is of a suitable logical form
to allow extraction of a bound, and combining these bounds, the following
modulus of convergence for f a self-map on a compact space K is extracted8:

δ(α, b, ε) =
log((1− α(ε)) ε

2
)− log b

logα((1− α(ε)) ε
2
)

+ 1

where α is the modulus of contractivity for f , and b is a bound on the
diameter of K. In accordance with Theorem 3.2, the same bound also holds
if we replace the compact space K by a (more general) b-bounded metric
space. Note that the Cauchy modulus δ is uniform with regard to x ∈ X
and the function f .

7In fact even in the case of the closed unit ball of the Banach space c0.
8Originally in [15] an additive modulus of contractivity η is considered. The extracted

modulus of convergence is then δ(η, b, ε) = b−η(ε)

η( η(ε)
2 )
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Remark 5.6. In an unbounded space (X, d) the fact that - given a modulus
of contractivity - each iteration sequence {fn(x)} can be bounded yields a
modulus of convergence depending, in addition to the modulus and ε, on f
and the starting point x. We will discuss the details later.

The treatment of (the classical proof of) Edelstein’s fixed point theorem in
[15] via monotone functional interpretation generalizes Edelstein’s result to
bounded metric spaces, where using the strengthening of contractivity to uni-
form contractivity a Cauchy modulus for the sequence {fn(x)} is extracted.
Together with the observation that only the boundedness of the iteration
sequence is needed not the boundedness of the whole space, the analysis of
Edelstein’s classical, non-constructive proof yields essentially the same result
as Rakotch’s theorem. However, with regard to the numerical quality of the
modulus one can do better: As mentioned Rakotch’s proof is fully construc-
tive, and one easily sees that the constructive proof can be formalized in
Aω

i [X, d]. Thus, without the tedious work of splitting up Edelstein’s proof,
the metatheorem for the semi-intuitionistic case guarantees that we can ex-
tract an effective bound on the modulus of convergence or, without having to
carry out the extraction, prove uniformities for the modulus of convergence.

In Aω
i [X, d] we can express the fact that fX→X represents a contractive func-

tion with modulus α1 (of type degree 1), in short: ‘f contr. α’, as

∀k0∀xX , yX(dX(x, y) ≥IR 2−k → dX(f(x), f(y)) ≤IR (1− 2−α(k)) ·IR dX(x, y))

Thus in the formal system Aω
i [X, d] one can express Lemma 5.5 as:

Lemma 5.7. Aω
i [X, d] proves

∀fX→X∀xX∀α1∀k0(f contr. α→ ∃N0∀m,n ≥0 N dX(fm(x), fn(x)) ≤IR 2−k).

To see that Rakotch’s proof can be formalized in Aω
i [X, d], one notes that

the proof consists of two main parts: first it is shown that for any starting
point x the sequence {fn(x)} is bounded, then using this bound and the
contractivity of f it is shown that {fn(x)} is a Cauchy sequence and hence
converges to a unique fixed point.
Since the starting point x and the function f are merely used to produce
a bound on the sequence {fn(x)} and since the use of a modulus α, or
equivalently a modulus η, implies that each iteration sequence is contained
in some bounded subset of X, it is only a slight generalization to consider
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instead the case of a b-bounded space (X, d) in Lemma 5.7. Given a starting
point x, the function f and an arbitrary ρ > 0, Rakotch shows that one can
bound d(x, fn(x)) for all n by

d(x, fn(x)) ≤ b′ = max(ρ,
2 · d(x, f(x))

1− α(ρ)
)

Application 5.8. Theorem 4.7 a-priorily guarantees that there exists a bound
δ(α, b, ε) on N that is uniform on X and f , i.e. the bound holds for all b-
bounded spaces (X, d) and all functions f with modulus of contractivity α.
Moreover, by Theorem 4.7 we can extract an effective bound δ(α, b, ε) from
Rakotch’s constructive proof, and since a bound on N also is a realizer, this
gives us a modulus of convergence.

Proof. Since the relation ≤IR can be expressed as a Π0
1-predicate, the premise

‘f contr. α’ is ∃-free. The conclusion, the Cauchy property of the sequence
{fn(x)} is of the form ∀∃∀, but contrary to the classical case there are no
restrictions on the logical form, so that we can extract an effective uniform
bound δ(α, b, ε) on ∃N , i.e. an effective uniform Cauchy modulus for (fn(x)).

For the actual “extraction” of a bound δ(α, b, ε), we briefly sketch the rele-
vant, second part of Rakotch’s proof:9

Let p ∈ IN be given, then by definition (we can assume d(xk, xk+p) > 0):

d(xk+1, xk+p+1) ≤ α(d(xk, xk+p)) · d(xk, xk+p).

Now taking the product from k = 0 to n− 1 we get

d(xn, xn+p) ≤ d(x0, xp) ·
n−1∏
k=0

α(d(xk, xk+p)).

Since we consider a b-bounded space (X, d), obviously d(x0, xp) ≤ b, so

d(xn, xn+p) ≤ b ·
n−1∏
k=0

α(d(xk, xk+p)).

9Here we move for convenience tacitly to the more usual version of α as a function
IR∗

+ → (0, 1).
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If already d(xk, xk+p) < ε for some 0 ≤ k ≤ n − 1 we would be done, so
assuming d(xk, xk+p) ≥ ε for all k = 0 . . . n− 1 and by

∀x, y ∈ X : d(x, y) ≥ ε→ d(f(x), f(y)) ≤ α(ε) · d(x, y)
we get that

d(xn, xn+p) ≤ b · (α(ε))n.

Then solving the inequality b·(α(ε))n ≤ ε with regard to n yields the following
Cauchy modulus:

δ(α, b, ε) =
log ε− log b

logα(ε)
+ 1

The existence of the Cauchy modulus δ, with the described uniformities, is
guaranteed by the semi-intuitionistic metatheorem, even without analyzing
the proof. We can generalize the result further, as the proof clearly shows
that it suffices to bound not the whole space, but only the iteration sequence,
i.e. to bound d(x, fn(x)) for all n. As discussed earlier, to produce a bound
d(x, fn(x)) it suffices to have a bound on d(x, f(x)). Thus for an unbounded
space we have the rate of convergence:

δ′(α, ε, x, f) = δ(α, ε, b′)

where b′ is computed as described above.

As mentioned above, extracting a bound from the classical proof of Edel-
stein’s theorem was only possible by breaking up the proof into a couple of
lemmas, each of suitable form to extract a bound, using the metatheorem
for the classical case. Compared to the bound extracted from the Edelstein’s
proof the bound from Rakotch’s constructive proof - guaranteed a-priorily
by the metatheorem to exist and to be uniform on x ∈ X and f - is both
(syntactically) simpler and better. Naturally, in many cases finding a con-
structive proof for a classically true theorem may be far less trivial than in
the case of Rakotch’s variant of Edelstein’s theorem and in general, many
classically true theorems may not have a constructive proof at all. However,
as this example demonstrates, considering a constructive proof may yield sig-
nificantly simpler and better bounds than in the classical case and may give
fully uniform bounds from theorems having a logical form more complex than
∀∃, where the classical metatheorem in general fails, such as for example the
Cauchy property of an iteration sequence. Moreover, monotone functional
interpretation or monotone modified realizability may automatically lead to
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the necessary strengthenings of the mathematical notions involved, as e.g.
strengthening the notion of contractivity to uniform contractivity.
Finally, even for proofs that are developed in a fully constructive setting,
the metatheorem for the semi-constructive case may reveal new uniformities
not present in, or immediately obvious from, the theorem and proof under
consideration. In [2] Bridges, et al. treat Edelstein’s fixed point theorem in
the framework of Bishop-style constructive mathematics. A function f that
is contractive in the sense of Rakotch is denoted by the concept of ‘f is an
almost uniform contraction’. The following theorem is proved:

Theorem 5.9 ([2]). Let f : X → X be an almost uniform contraction on a
complete metric space X. Then

1. f has a unique fixed point ξ in X; and

2. the sequence {fn(x)} converges to ξ uniformly on each bounded subset
of X.

This theorem largely corresponds to Rakotch’s theorem discussed above, but
only the uniformity with regard to x ∈ X is stated, not the uniformity with
regard to f or the bounded subset. Both uniformities follow already a-priorily
from the existence of a (constructive) proof for Rakotch’s theorem by means
of our metatheorem. Also a modulus of convergence is not explicitly stated,
though both the uniformities and the effective modulus can be seen to be
implicit in the proof. An analysis of the constructive proof in [2] easily yields
an explicit modulus of convergence, which is identical to the bound extracted
from Rakotch’s constructive proof.
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